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Abstract

In designing a network to link cities in a square of area, one might be
guided by the following two desiderata. First, the total network length should not
be much greater than the length of the shortest network connecting all cities. Sec-
ond, the average route length (taken over source-destination pairs) should not be
much greater than the average straight-line distance. How small can we make these
two differences? For typical configurations the shortest network length is arder
and the average straight-line distance is onde?, so it seems implausible that
one can construct a network in which the first difference(is) and the second
difference iso(n'/?). But in fact one can do better: for an arbitrary configuration
one can construct a network where the first differencg4g and the second dif-
ference is almost as small 85logn). The construction is conceptually simple:
over the minimum-length connected network (Steiner tree) superimpose a sparse
stationary and isotropic Poisson line process. The key ingredient is a new result
about the Poisson line process. Consider two points at distaapart, and delete
from the line process all lines which separate these two points. The resulting pat-
tern of lines partitions the plane into cells; the cell containing the two points has
mean boundary lengtly 2r + constantx log r. Turning to lower bounds we show
that, under a weak equidistribution assumption, if the first differeneérig then
the second difference cannot 0¢+/log n).

MSC 2000 subject classificationBrimary 60D05, 90B15

Key words and phrase®uffon argument; excess statistic; mark distribution; spa-
tial network; Poisson line process; ratio statistic; Slivynak theorem; Steiner tree; Vaser-
shtein coupling; total variation distance

Short title: Lengths and costs in networks

1 Introduction

We start with a counter-intuitive observation and its motivation, which prompted us to
probe more deeply into the underlying question.
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Considem points (“cities”, say) in a square of areaWe are interested in both the
worst-case setting where the city positions are arbitrary, and the average case setting
where the city points are random, independent and uniformly distributed. Consider a
connected network (a road network, say) of straight line segments linking these city
points and perhaps other junction points. Recall that the minimum length connected
network on a configuration of poinig" = {z1,...,x,} is theSteiner treeST(x™).

Itis well known and straightforward to prove (Steele 199,/Yukich 1999 that in
both the worst case and the average case the total network len¢ff"(x™)) grows as
orderO(n). When designing a network, it is reasonable to regard total network length
as a “cost”. A natural corresponding “benefit” would be the existence (in some average
sense) of short routes between city points. L@t;,«;) be the route-length (length
of shortest path) between points and«; in a given network, and letist(x;, x;) =
|z; — x;| denote Euclidean distance (8r;,z;) > dist(z;, z;)). A good network
should possess the following

Short routes property: For typical pairgs, j), the route-lengti(z;, ;)
between city points;; andz; is not much larger than the Euclidean dis-
tancedist(xz;, z;).

A first take on a statistic to measure this property for a connected netii(rk)
is theratio statistic based on averaging the ratios of network route-lengtrsus
Euclidean distances. Consider a netw6g™) to be the configuration of city points
x" ={x1,...,z,} together with a collection of line segments which combine to con-
nect every city; to every other cityz;.

Definition 1 (Ratio statistic) Let average; ;) denotes the average over all distinct
pairs(i, 7). Then

) Uxi,xj)
n —1 > . 1
ratio(G(X")) = avgf;ge d(zi,2;) > 0 1)

Consider a networki(x™) based om uniform random pointx™ C [0, /n]?,
having (say) twice the total length of the Steiner tree. Initially we speculated that in
this case the expectatidi[ratio(G(x™))] would converge to some strictly positive
constant as — oo. However this intuition is wrong (see sectibrd):

Counterintuitive observation: On well-dispersed configurations, it is
possible to construct networks whose total lengths are greater than the
corresponding Steiner tree lengths by only an asymptotically negligible
factor, but for which the ratio statistic converges to zero as total network
length converges to infinity.

Motivation for these considerations arises from analysis of real-world networks.
Consider for example the “core” part of the U.K. rail network linking ttielargest
cities. The real network has a certain total length and a certain value for some sta-
tistic R devised to capture the “short routes” property. Even though the real network
evolved via a complex historical process, one can study whether it is close to optimal,
in the sense of whether its value Bfis close to the minimum possible value Bfover



all possible networks of the same total length. So the issue arises of what sfatistic
best captures the imprecisely expressed “short routes” property, and one can investigate
this issue by theoretical study of different statistics in the random points model. We
interpret the counterintuitive observation above as implying thatdhie(-) statistic

of Definition 1 is probablynot a good choice of statistic, because we prove this ob-
servation by constructing networks which are approximately optimal by this criterion
and yet are plainly rather different from many plausible real-world networks. What

is a good choice of statistic will be discussed in a companion paper, along with the
U.K. rail example.

