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Abstract

In designing a network to linkn cities in a square of arean, one might be
guided by the following two desiderata. First, the total network length should not
be much greater than the length of the shortest network connecting all cities. Sec-
ond, the average route length (taken over source-destination pairs) should not be
much greater than the average straight-line distance. How small can we make these
two differences? For typical configurations the shortest network length is ordern
and the average straight-line distance is ordern1/2, so it seems implausible that
one can construct a network in which the first difference iso(n) and the second
difference iso(n1/2). But in fact one can do better: for an arbitrary configuration
one can construct a network where the first difference iso(n) and the second dif-
ference is almost as small asO(log n). The construction is conceptually simple:
over the minimum-length connected network (Steiner tree) superimpose a sparse
stationary and isotropic Poisson line process. The key ingredient is a new result
about the Poisson line process. Consider two points at distancer apart, and delete
from the line process all lines which separate these two points. The resulting pat-
tern of lines partitions the plane into cells; the cell containing the two points has
mean boundary length≈ 2r +constant× log r. Turning to lower bounds we show
that, under a weak equidistribution assumption, if the first difference iso(n) then
the second difference cannot beO(

√
log n).

MSC 2000 subject classifications:Primary 60D05, 90B15
Key words and phrases:Buffon argument; excess statistic; mark distribution; spa-

tial network; Poisson line process; ratio statistic; Slivynak theorem; Steiner tree; Vaser-
shtein coupling; total variation distance

Short title: Lengths and costs in networks

1 Introduction

We start with a counter-intuitive observation and its motivation, which prompted us to
probe more deeply into the underlying question.
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Considern points (“cities”, say) in a square of arean. We are interested in both the
worst-case setting where the city positions are arbitrary, and the average case setting
where the city points are random, independent and uniformly distributed. Consider a
connected network (a road network, say) of straight line segments linking these city
points and perhaps other junction points. Recall that the minimum length connected
network on a configuration of pointsxn = {x1, . . . , xn} is theSteiner treeST(xn).

It is well known and straightforward to prove (cf.Steele 1997, Yukich 1998) that in
both the worst case and the average case the total network lengthlen(ST(xn)) grows as
orderO(n). When designing a network, it is reasonable to regard total network length
as a “cost”. A natural corresponding “benefit” would be the existence (in some average
sense) of short routes between city points. Let`(xi, xj) be the route-length (length
of shortest path) between pointsxi andxj in a given network, and letdist(xi, xj) =
|xi − xj | denote Euclidean distance (so`(xi, xj) ≥ dist(xi, xj)). A good network
should possess the following

Short routes property: For typical pairs(i, j), the route-length̀(xi, xj)
between city pointsxi andxj is not much larger than the Euclidean dis-
tancedist(xi, xj).

A first take on a statistic to measure this property for a connected networkG(xn)
is the ratio statistic, based on averaging the ratios of network route-lengthsversus
Euclidean distances. Consider a networkG(xn) to be the configuration of city points
xn = {x1, . . . , xn} together with a collection of line segments which combine to con-
nect every cityxi to every other cityxj .

Definition 1 (Ratio statistic). Let average(i,j) denotes the average over all distinct
pairs(i, j). Then

ratio(G(xn)) = average
(i,j)

`(xi, xj)
d(xi, xj)

− 1 ≥ 0 . (1)

Consider a networkG(xn) based onn uniform random pointsxn ⊂ [0,
√
n]2,

having (say) twice the total length of the Steiner tree. Initially we speculated that in
this case the expectationE [ratio(G(xn))] would converge to some strictly positive
constant asn→∞. However this intuition is wrong (see section5.3):

Counterintuitive observation: On well-dispersed configurations, it is
possible to construct networks whose total lengths are greater than the
corresponding Steiner tree lengths by only an asymptotically negligible
factor, but for which the ratio statistic converges to zero as total network
length converges to infinity.

Motivation for these considerations arises from analysis of real-world networks.
Consider for example the “core” part of the U.K. rail network linking the40 largest
cities. The real network has a certain total length and a certain value for some sta-
tistic R devised to capture the “short routes” property. Even though the real network
evolved via a complex historical process, one can study whether it is close to optimal,
in the sense of whether its value ofR is close to the minimum possible value ofR over



all possible networks of the same total length. So the issue arises of what statisticR
best captures the imprecisely expressed “short routes” property, and one can investigate
this issue by theoretical study of different statistics in the random points model. We
interpret the counterintuitive observation above as implying that theratio(·) statistic
of Definition 1 is probablynot a good choice of statistic, because we prove this ob-
servation by constructing networks which are approximately optimal by this criterion
and yet are plainly rather different from many plausible real-world networks. What
is a good choice of statistic will be discussed in a companion paper, along with the
U.K. rail example.

Informally, the counter-intuitive observation suggests that we can construct net-
works for configurations ofn points which have total network length exceeding that
of the Steiner tree by justo(n), and such that the average excess of network distance
over Euclidean distance iso(n1/2) (bearing in mind that average Euclidean distance
for “evenly spread out” configurations should beO(n1/2)). In fact much more is true:
the observation holds on an additive scale at almostO(log n), even in “worst case”
scenarios:

Definition 2 (Excess average length for a network). The excess route lengthfor a
networkG(xn) is

excess (G(xn)) = average
(i,j)

(`(xi, xj)− dist(xi, xj)) . (2)

Theorem 3 (Upper bound on minimum excess network length). For eachn let xn be
an arbitrary configuration ofn city points in a square of arean.

(a) Letwn →∞. There exist networksG(xn) connecting up the cities such that

(i) len(G(xn))− len(ST(xn)) = o(n);

(ii) excess(G(xn)) = o(wn log n).

(b) Letε > 0. There exist networksG(xn) connecting up the cities such that

(i) len(G(xn))− len(ST(xn)) ≤ εn;

(ii) excess(G(xn)) = O(log n).

