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1 Introduction

A probabilisticcouplingof two random processes is a construction of both processes on
the same probability space, building in useful dependence between the two processes.
This paper discusses couplings of two Markov processes with the same law of evolu-
tion, begun at different points, and constructed so as to join togetha{fe at some
random time; the coupling is said to beccessfuf the two processes couple within fi-

nite time almost surely. There are other kinds of couplings relating to monotonicity, or
to approximation; successful couplings are useful for probabilistic gradient estimates,
for studying the rate of convergence to statistical equilibrium, for relating behaviour of
random processes to the geometry of the state-space, and (in more developed formula-
tions) as a key component in perfect simulation algorithms. The present paper focuses
on a particular question to do with coupling constructions for Euclidean Brownian mo-
tions: namely, whether one can couple successfully not only the Brownian motions
themselves, but also sets of path functionals. We shall show that one can couple suc-
cessfully not only two copies of a Brownian motié®,, ..., B,), but at the same

time all the corresponding pairs ofely stochastic areaf B; d B; — [ B; d B; of

the two copies. This appears quite remarkable to the author: one is able to couple so
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much despite controlling only the correlations between the two copies of the Brownian
motion.

Extensive treatments of probabilistic coupling can be foundrinlvall (2002)and
Thorisson (200Q)so a short summary of the relevant history will sufficendvall
(1982)was the first to consider coupling for Brownian motion; he described the clas-
sic reflection couplingcouple twon-dimensional Brownian motions by making one
of them to be the reflection of the other until they meet). This was followed up by
Lindvall and Rogers (1986who discussed generalizations to the case of diffusions.
There is a significant distinction to be drawn here. It is typically very much easier
to find explicit descriptions of couplings when the two processes in question are re-
quired both to beco-adaptedo the same filtration of-algebras, in particular when
the driving Brownian motions have increments which are independent of their com-
mon past. IrLindvall and Rogers (198and throughout the present paper) the search
is for co-adapted couplings, and therefore stochastic calculus can be used to provide
very explicit descriptions.

Ben Arous et al. (1995)ere the first to consider the possibility of what one might
call exotic couplingsin which one seeks to couple co-adaptively and simultaneously
certain path functionals as well as the processes. They described co-adapted couplings
for the single stochastic area of planar Brownian motion, and also for the time-integral
of scalar Brownian motiorf’ Bd¢. Price (1996)showed in her thesis how to extend
the second case to couple the twice-iterated time-intggfaB d s d ¢, andKendall and
Price (2004)use a different method to show the existence of a successful co-adapted
coupling for B and any finite set of iterated time-integrgs.. [ Bds...dt. The
present paper continues this theme by extending the first res@leiofArous et al.
(1995)to n-dimensional Brownian motion. It now seems reasonable to formulate a
general conjecture that successful co-adapted exotic coupling is possible for any fi-
nite combination of multiply-iterated path- and time-integrals of Brownian motion (for
compatible initial conditions), though it is clear that new ideas will be required to
make further progress. The theory of Lie group symmetries of stochastic differential
equations support the expectation that resolution of the general conjecture would lead
quickly to coupling constructions for wide classes of hypoelliptic diffusions.

At present the main motivation for studying exotic coupling lies in the importance
of coupling as a general concept, and the consequent desirability of understanding how
far one can go in coupling large sets of path functionals. However it does seem not
unreasonable to hope for future useful interactions with rough path thiepryg and
Qian 2003, where stochastic areas play a centtdéy and conceivably also for help
in lifting restrictions on the new methods of exact simulation of stochastic differential
equationsBeskos and Roberts 2005

It should be noted that there is significant theory concerning non-co-adapted cou-
plings. If the co-adapted constraint is lifted then one may constnagimal couplings
(Griffeath 197% Goldstein 1979 Pitman 197% which couple at the maximum rate
permitted by the total variation bound of the coupling inequality. These couplings
have strong relationships with potential theory, and will in general be hard to construct
(but see the striking results éfogers 199%n random walks).Hairer (2002)uses a
restricted kind of non-co-adapted coupling at tieto study hypoelliptic diffusions,
Hayes and Vigoda (20038ise finite look-ahead couplings to gain definite improvements



on coupling rate in an application to randomized algorithms, whilelzy and Kendall
(2000) study the cost of the co-adapted property. In our case it is a simple matter to
demonstrate the possibility of successful non-co-adapted couplingwf stochastic
areas as a consequence @rhtander regularity of the corresponding- n(n — 1) /2-
dimensional hypoelliptic diffusion. The point of the present paper is to deliver an ex-
plicit successfuto-adapteccoupling construction; the existence of thisist implied

by regularity theory.