Informally, the counter-intuitive observation suggests that we can construct net-
works for configurations ofi points which have total network length exceeding that
of the Steiner tree by just(n), and such that the average excess of network distance
over Euclidean distance ign'/?) (bearing in mind that average Euclidean distance
for “evenly spread out” configurations should ®¢n'/?)). In fact much more is true:
the observation holds on an additive scale at alniddbgn), even in “worst case”
scenarios:

Definition 2 (Excess average length for a networKjhe excess route lengtfor a
networkG(x™) is

excess (G(X")) = average ({(z;,x;) — dist(z;, z;)) . (2
(4.4)
Theorem 3 (Upper bound on minimum excess network lengthyr eachn let x™ be
an arbitrary configuration of. city points in a square of area.

(@) Letw, — oo. There exist network§(x™) connecting up the cities such that

(i) len(G(x™)) —len(ST(x™)) = o(n);
(i) excess(G(X™)) = o(wy logn).

(b) Lete > 0. There exist network&(x™) connecting up the cities such that

(i) len(G(x™)) —len(ST(x")) < en;
(i) excess(G(X™)) = O(logn).

This result is proved in Sectiorisand3. The idea is to build a hierarchical net-
work. At small scales routes use the underlying Steiner tree. At large scales, routes
use a sparse collection of randomly oriented lines (a realization of a stationary and
isotropic Poisson line proce$sthis is the key ingredient that permits an excess of at
mostO(log(n)) (Section2). We believe that only these two scales are needed, but to
simplify analysis (so as to avoid non-elementary analysis of Steiner trees) we introduce
an intermediate scale consisting of a widely-spaced grid. Thus a route from an origi-
nating city navigates through the Steiner tree to a grid line and then along the grid line
to a line of the Poisson line process, and then navigates in the reverse sense down to
the destination city. (For technical reasons we also introduce occasional small rectan-
gles to permit circumnavigation around Steiner tree “hot-spots” (Seé}jormhe key
ingredient in the analysis is a calculation concerning the Poisson line process, which



has separate interest as a result in stochastic geometry (Th&dselow). Consider

two points at distance apart, and delete from the line process all lines which separate
these two points. The resulting pattern of lines partitions the plane into cells; the cell
containing the two points has mean boundary length which for larg@symptotic to

2r 4 constantx log .

For lower boundst is necessary to impose some condition on the empirical distri-
bution of the city points irx™, since if all the city points concentrate on a line then the
excess is zero! We need a quantitative condition on equidistribution of city points over
a region, formalized via the following truncat®dsershtein couplingcheme.

Definition 4 (Quantitative equidistribution condition) et X be a configuration in
the plane,u™ be a probability measure on the plane, dnd > 0. Say X" is L,,-
equidistributed ag.™ if there exists a coupling of random variables,,, Y,,) such that

(a) X,, has uniform distribution on the finite point-set,
(b) Y, has distribution.™,
(c) E [Inin (1, %)] — 0 asn — oo.

A sufficient condition for the following result is that is L,,-equidistributed as the
uniform distribution on the square of areafor someL,, = o(y/logn). The purpose
of introducing thenon-uniform distributionu™ in Definition 4 is to permit us to express
Theoren below in terms of weaker and more local conditions: for example a conse-
quence of Theorerfi(b) is that we may replace theniformreference distribution by
any distributionu on [0, 1]? with a continuous density component, rescaled to produce
a distributionu™ on [0, n'/?]2.

Theorem 5(Lower bound on minimum excess network lengthgt x” be a configu-
ration of city points in a squaré, /n]?. LetL,, = o(y/logn). Suppose either

(a) x™ is L,-equidistributed as the uniform distribution on the square of area
or (more generally)

(b) for some fixegp and ¢, there is a subcollectiog*™ of k(n) city points, all
lying in a diskD,, of areawpn, such thatk(n) > mpne, and such thay*("™) is
L, -equidistributed as the uniform distribution dn,,.