This result is proved in Sections2 and3. The idea is to build a hierarchical net-
work. At small scales routes use the underlying Steiner tree. At large scales, routes
use a sparse collection of randomly oriented lines (a realization of a stationary and
isotropicPoisson line process); this is the key ingredient that permits an excess of at
mostO(log(n)) (Section2). We believe that only these two scales are needed, but to
simplify analysis (so as to avoid non-elementary analysis of Steiner trees) we introduce
an intermediate scale consisting of a widely-spaced grid. Thus a route from an origi-
nating city navigates through the Steiner tree to a grid line and then along the grid line
to a line of the Poisson line process, and then navigates in the reverse sense down to
the destination city. (For technical reasons we also introduce occasional small rectan-
gles to permit circumnavigation around Steiner tree “hot-spots” (Section3)). The key
ingredient in the analysis is a calculation concerning the Poisson line process, which



has separate interest as a result in stochastic geometry (Theorem7 below). Consider
two points at distancer apart, and delete from the line process all lines which separate
these two points. The resulting pattern of lines partitions the plane into cells; the cell
containing the two points has mean boundary length which for larger is asymptotic to
2r + constant× log r.

For lower boundsit is necessary to impose some condition on the empirical distri-
bution of the city points inxn, since if all the city points concentrate on a line then the
excess is zero! We need a quantitative condition on equidistribution of city points over
a region, formalized via the following truncatedVasershtein couplingscheme.

Definition 4 (Quantitative equidistribution condition). Let xn be a configuration in
the plane,µn be a probability measure on the plane, andLn > 0. Say xn is Ln-
equidistributed asµn if there exists a coupling of random variables(Xn, Yn) such that

(a) Xn has uniform distribution on the finite point-setxn,

(b) Yn has distributionµn,

(c) E
[
min

(
1, |Xn−Yn|

Ln

)]
→ 0 asn→∞.

A sufficient condition for the following result is thatxn isLn-equidistributed as the
uniform distribution on the square of arean, for someLn = o(

√
log n). The purpose

of introducing thenon-uniform distributionµn in Definition4 is to permit us to express
Theorem5 below in terms of weaker and more local conditions: for example a conse-
quence of Theorem5(b) is that we may replace theuniform reference distribution by
any distributionµ on [0, 1]2 with a continuous density component, rescaled to produce
a distributionµn on [0, n1/2]2.

Theorem 5 (Lower bound on minimum excess network length). Let xn be a configu-
ration of city points in a square[0,

√
n]2. LetLn = o(

√
log n). Suppose either

(a) xn isLn-equidistributed as the uniform distribution on the square of arean;

or (more generally)

(b) for some fixedρ and ε, there is a subcollectionyk(n) of k(n) city points, all
lying in a diskDn of areaπρn, such thatk(n) > πρnε, and such thatyk(n) is
Ln-equidistributed as the uniform distribution onDn.

LetG(xn) be a network based on the full collection ofn city points. Iflen(G(xn))/n
remains bounded asn→∞, then

excess(G(xn)) = Ω(
√

log n) . (3)

Configurationsxn produced by independent uniform sampling from[0,
√
n]2 sat-

isfy the conditions of this theorem (see Remark15). The proof of the theorem is given
in Section4, and exploits a tension between the two following facts:

(a) A short route betweenxi andxj must run approximately parallel to the Euclid-
ean geodesic, and hence will tend to make almost orthogonal intersections with
random segments perpendicular to this geodesic.



(b) On the other hand, the equidistribution condition means that two city pointsxi
andxj randomly chosen from the subcollection must be nearly independent uni-
form draws fromDn, which permits the derivation ofupper boundson the prob-
ability of nearly orthogonal intersections of the form given in fact (a).

Finally note that the assumptionlen(G(xn)/n remains bounded asn → ∞ in the
lower bound is weaker than the corresponding assumptionlen(G(xn))−len(ST(xn)) ≤
εn in the upper bound, but we are unable to improve (3) under the stronger assumption.

2 The Poisson line process network

Our upper bound on minimalexcess (G(xn)) is based on a result from stochastic geom-
etry (Theorem7 below) which is of independent interest.

Recall that a Poisson line process in the planeR2 is constructed as a Poisson point
process whose points lie in the space which parametrizes the set of lines in the plane.
We will consider only undirected lines, which will be parametrized by(r, θ) ∈ R ×
[0, π) wherer is the signed distance from the line to a reference point andθ is the angle
the line makes with a reference axis. A stationary and isotropic Poisson line process
has intensity measure invariant under rotations and translations ofR2: a stationary and
isotropic Poisson line processΠ of unit intensity is one for which the number of lines
of Π hitting a unit segment has expectation1 (further facts about Poisson line processes
may be found inStoyan et al. 1995, Chapter 8). We are interested in the cell containing
two fixed points which is formed by the lines ofΠ that do not separate the two points,
because this can be used as the efficient long-distance part of a network route between
the two points (see Lemma11). Theorem7 establishes an asymptotic upper bound
for the length of the mean cell perimeter in case of wide separation between the two
points; we prepare for this by using a Buffon argument to derive an exact double-
integral expression for the mean cell perimeter length:

Theorem 6(Mean perimeter length). LetΠ be a stationary and isotropic Poisson line
process of unit intensity. Fix two pointsvi, vj which are distancem apart. Delete
the lines ofΠ which separate the two pointsvi, vj . The remaining line pattern parti-
tions the plane: the cellC(vi, vj) containing the two fixed points has mean perimeter
E [len ∂C(vi, vj)] = 2m+ Jm, whereJm is given by the double integral

Jm = E [len ∂C(vi, vj)]− 2m

=
1
2

∫∫
R2

(φ− sinφ) exp
(
− 1

2 (η −m)
)
Leb(dx) . (4)

Hereη = η(x) is a sum of distancesdist(vi, x) + dist(vj , x), whileφ = φ(x) is the
exterior angle atx of the triangle with verticesx, vi, vj (see Figure1).