The paper is organized as follows. Sectibaddresses some general considera-
tions related to stochastic control, which help to focus the problem on specific cou-
pling strategies and to introduce notation. Sec@iaggives a new approach to the two-
dimensional problem treated Ben Arous et al. (1995%)this prepares the way for
the main results of the paper which are stated and proved in Settinpamely that
successful co-adapted coupling is achievablexfgiimensional Brownian motion and
its n(n — 1)/2 associated &vy stochastic areas. The concluding secfiaonsiders
a couple of complementary issues, and formulates a general question concerning cou-
pling of sets of iterated path integrals, for which the answer is conjectured to be in the
affirmative.

2 Coupling, control and convexity

Itis helpful to bear in mind a stochastic control-theoretic perspective for coupling prob-
lems concerning co-adapted Brownian motions eexar 2005or a useful survey on
stochastic controlChen 1994licits some connections between control and coupling,
while Jansons and Metcalfe 20Q%&nsons and Metcalfe 2008arry out some numer-

ical investigations). As remarked abovec@adapteccoupling of twon-dimensional
Brownian motionsA andB means thaA andB are both adapteas Brownian motions

to the same filtration of-algebras{g; : ¢t > 0} (thus in particular both increments
A, — A, andB,, , — B, are independent df;). The most general co-adapted
coupling can be specified using Istochastic calculus:

T ~T
dA = J'dB+] dC, (1)
whereJ, i are predictabldn x n)-matrix-valued processes, a@ is a furthern-
dimensional Brownian motion adapted to the filtrati#y : ¢ > 0} and independent

of B.

Thus the coupling is specified by giving a control in the form of a pair of predictable
matrix-valued processek J. These must satisfy certain conditiong=ifjuation () is
indeed to define an-dimensional Brownian motioA: multiplying stochastic differ-
entials to obtain differentials of quadratic variation (followilg 1975, and bearing
in mind the independence & andC, it follows that A is a Brownian motion if and



only if the following matrix-valued random measure equation is satisfied:
Idt = (dA)x(dA)" =
(27 @B) x @B)"3) + (1 (1Q) x (C)"T) =

= (a3 +3'3)at, @

wherel is then x n identity matrix.

The matrix procesd expresses the infinitesimal correlation ©@fwith B: from
Equation p) it follows that such matrix processes are characterized by lying (almost)
always in the convex compact set defined by

0 < J'J < 1, 3)

where0 is the(n x n) zero matrix, and the inequalities are to be interpreted using the
usual spectrally-based partial ordering for symmetric matrices. An application of the
Cauchy-Schwartz inequality 0’ J”J v shows that the set of extreme points of this
compact convex set can be identified as the topological group of orthogonal matrices
O(n).

Our coupling problem will be solved by designing a predictable prodessch
thatA andB couple at some finite random time simultaneously with all their stochastic
areas (A;d A;— [ A;d A; coupling with [ B, d B — [ B; d B;, et ceterd. Suppose
that it is possible to arrange this in terms of a stochastic control problem which is
regular enough to possess an objective function leading to a bounded value function
V(t, A, B) (where perhapsis replaced by some other additive functional such as time
spent in a specified region). Being a value functibit{, A, B) is a supermartingale
in general and is a martingale exactly when the conired optimal. If V (¢, A, B)
is appropriately smooth thendls formula may be applied. This together with the
Brownian nature oA andB shows

AV(t,A,B) = Vodt+ VI dA+VIdB+

1 1
+5t (¥, )dt+ 5o (¥, ) di+o(1v,,)dt
(for a fixed orthonormal basis,, ..., v,, and first and second-order derivativigg
vV, V,,V ., ¥12, ¥22 with dependence oh A andB suppressed). Thus optim&l
control processes for such a regular problem must maximize

which is linear inJ. It follows that smoothness of an appropriate value function implies
that optimal control processesmust (almost surely, for almost all time) lie in the
region of extreme points of the convex compact region of controls, and so must satisfy
the orthogonality condition

JT

1~
1=t

; (4)
in brief, J(¢) € O(n) for aimost all times (and hencei =0).