Let G(x™) be a network based on the full collectionrotity points. Iflen(G(x™))/n
remains bounded as — oo, then

excess(G(X™")) = Q(y/logn). (3)

Configurationsx™ produced by independent uniform sampling fréim,/n]? sat-
isfy the conditions of this theorem (see Remafk The proof of the theorem is given
in Section4, and exploits a tension between the two following facts:

(a) A short route between; andxz; must run approximately parallel to the Euclid-
ean geodesic, and hence will tend to make almost orthogonal intersections with
random segments perpendicular to this geodesic.



(b) On the other hand, the equidistribution condition means that two city pojnts
andz; randomly chosen from the subcollection must be nearly independent uni-
form draws fromD,,, which permits the derivation afpper boundsn the prob-
ability of nearly orthogonal intersections of the form given in fact (a).

Finally note that the assumptiden(G(x™)/n remains bounded as — oo in the
lower bound is weaker than the corresponding assumptigi (x™)) —len(ST(x™)) <
en in the upper bound, but we are unable to impra&®eufider the stronger assumption.

2 The Poisson line process network

Our upper bound on minimakcess (G(x™)) is based on a result from stochastic geom-
etry (Theorenv below) which is of independent interest.

Recall that a Poisson line process in the pl&ads constructed as a Poisson point
process whose points lie in the space which parametrizes the set of lines in the plane.
We will consider only undirected lines, which will be parametrized(by) € R x
[0, 7) wherer is the signed distance from the line to a reference poinfidathe angle
the line makes with a reference axis. A stationary and isotropic Poisson line process
has intensity measure invariant under rotations and translatidk’ af stationary and
isotropic Poisson line proce$kof unit intensity is one for which the number of lines
of IT hitting a unit segment has expectatib(further facts about Poisson line processes
may be found irStoyan et al. 199%hapter 8). We are interested in the cell containing
two fixed points which is formed by the lines Bfthat do not separate the two points,
because this can be used as the efficient long-distance part of a network route between
the two points (see Lemmal). Theorem?7 establishes an asymptotic upper bound
for the length of the mean cell perimeter in case of wide separation between the two
points; we prepare for this by using a Buffon argument to derive an exact double-
integral expression for the mean cell perimeter length:

Theorem 6(Mean perimeter length)LetII be a stationary and isotropic Poisson line
process of unit intensity. Fix two points, v; which are distancen apart. Delete
the lines ofll which separate the two points, v;. The remaining line pattern parti-
tions the plane: the celf(v;, v;) containing the two fixed points has mean perimeter
E [len 0C(v;,v;)] = 2m + J,,,, whereJ,, is given by the double integral

Jm = E[lendC(v;,v;)] —2m
— %// (¢ —sing)exp (—3(n —m)) Leb(dz). (4)
R2

Heren = n(x) is a sum of distancedist(v;, z) + dist(v;, ), while ¢ = ¢(z) is the
exterior angle atc of the triangle with vertices, v;, v; (see Figurel).

Proof. This proof can be phrased in terms of measure-theoretic stochastic geometry,
using the language of Palm distributions and Campbell measure. Since we deal only



Figure 1: lllustration of definition off and¢. Note thatp is the sum of the two interior
anglesy andé.

with constructions based on Poisson processes, we are able to adopt a less formal but
more transparent exposition, for the sake of a wider readership.

Lets be the line segment of length with end-points;, v;. The idea of the proof is
to measuré® [len C(v;, v;)] by computing the expected number of hits@®(v;, v;)
made by anndependenhomogeneous isotropic Poisson line procﬁsagain of unit
intensity. Each hit corresponds to one of the points initiersection point process
X = {u(¢,0) : £ €11, { € TI}, where

(0 = {x if (0= {x}, 5)

undefined ifE,Zare parallel.

Note that with probabilityl the intersection point(¢, t7) is defined foral € T1, ¢ € TI.