Proof. This proof can be phrased in terms of measure-theoretic stochastic geometry,
using the language of Palm distributions and Campbell measure. Since we deal only



Figure 1: Illustration of definition ofη andφ. Note thatφ is the sum of the two interior
anglesψ andθ.

with constructions based on Poisson processes, we are able to adopt a less formal but
more transparent exposition, for the sake of a wider readership.

Let s be the line segment of lengthmwith end-pointsvi, vj . The idea of the proof is
to measureE [len ∂C(vi, vj)] by computing the expected number of hits on∂C(vi, vj)
made by anindependenthomogeneous isotropic Poisson line processΠ̃, again of unit
intensity. Each hit corresponds to one of the points in theintersection point process
X = {ι(`, ˜̀) : ` ∈ Π, ˜̀∈ Π̃}, where

ι(`, ˜̀) =

{
x if ` ∩ ˜̀= {x} ,
undefined if̀ , ˜̀are parallel.

(5)

Note that with probability1 the intersection pointι(`, ˜̀) is defined for all̀ ∈ Π, ˜̀∈ Π̃.
Not all pointsx ∈ X correspond to hits on∂C(vi, vj). The condition forx =

ι(`, ˜̀) ∈ X to be a hit on∂C(vi, vj) is that either̃̀ hitss orx is not separated froms by
any line fromΠ \ {`}. The Slivynak theorem (Stoyan, Kendall, and Mecke 1995, §4.4,
example 4.3) implies thatΠ\{`} conditional oǹ ∈ Π is itself a homogenous isotropic
unit-rate Poisson line process; consequently if˜̀does not hits then the probability that
x = ι(`, ˜̀) ∈ X is a hit on∂C(vi, vj) is equal to the probabilityp(x) that there is no
line in Π which cuts both the segment fromvi to x and the segment fromvj to x (note
that such a line wouldnot cut the segments).

A classic counting argument from stochastic geometry then reveals that

p(x) = exp
(
− 1

2 (dist(vi, x) + dist(vj , x)−m)
)

= exp
(
− 1

2 (η −m)
)
. (6)

Accordingly, ifν is the intensity of the point processX then we may compute the mean



number of hits on∂C(vi, vj) as

2m +
∫∫

R2
ν P
[
` 6⇑ s, ˜̀ 6⇑ s |x = ι(`, ˜̀) ∈ X ] exp

(
− 1

2 (η −m)
)
Leb(dx). (7)

Here “̀ 6⇑ s” stands for “the linè does not hits” – noting that the conditioning in this
context forces the Poisson line` to pass throughx but does not fix its orientation – and
the summand2m corresponds to the fact that hits ofΠ̃ on s count as automatic hits on
∂C(vi, vj).

Condition onx = ι(`, ˜̀) ∈ X (which is to say, condition on there being Poisson
lines` ∈ Π, ˜̀∈ Π̃ both passing throughx) and consider

(a) the angleξ1 of `;

(b) the angleξ2 betweeǹ and˜̀.
By isotropy ofΠ the random angleξ1 is Uniform(0, π). Conditional onξ1 and more
generally onΠ with an ` ∈ Π passing throughx, the intersection of̃Π with ` is a
Poisson point process oǹof unit intensity. Moreover if the intersection points are
marked with angles of intersectionξ2 then the markξ2 has mark density12 sin ξ2 over
ξ2 ∈ [0, π) (consider the length of the silhouette of a portion of` viewed at angle
ξ2). Hence the conditional distribution ofξ2 for x = ι(`, ˜̀) has density12 sin ξ2 over
ξ2 ∈ [0, π), and so we can compute

P
[
` 6⇑ s, ˜̀ 6⇑ s |x = ι(`, ˜̀)] =

1
π

∫ π−θ−ψ

0

(
1−

∫ π−ξ1

θ+ψ−ξ1

sin ξ2
2

dξ2

)
dξ1

=
π − θ − ψ − sin(θ + ψ)

π
=

φ− sinφ
π

(8)

whereθ is the angle atvj , andψ is the angle atvi, of the triangle formed byx, vi, vj ;
andφ is the exterior angle atx (see Figure1).

Finally the intensityν of X can be computed asπ2 , for example by computing the
mean number of hits of the unit disk byΠ, then by computing the average length of the
intersection of the disk with a line ofΠ conditional on that line hitting the disk. Thus

Jm = E [len(∂C(vi, vj))]− 2m

= ν

∫∫
R2

P
[
` 6⇑ s, ˜̀ 6⇑ s |x = ι(`, ˜̀) ∈ X ] exp

(
− 1

2 (η −m)
)
Leb(dx)

=
1
2

∫∫
R2

(φ− sinφ) exp
(
− 1

2 (η −m)
)
Leb(dx) (9)

as required.

We now state and prove the main result of this section: anO(logm) upper bound
on the mean perimeter excess lengthJm.



Theorem 7(Asymptotic upper bound on mean perimeter length). The mean perimeter
excess lengthJm is subject to the following asymptotic upper bound:

Jm ≤ O(logm) asm→∞ . (10)

Proof. Without loss of generality, place the pointsvi andvj at (−m
2 , 0) and(m2 , 0).

The double integral in (4) possesses mirror symmetry in each of the two axes, so we
can write

Jm = 2
∫∫

[0,∞)2

(φ− sinφ) exp
(
− 1

2 (η −m)
)
Leb(dx)

= 2
∫ π/2

0

∫ m
2 sec θ

0

(φ− sinφ) exp
(
− 1

2 (η −m)
)
r dr dθ+

+ 2
∫ π

π/2

∫ ∞

0

(φ− sinφ) exp
(
− 1

2 (η −m)
)
r dr dθ (11)

(using polar coordinates(r, θ) about the second pointvj located at(m2 , 0)). The inte-
grand in the second summand is dominated byπ exp

(
− r

2

)
r, which is integrable over

(r, θ) ∈ (0,∞)×(π2 , π). (In this region geometry shows thatη−m > r(1−cos θ) ≥ r.)
Thus we can apply Lebesgue’s dominated convergence theorem to deduce that the sec-
ond summand isO(1) asm→∞, hence may be neglected.