The impact of these considerations for our coupling problem is entirely heuristic,
since we do not have any particular objective function in mind other than desiring to
show that it is possible to couple Brownian motions together with their stochastic ar-
eas. (Indeed we will not even check that our resulting coupling strateggyniéssible
in the sense of being optimal for some objective function: it isaaptiori at all clear
whether a successful coupling exists and therefore optimality with respect to some
arbitrary objective function is of less value than conceptual simplicity!) The above re-
marks encourage a search for simple couplings amongst those whicus@alued
processed to constructA = fJTdB in terms of B, without any need of further
randomness fron@. SinceO(n) has two topological components, made ugs6i(n)
and the coset of rotated reflections, it also follows that we should expect to consider
coupling strategies which involve discontinuous transitions between one control and
another; and this is indeed what may be observed for the successful coupling strategies
described inTheorem4 (for the planar case) andorollary 7 (for the general case)
below.

3 The planar case

We first review the planar case (dimension= 2), which permits a simpler treatment

than the generat-dimensional case but introduces most of the key ideas. The planar

case was first dealt with iBen Arous et al. (1995who used controld not all lying

in O(2), though they noted in passing the possibility of coupling using only reflection

and synchronous coupling (as definediafinitions2 and3, J is a reflection matrix or

is an identity matrix). Ben Arous and Lyons have shown in unpublished work how to

implement reflection/synchronous coupling for the planar case in a rather direct way,

which resembles the low-dimensional case of Bfee Arous et atKendall and Price

treatment of Kolmogorov diffusions (time-integrals and twice-iterated time integrals

together with scalar Brownian motion). Here we show how reflection/synchronous

coupling may be set up using simple and largely state-dependent coupling rules.
First recall fromBen Arous et al. (199%hat it is sufficient to coupléB;, B2) and

(A4, Ay) together with thenvariant difference of their stochastic areas,

A = /(AldAg—AQdAl)—/(Blng—BgdBl)-i-AlBQ—AgBl. (5)

In fact2l then has a geometric interpretation: it measures the stochastic area swept out
by moving first along thed path, then linearly from the end of th& path to the end

of the B path, and then back along ti path to its starting point. It turns out to be
natural to think ofdl as the(1, 2) coordinate of an anti-symmetric matrix

_ (_Om %‘) .

(132



Consider the summary quantities

V =V/(A1 — B1)? + (42 — By)?,
U = sgr(2), /tr (ng) = V24 (6)

These are semimartingales at least until one of them vanishes. Stochastic calculus can
therefore be used to compute the stochastic differential dvifi& d U andDrift d V'

(the differentials of the locally bounded variation components of the Doob-Meyer semi-
martingale decompositions &f, 1) and the products of differentialsl 17)?, (d V)?
and(dV) x (dU) (the differentials of the corresponding quadratic variation and co-
variation processes). In doing this, it is convenient to define the quarfiitiess, and

Ay, from the symmetrization and the anti-symmetrization of the codtreforking in
orthonormal coordinates based on the ve&or B and its perpendicular,

) - (@ 8) ) - (W) o

The results of these computations are summarized in the following lemma:

Lemma 1.
(dV)* = 2(1—-Sn)dt, DriftdV = @dt,
(AV) x (dU) = —2v24,,V dt,
(AU)* = 4(1L+ Sx)V2dt, DriftdU = 2v2A4;,d¢ (8)

Details of the calculations are left as an exercise for the reader, who may alterna-
tively view them as a special case of the multi-dimensional case treated in detail in
Lemmab.

Here are two important coupling strategies, defined by specifying the correspond-
ing controlJ.

Definition 2. Reflection coupling is defined by choosidigo be the orthogonal matrix
giving reflection in the line normal to the vect&x — B: thusS;; = —1, Soo = 1,
A12 =0.

UsingLemmal, reflection coupling yields

(AV)? = 4dt, DriftdV = 0,
(AV) x (dU) = 0
(AU)* = 8V2dt, DriftdU = 0 9)

so thatV’ moves as a scalar Brownian motion at least till it lifandU moves as a
scalar Brownian motion subject tol&dependent time-change.