Not all pointsz € X correspond to hits 0WC(v;,v;). The condition forz =
u(£,0) € X to be a hit ordC(v;, v;) is that either hitss or z is not separated fromby
any line fromII \ {¢}. The Slivynak theoremStoyan, Kendall, and Mecke 1994.4,
example 4.3) implies thal \ {¢} conditional or¢ € Il is itself a homogenous isotropic
unit-rate Poisson line process; consequentE/dbes not hit then the probability that
z = (¢, 0) € Xis a hit ondC(v;, v;) is equal to the probability(x) that there is no
line in IT which cuts both the segment fromto z and the segment fromy to = (note
that such a line wouldot cut the segmeny).

A classic counting argument from stochastic geometry then reveals that

p(xr) = exp (—% (dist(v;, x) + dist(v;, x) — m)) = exp (—%(n - m)) . (6)

Accordingly, ifv is the intensity of the point procedsthen we may compute the mean



number of hits ordC(v;, v;) as

2m + //RQVIP){(TX;ZTXQI:L(&E) EX} exp (—%(n —m)) Leb(dz). (7)

Here ‘¢ 4f " stands for “the line/ does not hit” — noting that the conditioning in this
context forces the Poisson lifi¢o pass through but does not fix its orientation — and
the summan@m corresponds to the fact that hitsldfons count as automatic hits on
3(3(1}2-, ’l)j).

Condition onz = L(E,Z) € X (which is to say, condition on there being Poisson
lines? € 11, ¢ € 11 both passing through) and consider

(a) the angleg; of ¢;
(b) the anglet, betweer? and?.

By isotropy ofII the random anglé; is Uniform(0, 7). Conditional on¢; and more
generally onll with an ¢ € II passing througkh, the intersection ofl with ¢ is a
Poisson point process anhof unit intensity. Moreover if the intersection points are
marked with angles of intersectign then the marlk,; has mark density} sin &o over

&, € [0,7) (consider the length of the silhouette of a portionfofiewed at angle
&2). Hence the conditional distribution gf for = L(E,Z) has density} sin &, over

& € [0,7), and so we can compute

- - 1 [m9-¢ m—&1 :
P [f ¥s. 0 ¥sle = L(u)} - ;/0 <1 _/gw_& sn;§2d£2> &,

_ m—0— —sin(0 + ) _ ¢ —sing ®)

s ™

whered is the angle at;, andy is the angle at;, of the triangle formed by, v;, v;;
and¢ is the exterior angle at (see Figurel).

Finally the intensityr of X can be computed &, for example by computing the
mean number of hits of the unit disk b, then by computing the average length of the
intersection of the disk with a line @f conditional on that line hitting the disk. Thus

Im E [len( 8C(vz,vj))] —2m
// (s, U sle =l 0) € ]exp(—%(n—m)) Leb(dz)
//}1{2 — sin @) exp (—3(n — m)) Leb(dz) (9)

as required. O

We now state and prove the main result of this sectionO8ogm) upper bound
on the mean perimeter excess length



Theorem 7 (Asymptotic upper bound on mean perimeter lengfff)e mean perimeter
excess length,,, is subject to the following asymptotic upper bound:

Jm < O(logm) asm — oo. (20)

Proof. Without loss of generality, place the pointsandv; at (—%,0) and (%, 0).
The double integral in4) possesses mirror symmetry in each of the two axes, so we
can write

= 2 [[ (@ sing)exp (~3n - m) Leb(d)

[0,00)2

/2 2 sec@
/ / (¢ —sing) exp (—5(n —m)) rdrdo+
+2/7r/2/ ¢ —sin¢) exp( %( m))rdrd@ (12)

(using polar coordinate@, ) about the second point located at( 5, 0)). The inte-
grand in the second summand is dominatedrlyp ( ) r, which is integrable over
(r,0) € (0,00)x (5, 7). (Inthis region geometry shows thatm > r(1—cosf) > r.)
Thus we can apply Lebesgue’s dominated convergence theorem to deduce that the sec-
ond summand i®)(1) asm — oo, hence may be neglected.

In fact we can also show that part of the first summand generat@$larterm: the
dominated convergence theorem can be applied foeany0, 7 /2] to show that

/2 2secG
/ / (¢ —sing)exp (—5(n—m))rdrdd = O(1),

since the integrand is dominated byxp (—%(1 — cos#)) r over the regior(r,§) €
(0,00) x (g, §) (in this region geometry shows that—m > r(1 — cos) > r(1 —
cos¢)). Thus for fixede € (0, 5) asm — oo we have the asymptotic expression

m

5 secG
/ / (¢ —sing) exp (—%(np—m)) rdrdd + O(1).