In fact we can also show that part of the first summand generates anO(1) term: the
dominated convergence theorem can be applied for anyε ∈ (0, π/2] to show that

2
∫ π/2

0

∫ m
2 sec θ

ε

(φ− sinφ) exp
(
− 1

2 (η −m)
)
r dr dθ = O(1) ,

since the integrand is dominated byπ exp
(
− r

2 (1− cos θ)
)
r over the region(r, θ) ∈

(0,∞) × (ε, π2 ) (in this region geometry shows thatη −m > r(1 − cos θ) > r(1 −
cos ε)). Thus for fixedε ∈ (0, π2 ) asm→∞ we have the asymptotic expression

Jm = 2
∫ ε

0

∫ m
2 sec θ

0

(φ− sinφ) exp
(
− 1

2 (η −m)
)
r dr dθ +O(1) .

Now in the region(r, θ) ∈ (0,∞) × (0, ε) we knowφ < 2θ < 2ε, and moreover
φ−sinφ is an increasing function ofφ (so long asε < π

4 ). Therefore there is a constant
Cε such that

φ− sinφ ≤ 2θ − sin(2θ) ≤ Cε
8

(2θ)2

6
≤ Cε

1− cos θ
3

sin θ .



Hence

2
∫ ε

0

∫ m
2 sec θ

0

(φ− sinφ) exp
(
− 1

2 (η −m)
)
rdrdθ

≤ 2
3Cε

∫ ε

0

∫ m
2 sec θ

0

(1− cos θ) sin θ exp
(
− r

2 (1− cos θ)
)
rdrdθ

= 8
3Cε

∫ ε

0

(∫ m
4 (sec θ−1)

0

e−ssds

)
sin θ dθ

1− cos θ
(usings = r

2 (1− cos θ))

≤ 8
3Cε

∫ m
4 (sec ε−1)

0

(∫ v

0

e−ssds

)
1

1 + 4v/m
dv
v

(usingv = m
4 (sec θ − 1))

≤ 8
3Cε log

(
m
4 (sec ε− 1)

)
+O(1) .

Remark8. More careful analysis yields usefulo(1)-asymptotics: in fact asm→∞ it
can be shown that

Jm = 8
3

(
logm+ γ + 5

3

)
+ o(1) . (12)

whereγ is the Euler-Mascheroni constant. Theseo(1)-asymptotics show very good
agreement with simulation: see for example the simulation reported in the legend of
Figure2.

Figure 2: Simulation of semi-perimeters for1000 independent cells for unit-rate Pois-
son line process, with city points located at distance108 units apart. The figure is
subject to vertical exaggeration:y-axis is scaled at104 timesx-axis. Empirical mean
excess semi-perimeter is27.63 with standard error±0.28, versuspredicted mean ex-
cess semi-perimeter27.5528 (usingo(1)-asymptotics).



3 A low-cost network with short routes

In this section we prove Theorem3: for a given configurationxn ⊂ [0,
√
n]2 we con-

struct networksG(xn) for which bothlen(G(xn)) − len(ST(xn)) andexcess(G(xn)
are small. The network is constructed by augmenting the Steiner tree networkST(xn)
in a hierarchical manner. Working from the largest scale downwards, we construct

1. a stationary and isotropic Poisson line processΠ of intensityη, whereη will be
small: note that this can be constructed from a unit intensity process by scaling.
A simple computation (Stoyan et al. 1995, §8.4) shows that the mean total length
of the intersection of the resulting line pattern with[0,

√
n]2 equalsπηn.

2. A medium-scale rectangular grid with cell side-lengthsn ∼ (log n)1/3. Total
length of this grid in[0,

√
n]2 is bounded above by

2(1 +
√
n
sn

)
√
n = o(n) .

3. TheSteiner treeST(xn).

4. A small number (at mostn/2) of small hot-spot cellsbased on a small-scale rec-
tangular grid with cell side-lengthtn ∼ 1

(logn)1/6 . A cell in this grid is described
as ahot-spot cellif it contains two or more city points. These hot-spot cells are
used to by-pass regions where the Steiner tree might become complicated and
expensive in terms of network traversal. We add further small segments con-
necting each hot-spot cell perimeter to city points within the hot-spot cell. Total
length of these additions can be bounded by

4
n

2
tn + n

tn
2

= o(n) .

Thus the mean excess length of this augmented network iso(n) + πηn. The construc-
tion is illustrated in Figure3. Note that we can choosesn andtn such thatn1/2/sn and
sn/tn are integers, so that the small-scale lattice is a refinement of the medium-scale
lattice, which itself refines the square[0,

√
n]2.

3.1 Worst-case results for Steiner trees

We first record two elementary results on Steiner trees. The first result bounds the
length of a Steiner tree in terms of the square-root of the number of points (for the
planar case).

Lemma 9. Consider a configurationxk of k points in a square of sider: there is a
constantC1 not depending onk or r such that

len
(
ST(xk)

)
≤ C1

√
kr . (13)

Proof. SeeSteele (1997,§2.2).



Figure 3: Illustration of construction of network to deliver an upper bound on mean
excess route-length. City points are indicated by small circles. In this figure there is
just one hot-spot cell.

The second result provides a local bound on length contributed by a larger Steiner
tree in a small square containing a fixed number of points.