Definition 3. Synchronous coupling is defined by choosing be the identity matrix:
thUSSH =S99 =1, A12 =0.



UsingLemmal, synchronous coupling yields

@Av)y* = o, DriftdV = 0,
(AV) x (dU) = 0,
(AU)* = 8V2dt, DriftdU = 0 (10)

so thatV is held constant, whilé/ continues to move as a scalar Brownian motion
with rate dependent oW in the same way as for reflection coupling.

Under both these strategi&sandV remain semimartingales for all time.

It is possible to derive these results for both couplings without making explicit
use of stochastic calculus, simply by considering the geometry of the planar Brownian
paths and their invariant difference of areas.

The considerations dbection2 suggest that if coupling is at all possible for the
planar case using only symmettdcthen it should be achievable by combining these
two controls, sincé&quation 8) shows that the other two extreme contrds,(= +1,

Soo = —1) lead to positive drifts fol” without apparent gains far.

SinceU scales ad’2, and since it is desirable for coupling purposes to reduce the
size ofU if ever it gets large relative t¥, it is natural to consider coupling strategies
described loosely as follows: for fixed> 0,

while U? < k2V*4, use reflection coupling;
while U2 > k2V*#, use synchronous coupling.

This involves a discontinuous change of regimg@sl’) crosses over the boundary
U? = k2V*. The discussion iectior2 has prepared us to expect such discontinuities.
A precise description of a successful strategy of this kind is formulated in the following
theorem, which is the principal result of this section.

Theorem 4. Suppose that initiallf/; = 0 but V5 > 0 (this can always be arranged
by first using reflection coupling to maké positive, and then using a session of syn-
chronous coupling to redudg to zero). Fix a smalk > 0; consider the control which
alternates between reflection and synchronous couplings using “down-crossings”:

if U2/V* has not yet visite&? then use reflection coupling;

if U2/V* has attained the levék — £)? since most recently visiting? then use
reflection coupling;

otherwise use synchronous coupling.

This coupling is almost surely successful in finite tingg", V) visits (0,0) in finite
time.

Clearly one could consider the limiting case— 0 and use local time and excursion
theory; however it turns out to be simpler to analyze the process as given.

Proof of theorem.Define the indicator procesg () by N(¢) = 1 when eithet/? /V*
has not yet visited:2, or U2?/V* has attained the levék — )2 since most recently



visiting 2, and otherwise seV () = 0. Then the coupling strategy prescribed in the
theorem statement corresponds to the stochastic differential system

(AV)? = 4N© dat, DriftdV = 0,
(AV) x (dU) = 0,
(AU)* = 8V2dt, DriftdU = 0. (11)

This is solvable up to the time whéhandV both vanish: one may piece together so-
lutions of the smooth systems definedbyuations ) and (L0). Under this stochastic
differential system the proces$s evolves as a Brownian motion of ratenterrupted
only whenU?/V* makes down-crossings fror? to (v — ¢)2, and during these in-
terruptionsV is frozen. These down-crossings each take a finite amount of time, and
only finitely many occur in bounded closed time intervals befér@andl” both vanish;
consequently” either hits) at a finite time or converges (o SinceV is constant when
U?/V* > k2, continuity considerations show thidf V2 — 0 asV — 0, and therefore
coupling must occur whel hits 0. Thus the crux of the matter is, wil — 0 at a
finite time?

To analyze this question, applamperti (1972% observation (as used to great
effect in Yor 2001, for example) to thestochastic differential systemi1). Consider a
random time-change under whiéh = log(V') behaves as an (interrupted) Brownian
motion with constant negative drift. The time-chande) is defined by

4dt = V?dr. (12)
Writing W = U/V2, the stochastic system féf andWV then follows by I16’s formula:
(dK)* = N©dr, Driftd K = —%N@)dT,
(AK) x (dW) = 2NOWdr,
@w)? = 2(14+2NOW2)dr,  DiifdW = 3NOWdr.  (13)

It is required to show that elapsedime till K — —oo (equivalentlyl = 0) is finite,
which is equivalent to showing

/€2Kd7' < 0. (14)
0

SinceV diffuses as Brownian motion of ratevhenN(¢) = 1 and is otherwise frozen,
it follows that the integrayoOO N©)e2K (7 is a Brownian first-passage time and there-
fore is finite. Accordingly, it is enough to show

/(1—N(5))62Kd7 < oo. (15)
0

Leto? < of be the start and finish times (intime-scale) of the.™ down-crossing
of W2 = U2/V* from k2 to (k — £)2. But N\ = 0 exactly whenr lies in the union



of the stopping-time intervalg , o/ ], so therefore

n’ n

oo oo
/ 1-NNeKdr = > (o] —op), (16)
0 n=1

sinceV = X remains constant far € [o3, o/].