Now in the region(r, ) € (0,00) x (0,¢) we know¢ < 260 < 2¢, and moreover
¢—sin ¢ is an increasing function ef (so long ag < 7). Therefore there is a constant
C. such that

¢p—sing < 20—sin(20) <

C.———sin#.

C: (20)? < 1 —cosf
8 6 - 3



Hence
€ 5 sec
2/ / (¢ —sing) exp (—3(n — m)) rdrdd
o Jo
5 5 sec
< %CE/O /0 (1 — cos) sinfexp (—% (1 — cos)) rdrdd

ot (sec 0—1) inodo
= %C’E/ (/0 essds> ST (usings = (1 — cos®))

1—cosf

0

o (sece—1) v 1 dv
8 = - - = i =m —
305/0 (/0 e sds> [y (usingv = T (sect — 1))

IN

< 2C.log (%(sece —1)) +O(1).
O

Remark8. More careful analysis yields usefe(1)-asymptotics: in fact ag: — oo it
can be shown that
Jm = S(logm+~y+2)+o0(1). (12)

where~ is the Euler-Mascheroni constant. Thegg)-asymptotics show very good
agreement with simulation: see for example the simulation reported in the legend of
Figure2.

Figure 2: Simulation of semi-perimeters ftl00 independent cells for unit-rate Pois-
son line process, with city points located at distam6@ units apart. The figure is
subject to vertical exaggeratiop:axis is scaled at0* timesz-axis. Empirical mean
excess semi-perimeter 25.63 with standard errof-0.28, versuspredicted mean ex-
cess semi-perimetefr.5528 (usingo(1)-asymptotics).



3 A low-cost network with short routes

In this section we prove Theorefn for a given configuratiox™ c [0, /n]? we con-
struct networks7(«™) for which bothlen(G(x™)) — len(ST(x™)) andexcess(G(x™)
are small. The network is constructed by augmenting the Steiner tree ne&fWxR)
in a hierarchical manner. Working from the largest scale downwards, we construct

1. astationary and isotropic Poisson line procd3sof intensityn, wheren will be
small: note that this can be constructed from a unit intensity process by scaling.
A simple computation§toyan et al. 1995%8.4) shows that the mean total length
of the intersection of the resulting line pattern with/n]? equalsrnn.

2. A medium-scale rectangular grid with cell side-length ~ (logn)'/3. Total
length of this grid in[0, v/n]? is bounded above by

2(1—&—‘5/—:7)\/5 = o(n).

3. TheSteiner treeST(x™).

4. A small number (at most/2) of small hot-spot cellbased on a small-scale rec-
tangular grid with cell side-length, ~ W. A cellin this grid is described
as ahot-spot celif it contains two or more city points. These hot-spot cells are
used to by-pass regions where the Steiner tree might become complicated and
expensive in terms of network traversal. We add further small segments con-
necting each hot-spot cell perimeter to city points within the hot-spot cell. Total
length of these additions can be bounded by

123

n
4§tn +n 5 = o(n).

Thus the mean excess length of this augmented netwaxis+ 7nn. The construc-

tion is illustrated in Figure. Note that we can choosg andt,, such thatnl/z/sn and

sn/t, are integers, so that the small-scale lattice is a refinement of the medium-scale
lattice, which itself refines the squdjte /n]?.

3.1 Worst-case results for Steiner trees

We first record two elementary results on Steiner trees. The first result bounds the
length of a Steiner tree in terms of the square-root of the number of points (for the
planar case).

Lemma 9. Consider a configuratiox” of k points in a square of side: there is a
constantC;, not depending o or r such that

len (ST(x")) < CiVkr. (13)

Proof. SeeSteele (1997§2.2). O
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Figure 3: lllustration of construction of network to deliver an upper bound on mean
excess route-length. City points are indicated by small circles. In this figure there is
just one hot-spot cell.

The second result provides a local bound on length contributed by a larger Steiner
tree in a small square containing a fixed number of points.