Lemma 10. Consider the Steiner treeST (xn) for anarbitraryconfigurationxn in the
plane. LetG be the restriction of the networkST (xn) to a fixed open square of side-
lengtht. Supposek pointsx1, . . . , xk of the configurationxn lie within the square.
Then

len(G) ≤ t
(
4 + C1

√
k + 1

)
. (14)

Proof. Let y1, . . . , ym be the locations at whichST (xn) crosses into the interior of
the square. (Note:m = 0 is possible if{x1, . . . , xk} = xn: in this case choosey1
arbitrarily from the perimeter of the square.) Then

len(G) ≤ len(ST({x1, . . . , xk, y1, . . . , ym})) by minimality ofST (xn),
≤ len(ST({x1, . . . , xk, y1})) + 4t using square perimeter,

≤ t
(
4 + C1

√
k + 1

)
using the previous lemma.

3.2 Route-lengths in the medium-large network

The part of the construction involving the medium-scale grid and the Poisson line
process is useful in variant problems, so we separate out the following estimate in-
volving these ingredients.

Lemma 11. Letn1/2/sn be an integer. Consider the superposition of the rectangular
grid with cell side-lengthsn and the Poisson line process of intensityη, intersected
with the square[0, n1/2]2. Letvi, vj be vertices of the grid. Then

E [route-lengthvi to vj ] ≤ dist(vi, vj) + C2
1
η log(η

√
2n)



for an absolute constantC2.

Proof. Let C(vi, vj) be the cell ofΠ containingvi andvj (having deleted lines fromΠ
which separatevi from vj). LetR(vi, vj) be the rectangle bounded byvi andvj ; then
by convexity the route-length fromvi to vj is bounded above by

1
2

len ∂ (R(vi, vj) ∩ C(vi, vj)) ≤ 1
2

len ∂C(vi, vj) ,

whose mean value can be computed by recognizing that the Poisson line process is a
rescaled version of a homogeneous isotropic unit rate Poisson line process. Hence by
scaling the asymptotic upper bound of Theorem7 we have

E
[
1
2

len ∂ (R(vi, vj) ∩ C(vi, vj))
]
− dist(vi, vj) ≤ O

(
1
η

log (η dist(vi, vj))
)

= O

(
1
η

log
(
η
√

2n
))

.

3.3 Navigating the augmented network

We now explain how to move from points ofxn up to a vertex of the medium-scale
grid.

Givenxi ∈ xn, if this is in one of the hot-spot cells then move to the perimeter
of the hot-spot cell and thence to a suitable point of departure on the perimeter, with
route-length at most52 tn. Now move along the Steiner tree within the relevant medium-
scale grid box to the box perimeter; however by-pass all hot-spot cells. There are

(sn/tn)
2 =

(
(log n)1/3(log n)1/6

)2
= log n small squares each of which involves a

route-length of either2tn (if a hot-spot box which will be by-passed) ortn(4+C1

√
2)

(if not, by Lemma10). Hence the total trip to the medium-scale grid box perimeter
(including emergence from the initial hot-spot, if required) has length at most

5
2 tn+ tn(4+C1

√
2)×s2n/t2n ∼ 5

2 tn+(4+C1

√
2)×(log n)5/6 = o(log n) .

Furthermore the route length from perimeter to vertex of medium-scale grid box is at
most 1

2sn ∼ 1
2 (log n)1/3 = o(log n) . So for eachxi there is a medium-scale grid

vertexvi for which route-length fromxi to vi is o(log n) . Combining with Lemma11
and noting that the medium-scale grid geometry forcesdist(vi, vj) ≤ dist(xi, xj) +
2 sn√

2
, we find

E [route-length fromxi to xj ]−dist(xi, xj) ≤
√

2sn+ o(log n)+C2
1
η log

(
η
√

2n
)
.

Averaging over the city points ofxn, it follows that the dominant contribution comes
from the cell semi-perimeters, and indeed

E [excess(G(xn))] ≤ O
(

1
η log

(
η
√

2n
))

.

The two different results of Theorem3 follow by choosingη to behave in two
different ways:



(a) eitherη → 0, ηwn →∞,

(b) or η = ε > 0.

4 A lower bound on average excess route-length

In this section we prove Theorem5. The proof is divided into four parts. Firstly
(Subsection4.1) we show how to reduce the problem to an analogous case in which
the excess is computed for two random city points drawn independently and uniformly
from the whole diskDn given in condition (b) of the theorem. Then (Subsection4.2)
we show that the network geodesic must run almost parallel to the Euclidean geodesic
if the excess is small. On the other hand (Subsection4.3) we can use the uniformity
of the two random city points to control the extent to which network segments can
run both close to and nearly parallel to the Euclideang geodesic. Finally (Subsection
4.4) we use the opposing estimates of Subsections4.2and4.3 to derive a proof of the
theorem using the method of contradiction.

4.1 Reduction to case of a pair of uniformly random city points

First we indicate how condition (a) of Theorem5 implies condition (b). Under condi-
tion (a) we can use the coupling betweenXn andYn to show that#{xn ∩Dn}/n →
πρ: therefore for largen the number of city points inDn is approximatelyπρn. On
the other hand the same coupling can be used to bound the total variation distance
between the two conditional distributionsL (Yn|Xn ∈ Dn) andL (Yn|Yn ∈ Dn) =
Uniform(Dn), and to show that this bound tends to zero. We can then use rejection
sampling techniques to coupleL (Yn|Xn ∈ Dn) and Uniform(Dn) so that the trun-
cated Vasershtein distance tends to zero; as the distance is a metric we can combine this
coupling with the (conditioned) coupling ofL (Xn|Xn ∈ Dn) andL (YN |Xn ∈ Dn)
to obtain a coupling which satisfies condition(b).