Conditional onk,: : n = 1,2,.., the durations} — o3 are independent Brown-
ian first-passage times of different rates. Consequently

0o
exp (— > i (o] - OZ>> | Koyin=12,. ]
n=1
= exp (— Z efon x 6) , (A7)
n=1

using the formula for the moment-generating function of a Brownian first-passage time.
Consider now the times; — a{, o5 — ag, ... between successive down-crossings.

These are independent, identically distributed, and of finite mean, since their common

distribution is ther-time for the regular real-line diffusiof” (with N(©) = 1) to hit

one of+x when started at — . Thus by the strong law of large numbers it follows

that almost surely

1 n
— E (ain—af;fl) — ]E[Jg—aﬂ >0
n

m=1

(definingol = 0).
But equallyK is a Brownian motion with constant drift o 5 on the interrupted
7-time-scale/ N(®) d 7, and therefore almost surely

E

Ko Ko 1
Jo N@dr St (o8 = ohy) 2
It follows that almost surely
Ko, Lals _of

and hencé_>° | =i is almost surely finite.
Consequentlfequation (L7) shows that

exp (— Z e (of — J,i)) ‘ Kos :n=1,2,.. 1
n=1

is almost surely positive, and so

E

o0



has a positive chance of being finite, even when conditionef{gn: n = 1,2,....

But thee?” =i (¢ — %) are independent under this conditioning, and so by the Kol-
mogorov zero-one law artdquation (6) it follows that

/(1—N(€))€2Kd7' < o0 (19)
0

with probability one. It follows that coupling under this strategy almost surely succeeds
after a finite time. O

Further development of this line of reasoning delivers an explicit construction of
the limiting cases — 0 using local time and excursion theory, a single elliptic partial
differential equation for the moment generating function

E [exp (—pT)]

of the coupling timer” for all p using scaling, and estimates for exceedance probabili-
ties of the coupling time. We do not consider these topics here, but instead proceed to
the multidimensional case.

4 Then-dimensional case

The first step is to establish the stochastic differemstyakem 6) for Euclidean separa-
tion and invariant difference of stochastic areas, working in gemesglace { > 2).
First introduce new coordinates basedXnr= A — B andY = A + B, whereA and
B are co-adapted-dimensional Brownian motions satisfyifigjuation (). Using I
calculus for the vectord X andd Y,

dXdX" = 2(I-8)dt, DriftdX = 0,
dYdX" = 2Ad¢t,
dYdY” = 2(I+8)d¢, DriftdY = 0, (20)

(J—J7T) are the symmetrized and anti-symmetrized

whereS = 1(J+J") andA = 3(J-J

matrices corresponding th

Applying the 18 formula toV? = X”'X (the square of the length &) it follows
that whileV' remains positive

n—1-(trS—v'Sv)

(dV)* = 2(1-v"Sv)dt, DiiftdV = a dt, (21)

wherer = X/V is a normalizedtonfiguration vectodefined byX = A — B.
Now consider the anti-symmetric matfk determined by invariant differences of
stochastic areas of the form Bfjuation b):



SinceA = %(X + X) andB = %(Y X)), calculation shows
d; = X,;dY;—X;dY; —24;;dt. (22)

Hence

dmindQlTS =
= X;X,dY;dY, — X;X,dY;dY, - X;X,dY;dY, + X;X,dY;dY,

= 2(X.X, (1+8), - XX, (L+8), - XX, (I+8), + XX, (I+8), ) dt.
(23)

SettingU = tr (ng) since

") - warsauy - ST (manseas) e

(A
it follows
AP AU = 4) Y Y A AU d
[ 7 T s
= 323 > > > WA XX, (I+8), dt
7 7 T s

= X" (I+8)axXdt = 32737 (1+8)3pUV? dt.