We now note that it is sufficient to consider the analogous result for a configuration
xn of n city points in the diskDn. For then we can apply the result to the lesser
configurationyk(n) (for k(n) as given in condition (b) of Theorem5) and obtain

excess(G(yk(n))) = Ω(
√

log k(n)) = Ω(
√

log πρnε) = Ω(
√

log n) ,

while

excess(G(yk(n))) =
n(n− 1)

k(n)(k(n)− 1)
excess (G(xn))

≤ 1
πρε(πρε− 1/n)

excess (G(xn)) ,

from which Theorem5 follows.
We therefore considerxn ⊂ Dn beingLn-equidistributed as the uniform distribu-

tion onDn. So by definition there is a coupling(X1, Y1) (here we omit dependence on



n) whereX1 has uniform distribution onxn, Y1 has uniform distribution onDn and

∆n = E
[
min

(
1,
|X1 − Y1|

Ln

)]
→ 0 asn→∞. (15)

Write (X2, Y2) for an independent copy ofX1, Y1. In the definition ofexcessit
makes no asymptotic difference if we allowj = i in average(i,j), so we may take

excess(G(xn)) = E [`(X1, X2)− dist(X1, X2)] . (16)

Set
An = [|Y1 −X1| ≤ Ln] ∩ [|Y2 −X2| ≤ Ln] (17)

so that by Markov’s inequality

P [An] ≥ 1− 2∆n. (18)

Define`(Y1, Y2) by supposing thatYi is plumbed in to the network using a connection
by a temporaryline segment with endpointsYi andXi. A direct computation shows
that onAn

`(Y1, Y2)− dist(Y1, Y2) ≤
(`(X1, X2) + |X1 − Y1|+ |X2 − Y2|)− (dist(X1, X2)− |X1 − Y1| − |X2 − Y2|)

≤ `(X1, X2)− dist(X1, X2) + 4Ln.

Consequently

E [`(Y1, Y2)− |Y1 − Y2|;An] ≤ excess(G(xn)) + 4Ln . (19)

By hypothesisLn = o(
√

log n), and so the proof of Theorem5 reduces to showing
that the left side (the excess for two random cities chosen uniformly in the disk) is
Ω(
√

log n).

4.2 Near-parallelism for case of small excess

We now substantiate our previous remark that the network geodesic must run almost
parallel to the Euclidean geodesic if the excess is small.

It is convenient to situate the diskDn in the complex planeC in order to have a
compact notation for rotations. Fort > 0 we defineZt andΦ by

exp (iΦ) =
Y2 − Y1

|Y2 − Y1|
,

Zt = Y1 + t× exp (iΦ) . (20)

Let γ : [0, `(Y1, Y2)] → C be the unit-speed network geodesic running fromY1 to
Y2 (using the temporary plumbing to move fromY1 to X1 and then again fromY2 to
X2). Then (bearing in mind that|γ′(t)| = 1)

`(Y1, Y2) =
∫ `(Y1,Y2)

0

|γ′(s)|ds ≥
∫ dist(Y1,Y2)

0

|γ′(τ(t))| τ ′(t)dt , (21)



whereτ(t) is the first times at which〈γ(s)− Y1, exp (iΦ)〉 = t. (Note thatτ ′ can be
infinite, but only at a countable number of points.) This and the following constructions
are illustrated in Figure4.

Figure 4: Illustration of construction ofY1, Y2, andZt. The anglesθ(t) andδ1, δ2, . . .
are computed using the angles of incidence of network segments on the perpendicular
running throughZt; Υt,χ is the minimum of absolute values of all such angles of points
of intersection within

√
2tχ+ χ2 of Zt.

Definingθ(t) by sec θ(t) = τ ′(t), and usingsec θ ≥ 1 + 1
2θ

2, we deduce

`(Y1, Y2) ≥ dist(Y1, Y2) +
1
2

∫ dist(Y1,Y2)

0

θ(t)2dt . (22)

Furthermore we can use Pythagoras and the geodesic property of Euclidean line
segments to show the following. LetH(t) be the maximum|r| for which, for somes,

γ(s) = Zt + ir exp (iΦ) .

If the excess for the network geodesic fromY1 to Y2 is bounded above bỳ(Y1, Y2)−
dist(Y1, Y2) ≤ χ thenH(t) ≤

√
2tχ+ χ2.

Let Υt,χ be the smallest|δ| such that some network segment intersects the perpen-
dicular{Zt + ir exp iΦ : r ∈ R} at angleπ/2 + δ and at distance at most

√
2tχ+ χ2

fromZt (thusδ is the angle of incidence of this network segment on the perpendicular).
If `(Y1, Y2)− dist(Y1, Y2) ≤ χ anddist(Y1, Y2) ≥ κ

√
ρn, we can use (22) to deduce

`(Y1, Y2)− dist(Y1, Y2) ≥
1
2

∫ κ
√
ρn

0

Υ2
t,χdt− 1

2

(
π2

4

)
× (|X1 − Y1|+ |X2 − Y2|) .



(The second summand allows for the temporary plumbing in of connectionsX1Y1

andX2Y2, for which the angleθ(t) ∈ (0, π2 ) is not controlled by permanent network
segments). So introduce the event

Bκ,χ = [`(Y1, Y2)− dist(Y1, Y2) ≤ χ ,dist(Y1, Y2) ≥ κ
√
ρn] (23)

and recall the eventAn = ∩2
i=1[|Yi −Xi| ≤ Ln]. Taking expectations, we deduce

E [`(Y1, Y2)− dist(Y1, Y2) ; Bκ,χ ∩An]

≥ 1
2

∫ κ
√
ρn

0

E
[
Υ2
t,χ ; Bκ,χ ∩An

]
dt− π2

4
Ln .

Using integration by parts to replace the expectation by a probability,

E [`(Y1, Y2)− dist(Y1, Y2) ; Bκ,χ ∩An] +
π2

4
Ln

≥
∫ κ

√
ρn

0

∫ ∞

0

P [[Υt,χ > u] ∩Bκ,χ ∩An]u dudt

=
∫ κ

√
ρn

0

∫ ∞

0

(P [Bκ,χ ∩An]− P [[Υt,χ ≤ u] ∩Bκ,χ ∩An])u dudt

≥
∫ κ

√
ρn

0

∫ ∞

0

max (P [Bκ,χ ∩An]− P [Υt,χ ≤ u] , 0)u dudt . (24)

Note that from the definitions ofBκ,χ andAn, using (18), (19) and Markov’s inequality

1−P [Bκ,χ ∩An] ≤ 2∆n+P [dist(Y1, Y2) ≥ κ
√
ρn]+

excess(G(xn)) + 4Ln
χ

. (25)

To make progress we need to find an upper bound forP [Υt,χ ≤ u] and this is the
subject of the next section.