(25)
Hereé = 2/U is a normalizedconfiguration matrix(with tr @Té) = 1, anti-
symmetric sa3” = —3 andv”3 v = 0). The second line oEquation £5) follows
from the first by applying=quation 23) and then exploiting the symmetry bf-- S and
the anti-symmetry ofl.
On the other hand froraquation 24)
2UDriftdU = Driftd (U?) — (dU)?
= Driftzz (2Qlij d®A;; + (dﬂij)Q) — (dU)2
i g

ttr (ATA) dt-(dU) +ZZ X2(dY;)? + X2(dY;)? — 2X,X; dY; dY;) di
ttr (ATA) dt — (V) +2ZZ 2X2(1+8);; — 2X, X;(1+8);;) dt
= 4tr< )dtf dU)? +4(tr(£+§)72 (I+8)y)V?dt

=t (ATA)dt+4(n—1+trS— v Sy— 273" (I+8)3v) V2dt
(26)

12



where the last line is derived fromquation £5), evaluatingr I = n, ngg =1.
FromEquation £5) andEquation 26) taken together,

(dU)* = 873" (1+8) 3w V2 dt,
DriftdU = 2tr (3Té>dt+

- 2
+2(n—1+tr§—gT§g—22TéT (l—|—§)3g)%dt. 27)

Finally, using the anti-symmetry &f,

AU A(V?) = 4VUdVAU = 4> XdX;) > A dU,

= —160"3"AvUV?dt

and so finally
dUudv = —4"3"Avvdt. (28)

Following the procedure of thglanar casenow consider the behaviour & =
log(V). As in Section3, definelW = U/V'2; however we will consider the behaviour
of K together with that off = log(U) rather than that of = exp(H — 2K). The
next lemma follows from the calculations in this section so far.

Lemma 5. For a general controll (with symmetric and anti-symmetric componeits
andA), and defining a newr{)time-scale byt d¢ = V2 d r as inSectiorg,

1
2
(dE)" =3 (1-2'Sy) dr7,
1
Driftd K = - (n —trS -2 (1 -r'Sv)) dr,
(AK) x (dH) = — (ny,TAV) Lar
= 2 == W ’
1
(dH)* =2"3" (1+8)3v w27
Drift d H = %tr (37a %dT
—i—l (n—1+trS—1/TSu—41/T3T (I—!—S)Sv) id7'
2 = - =— - = = =/ =— W2 :
(29)
Proof. UseEquations 21), (27), and £8), and 16’s formula. O

The special cases of reflection and synchronous coupling now follow directly. Re-
flection coupling is defined by

ireflection _ l _ 2ZZT , (30)



which implies
§ — ;reflection7 é
trS=n-—2, v'Sy=-1, S3v=3v,

and consequently

AK)?=dr, DriftdK:—%dr,

(dK)x (dH)=0,
dr
We

(31)

(dH)? =430 5 Driftd B = (n—1 - 4|3|?)

Synchronous coupling is defined by

sznchronous

(32)

[ |

which implies

synchronous
S = i Y )

1>
I
— o

trS=mn, T

I
[l

I

Il

and consequently

dK)*=0, Driftd K =0,
(dK) x (dH) =0,
dr
w2’
(33)

dr

(@H? =430 55

3| Drift d H = (n— 1_4|@||2)

Note that||3v||? is bounded above by/2, since the non-zero eigenvalues of the anti-
symmetric matrix3 all have multiplicity 2 and the sum of squared eigenvalues is
tr(373) = 1. Soifn > 3 thenH is a non-constant submartingale under both controls;
it follows that there is no hope of coupling higher-dimensional stochastic areas by using
only synchronous and reflection coupling. Instead we analyze the more complicated
case of general orthogonal-matrix controls.