4.3 Upper bounds using uniform random variables

Firstly we compute an upper bound on the joint density of the quantitiesZt andΦ from
the previous section, illustrated in Figure5.

Lemma 12. SupposeY1, Y2 are independent uniformly distributed random points in a
diskD of radius

√
ρn and centre0 in the complex planeC. WithZt andΦ defined as

in (20), the joint density ofZt andΦ is given overC× [0, 2π) by

I [z − teφ ∈ D]
(t+ s(z, φ))2

2π2ρ2n2
Leb(dz) dφ , (26)

whereeφ = eiφ is the unit vector making angleφ with a referencex-axis, ands(z, φ)
is the distance fromz to the disk boundary∂D in the directionφ (thus in particular
z + s(z, φ)eφ is on the disk boundary).



Figure 5: Illustration of construction in Lemma12.

Proof. Express the joint density forY1, Y2 as a product of a uniform density overD
for Y1 and polar coordinatesr, φ aboutY1 for Y2:

I [y1 ∈ D]
Leb(dy1)
πρn

I
[
y1 + reiφ ∈ D

] r dr dφ
πρn

.

Obtain the result by integrating out ther variable and transforming they1 variable toz
by z = y1 + teiφ.

Corollary 13. The density forZt andΦ (mod π) is

f(z, φ) =(
I [z − teφ ∈ D]

(t+ s(z, φ))2

2
+ I [z + teφ ∈ D]

(t+ s(z, π + φ))2

2

)
×

× I [0 ≤ φ < π]
Leb(dz) dφ
π2ρ2n2

. (27)

with an upper bound

f(z, φ) ≤ 4× I [0 ≤ φ < π]
Leb(dz) dφ
π2ρn

. (28)

Proof. Equation (27) follows immediately from adding the two expressions from Equa-
tion (26) for φ (mod π). The upper bound follows by noting

1. the maximum will occur whenz − teφ runs along a diameter;



2. furthermore when one ofz ± teφ lies on the disk boundary;

3. and furthermore whenz = 0 is located at the centre of the disk (sot = s(z,±φ) =√
ρn).

Now consider the line segmentSt,χ centred atZt, with end-points given by the
pair±i

√
2tχ+ χ2 exp (iΦ); and consider the rose-of-directions empirical measure of

angles made by intersections of network edges with this segment:

Rt,χ(A) = # { network intersections onSt,χ with angle of incidence lying inA}
(29)

(here angles are measured moduloπ, andA ⊆ [0, π)). We may apply a Buffon-type
argument to boundE [Rt,χ(A)] using Inequality (28). Consider the contribution to the
expectation from a fixed line segment of the network of length`: the result of disin-
tegrating the integral expression for this according to the value ofφ is an integral of
f(z, φ) with respect toz over a region formed by intersecting the disk with a parallel-
ogram of base side-length̀and height2

√
2tχ+ χ2 sinα (here the angleα depends

implicitly on φ). Of course the integral vanishes ifφ 6∈ A. Thus Inequality (28) yields
a bound

E [Rt,χ(A)] ≤ 4 len(G(xn))
π2ρn

×
∫
A

2
√

2tχ+ χ2 sinαdα.

For constantχ, the event[Υt,χ ≤ u] is the event[Rt,χ(π2 − u, π2 + u) ≥ 1] and so

P [Υt,χ ≤ u] ≤ E
[
Rt,χ(π2 − u, π2 + u)

]
≤ 16

π2ρ

len(G(xn))
n

√
2tχ+ χ2 × u . (30)

4.4 Calculations

We have assembled the ingredients for the proof of Theorem5, and now perform the
calculations to get a quantitative lower bound.

Choose constants (as explained later)κ andχ = χn such that for sufficiently large
n (assumed in what follows)

P [Bκ,χ ∩An] ≥ 2−1/3. (31)

Combine (19) and (24) (and the fact thatπ2/4 < 3) to get

excess(G(xn)) + 7Ln ≥
∫ κ

√
ρn

0

∫ ∞

0

max
(
2−1/3 − P [Υt,χ ≤ u] , 0

)
u du dt.

By (30) and hypothesis of Theorem5, there exists a constantB such that

P [Υt,χ ≤ u] ≤
√
B

12

√
2tχ+ χ2 × u.



Applying the formula
∫∞
0

max(0, α− βu)u du = α3

6β2 we see

excess(G(xn)) + 7Ln ≥
1
B

∫ κ
√
ρn

0

1
2tχ+ χ2

dt =
log(κ

√
ρn+ χ

2 )− log χ
2

2χB
. (32)

Recall this holds under the assumption thatχn andκ satisfy (31). To finish we turn
to an argument by contradiction: that is, suppose that (passing to a subsequence if
necessary)excess(G(xn)) = o(

√
log n). By hypothesisLn = o(

√
log n). Inspecting

(25) we see that we can choose someχn = o(
√

log n) and some smallκ > 0 such that
(31) holds. But then (32) takes the form

o(
√

log n) ≥ Ω(log n)
o(
√

log n)
,

which is impossible.

5 Closing remarks and supplements

5.1 Spatial network design

Within the realm of spatial network design, the closest work we know is that ofGastner
and Newman 2006, who consider the similar notion of adistribution networkfor trans-
porting material from one central vertex to all other vertices. They give a simulation
study (their Figure2) of a certain algorithm on random points, and comment

Thus, it appears to be possible to grow networks that cost only a little more
than the [minimum-length] network, but which have far less circuitous
routes.