Consider the case ofratation couplingdefined adaptively by a matrix exponential

irotation(eg) _ exp (0‘:7) . (34)

HereJ is an anti-symmetric matrix satisfying(3”3) = 1, so thatJ™?""(93) is
indeed a rotation matrix, and moreover a finite Taylor series expansion produces an
approximation which can be bounded:

S = cosh (9‘:’]) - % (grotation(ag) +grotation(_0£)> - l _

A = sinh (0£> _ % (irotation(gg) _ irotation(_gg)) _ eg +932(1) )



Here theO(1) terms in the errors signify matrices which vary from line to line but
which can be bounded uniformly thandJ. Hence

2
s = -2 o0, Sy = 1 Iy eon),
(;Té) etr( 3) +6°0 V3T Av = 0(3v.3v) +6°0(),

"3I+8) 3w = H;HQH}QO( ),

where again th@(1) terms in the errors (both here and in the following exposition)
vary from line to line but are bounded uniformly éh J, and the configuration matrix
3 For the sake of simplicity we chooge= —v/W, J = 3 and consider the effects

of applying the adaptive rotational contgbl= J""(— —3/W):

@K = 2 3uP ot + 2 0(dr,
Driftd K = %2(1—2”37” ) SVZ *%O( Ddr,
(AK) x (0H) = 730/ ST +odr,
@By = a3u ST + 2o dr,
Diiftd = — (3 - (n—1-41342)) % NV;] o(l)dr. (35)

The anti-symmetric component of the control contributes a cru@"@; term to the

drift of H. This can be used to maké a supermartingale. (Incidentally, the choice

J = 3 maximizes this particular term.)

~ This motivates a direct construction of a successful coupling strategy, using a mix-
ture of J'efectiongnggrotation . 3 /117 with adaptive choices of parameters. This deliv-
ers a positive chance of successful coupling for large initial valigsf 1V:

Theorem 6. Consider the adaptively mixed coupling

0 reflection d rotation Y
L (1= g ) 27 (<p3)

(3y) = 2(w<+78(1—2||3u|2)),

0
v o= 13y = 2 (- 1-43uP) (36)

defined so long as

1]
I

W2 > 8 = 2ux+(ug+n—1)°

This coupling strategy has a positive probability of being successful within finite time
if Wg > w'®), a certain finite threshold defined K§9) below, so long as

0 < wux < pg < 2uk. (37)



Moreover the coupling strategy will succeed almost surelif istays above the thresh-
old w®) for all time.

Recall from the discussion aft&muation 83) that||3v||? is bounded above by/2.
S04d — 24k as given above is always non-negative (ag is 2 if n > 3).

Proof of theorem.The effect of the mixed control can be evaluated as a convex combi-
nation of the systems oéflection coupling30) and rotatiorcoupling 385):

@8 = (2t (onotn =1 - l3w?) (1= 13u0) ) %+
Driftd K = —MK% +Ové1)d7’
(AK) % (@H) = 2 (jur+n—1— 41307 |32 57 s,
(@H) = 4J30)*5% G
Driftd H = —MH% +OV§1) dr
(38)

TheO(1) terms here may be taken to be bounded uniformly in the configuration vector
v and matrix3, and inW. Choose so thaluyx —ug > ¢ > 0andsetl 7 = d7/W?2,

and use the bounds on th 1) terms to definev(®) < oo as the smallest leved such
that

g )
whenevelV > w. Recall thain(W) = H — 2K, so the calculations dtquation 88)
show that(d In W)? / d 7 is bounded, while

‘ Driftdln W

Driftd K 5 Driftd H €
4 ug| < — = tupa| < 3, (39)
d7 d7 3

e e w)‘ < e (40)
wheneved?V > w(). Now ¢ was chosen so thajux — g > ¢ > 0, so it follows by
consideration of the law of the iterated logarithm that if initidlly, > w(©) then there
is a positive chance th&l” > w(® for all time; moreover this probability increases to
1 asW, increases. In casé” > w'® for all time, W will grow at least linearly with
rate2ux — ug — e > 0, and hence (by considering(®) for progressively smaller)

In

= — 20K — HH (41)

asT — o0.
On this event of linear growth o > w(¢) the approximations ifEquation 388)
improve with time. Thus a§ — oo so the same application of the law of the iterated

logarithm leads to
K H
= =

— UK, - —pH- (42)



In summary, there is a positive probability of bdiyuations 41) and ¢2) holding
so long asiv, > w®) is sufficiently large; indeed this probability increasesl tas
Wy — oo. If px andpuy are both positive then this ensures that= exp(H) and
U = exp(K) both hit zero (delivering coupling of both position and all stochastic
areas) at = oc.