Our Theorem3 provides a strong formalization of this idea.

5.2 Fractal structure of the Steiner tree on random points

Longstanding statistical physics interest in continuum limits of various discrete two-
dimensional self-avoiding walks arising in probability models,eg

• uniform self-avoiding walks on the lattice,

• paths within uniform spanning trees in the lattice,

• paths within minimum spanning trees in the lattice,

has recently been complemented by spectacular successes of rigorous theory (Lawler,
Schramm, and Werner 2004). It is conjectured that routes in Steiner trees on random
points have similar fractal properties (Read 2005): route-length between points at dis-
tancen should grow asnγ for someγ > 1. However, as our construction shows, such
results have little relevance to spatial network design.



5.3 The counterintuitive observation

The counterintuitive observation following Definition1 follows quickly from the work
of Theorem3. Suppose the configurationxn is well-dispersed, in the weak sense that
for someγ ∈ (0, 1) we find the number of city point pairs withinnγ/2 of each other
is o

((
n
2

)
nγ−1

)
(certainly this is the case for most patterns generated by uniform ran-

dom sampling from[0,
√
n]2). Consider a networkG(xn) produced by augmenting

the Steiner tree according to the construction in the proof of Theorem3. Using the
properties of this construction, the following can be shown

E [ratio (G(xn))] = E

[
average

(i,j)

`(xi, xj)
dist(xi, xj)

− 1

]

≤ constant× o(nγ−1) + (1− o(nγ−1))

(
O(log

√
2n)

nγ/2

)

≤ O

(
max

(
1

n1−γ ,
log n
nγ/2

))
.

5.4 Derandomization

Theorem3 is a purely deterministic assertion, though our proof used randomization
(supplied by the Poisson line process). It seems intuitively plausible that one could give
a purely deterministic proof, say by replacing the Poisson line process with a suitable
sparse set of deterministically positioned lines having a dense set of orientations.

5.5 Quantifying equidistribution

The classical equidistribution property

the empirical distribution of{n−1/2xni , 1 ≤ i ≤ n} converges weakly to
the uniform distribution on[0, 1]2

is equivalent (by a straightforward argument) to the property

xn is Ln-equidistributed as the uniform distribution on the square of area
n, for someLn = o(n1/2).

Replacing one sequence ofLn by a slower-growing sequence makes equidistribution
a stronger assumption, and so our assumption in Theorem5(a) (equidistribution for
someLn = o(log1/2 n)) is stronger than the classical equidistribution property. Indeed
Theorem5 fails under the classical equidistribution property, as the following example
shows.

Example14. Let Ln = nγ for someγ ∈
(

3
8 ,

1
2

)
. There exist networksG(xn) which

areLn-equidistributed as the uniform distribution on the square of arean, for which
len(G(xn)) = o(n) whilst excess(G(xn)) → 0.

For example: partition[0, n1/2]2 into subsquares of sideLn/ log n, construct the
complete graph on all centers of such subsquares, allocate then points evenly amongst
subsquares and position them arbitrarily close to the centers.



Remark15. Sample the configurationxn independently and uniformly from[0,
√
n]2.

Let Ln → ∞, perhaps arbitrarily slowly. Then the probability that the configuration
xn isLn-equidistributed with the uniform distribution converges to1. This follows by
dviding [0,

√
n]2 into cells of side-length asymptotic toLn/

√
2, by conditioning onxn,

and by “blurring” the points ofxn by replacing each pointx ∈ xn by an independent
draw taken uniformly from the cell containingx. Then a uniform random draw̃Yn of
one of the blurred points can be coupled to lie withinLn of a uniform random draw
Xn from the finite configurationxn. A simple argument using the Binomial distribution
then shows that the total variation distance betweenỸn and Uniform([0,

√
n]2) tends to

zero; it follows thatXn can be coupled to a Uniform([0,
√
n]2) random variableYn so

that

E
[
min

(
1,
|Xn − Yn|

Ln

)
| xn
]

→ 0 ,

where the convergence takes place in probability.

5.6 Poisson line process networks

Remark8 indicates that more can be said about the mean semi-perimeter

1
2 E [len(∂C(vi, vj))] ,

and this will be returned to in later work. For example, consider the network formed
entirely from a Poisson line pattern. If the pattern is conditioned to contain pointsvi,
vj then the perimeter∂C(vi, vj) will be close to providing a genuine network geodesic.

Note that questions aboutC(vi, vj) bear a family resemblance to the D.G.Kendall
conjecture about the asymptotic shape of large cells in a Poisson line pattern. How-
everC(vi, vj) is the result of a very explicit conditioning and hence explicit and rather
complete answers can be obtained by direct methods, in contrast to the striking work
on resolving the conjecture about large cells (Miles 1995; Kovalenko 1997; Kovalenko
1999; Hug, Reitzner, and Schneider 2004).

5.7 An open question

In the random points model we can pose a more precise question. Over choices of
networkG subject to the constraint

E [len(G(xn))− len(ST(xn))] = o(n) ,

or the constraint
E [len(G(xn)] = O(n) ,

what is the minimum value ofE [excess(G(xn))]? Our results pin down this minimum
value, in the latter case to the range[Ω

(√
log n

)
, O(log n)] and in the former case the

range[Ω
(√

log n
)
, o(wn log n)]. But it remains an open question what should be the

exact order of magnitude.
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445: Coupling all the Ĺevy stochastic areas of multidimensional Brownian motion.
446: (with S. B. Connor)Perfect Simulation for a Class of Positive Recurrent Markov Chains.
451: (with D. J. Aldous)Short-length routes in low-cost networksvia Poisson line patterns.

CRiSM working papers series.

05-2: (with J. Marin, C. P. Robert)Brownian confidence bands on Monte Carlo output.

Also see the following related preprints

317: E. Thönnes: Perfect Simulation of some point processes for the impatient user.
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