In principle the coupling might still happen@&time oo, in which case it would not
succeed at finite time. However

2
d7 = % _ (‘é) At — exp2K—H)dt  (43)

and therefore the coupling will occur &time

/0C>O exp(—2(K — H))dT. (44)

This will be finite on the event of linear growth &F if the positiveux and . are
chosen not only to satisfiyquation ¢2) but also so that so thaty < pg.

Consequently there is positive probability of coupling occurring at finite time so
long as we have arranged fpf, and g to satisfylnequalities 87). O

Corollary 7. The adaptive mixed coupling @heorem6 can be modified by adding
a synchronous coupling regime so as to ensure successful coupling in finite time with
probability one.

Proof of corollary. If W falls beloww(®), so that the above procedure breaks down,
then we can revert tpure synchronous couplin@®) (which holdsK constant and
allows H to evolve as a non-constant submartingale as notededtextion 83)) till W/

does exceed(®), and restart the procedure. Consequently the above can be converted
into a strategy which produces coupling at finite time almost surely. O

The coupling strategy described @orollary 7 involves discontinuous transitions
between synchronous and mixture strategies, fulfilling the expectations of the heuristics
at the end ofSection2. Provided we resort to time-dependent strategies, we can of
course replace the mixed strategy by a time-dependent variation between reflection
and rotation strategies; hence coupling can be achieved using only orthogonal controls.

5 Complements and conclusion

It is natural to ask whether anything might be gained by considering the full coset of
coupling strategies alternate to the rotation strategies: what we might cadittted
reflection couplings

grot—refI (93) = (; - QZTZ) exp (9&) . (45)



Applying the same reasoning as leddquation35, we find thatJ™©*" (—%Q) has
the following effect:

2 7 2 on
(dK)” = (14W23V|| >d7’ +WO(1)dT,
. 1 72 A4
Driftd K = (28W2)dT +WO(1)dT,
3
(dK) x (dH) = %zTéT\;szT +%O(1)d7,
d 2
(@H) = 430> +0()dr,

dr ~v2 443
- (-1 3u) ) s +ILowdr. @)
This analysis would lead to a rather transparent coupling strategy if we could ensure
that H was always a supermartingale under a suitable rotated reflection coupling for
smally/W; however this is not possible far > 3 since it can be shown that

‘tr (éT (I-2vv") 3) ‘ < tr (é§§0> (47)

for QO = (I-vv") 3 (I-rvv") with the maximum being achieved whgn= QO.
This maximum vanishes whehis of rank2 andv is a non-zero eigenvector §f so

the evolution of the configuratiofy, 3) unavoidably affects whether or not the drift of

H is negative. N

It is also natural to ask whether a more direct analysis can be made using the
Carnot-Caratheodory distancir the relevant nilpotent Lie group. Recall that the
Carnot-Caratheodory distance between the orilgand a pointx with specified sto-
chastic area8! is obtained by minimizing the Euclidean length of paths frono x
which produce the specified matrix of stochastic areas. A variational analysis shows
that in general these paths are Cartesian products of circular arcs. A direct but labo-
rious computation can be made of the stochastic calculus for the Carnot-Caratheodory
distance in the two-dimensional case: unfortunately no useful picture seems to emerge
from these computations.

There are various further questions to be addressed about stochastic area couplings.
Certainly it is possible to use the methods described here to derive estimates on cou-
pling rates; these are not pursued for reasons of space and also because there is a much
more substantial open question:

Can one co-adaptively couple not just the Brownian motions and their stochastic areas,
but also all possible iterated path-and-time integrals up to a fixed order of iteration?

Here of course it is necessary to suppose compatibility of the initial conditions, to
avoid obstructions caused by algebraic relationships between the various iterated in-
tegrals (see for example the algebraic remark§&afnes 1994 Kendall and Price



(2004)answer this question affirmatively for the one-dimensional case by using an im-
plicit approach; the work of this paper shows that all singly-iterated path integrals can
be coupled co-adaptively, since these can all be expressed as linear combinations of
Lévy stochastic areas and quadratic functions of Brownian coordinates. The general
n-dimensional case is much more involved. We conjecture nevertheless that there is
an affirmative answer to the full multidimensional question given above. However it is
clear that new approaches will have to be tried here as in the one-dimensional case: the
structure which facilitates the matrix-based approach of Sedtiono longer available

for higher-order iterated integrals.
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