Lemma 10. Consider the Steiner tre&T (x™) for an arbitraryconfigurationx™ in the
plane. LetG be the restriction of the netwo¥T (x™) to a fixed open square of side-

length¢. Supposé: pointszy, ..., 3 of the configuratiorx™ lie within the square.
Then
len(G) < ¢ (4+ RV 1) . (14)
Proof. Letyi, ...,y be the locations at whicBT (x™) crosses into the interior of
the square. (Notem = 0 is possible if{z1,...,2r} = X™: in this case choosg,
arbitrarily from the perimeter of the square.) Then
len(G) < len(ST({z1,-- Tk Y1s---sYm})) by minimality of ST (x"),
< len(ST({z1,...,zk,y1})) + 4t using square perimeter,
< t (4 + CiVk + 1) using the previous lemma.
O

3.2 Route-lengths in the medium-large network

The part of the construction involving the medium-scale grid and the Poisson line
process is useful in variant problems, so we separate out the following estimate in-
volving these ingredients.

Lemma 11. Letn'/2 /s, be an integer. Consider the superposition of the rectangular
grid with cell side-lengths,, and the Poisson line process of intensityintersected
with the squard0,n'/?]2. Letw;, v; be vertices of the grid. Then

E [route-lengthy; to v;] < dist(v;, v;) + 02% log(nv2n)



for an absolute constartts.

Proof. LetC(v;, v;) be the cell ofll containingy; andv; (having deleted lines frorfi
which separate; from v;). Let R(v;, v;) be the rectangle bounded byanduv;; then
by convexity the route-length fromy to v; is bounded above by

1 1
ilena(R(vi,vj)ﬂC(vi,vj)) < §len8C(vi,vj),
whose mean value can be computed by recognizing that the Poisson line process is a

rescaled version of a homogeneous isotropic unit rate Poisson line process. Hence by
scaling the asymptotic upper bound of Theoréme have

E %lena(R(vi,vj)ﬂC(vi,vj)) —dist(v;,v;) < O(llog(ndist(vi,vj))>
n

0 (717 log (n\/ﬁ)) .

3.3 Navigating the augmented network

We now explain how to move from points &f up to a vertex of the medium-scale
grid.

Givenx; € X", if this is in one of the hot-spot cells then move to the perimeter
of the hot-spot cell and thence to a suitable point of departure on the perimeter, with
route-length at mogtn. Now move along the Steiner tree within the relevant medium-
scale grid box to the box perimeter; however by-pass all hot-spot cells. There are
(s0/tn)” = ((logn)'/3(log 71)1/6)2 = log n small squares each of which involves a
route-length of eithe2t,, (if a hot-spot box which will be by-passed) (4 4 C1v/2)

(if not, by Lemmal0). Hence the total trip to the medium-scale grid box perimeter
(including emergence from the initial hot-spot, if required) has length at most

Sttt (A+CIV2) x s2 /12~ St +(A+C1V2) x (logn)®® = o(logn).

Furthermore the route length from perimeter to vertex of medium-scale grid box is at
most s, ~ 1(logn)'/? = o(logn). So for eachr; there is a medium-scale grid
vertexv; for which route-length fronx; to v; is o(log n) . Combining with Lemma.1

and noting that the medium-scale grid geometry fordies(v;, v;) < dist(x;, z;) +

25—"2, we find

E [route-length frome; to 2] — dist (2, ;) < V25, +o(logn) + 02% log (n\/ﬁ) .

Averaging over the city points of”, it follows that the dominant contribution comes
from the cell semi-perimeters, and indeed

E [excess(G(X"))] < O (%log (n@)) .

The two different results of Theoref follow by choosingn to behave in two
different ways:



(a) eithern — 0, nw,, — oo,

(b) orn=¢>0.

4 A lower bound on average excess route-length

In this section we prove Theoret The proof is divided into four parts. Firstly
(Subsectiont.1) we show how to reduce the problem to an analogous case in which
the excess is computed for two random city points drawn independently and uniformly
from the whole diskD,, given in condition (b) of the theorem. Then (Subsectia?)

we show that the network geodesic must run almost parallel to the Euclidean geodesic
if the excess is small. On the other hand (SubsectiGhwe can use the uniformity

of the two random city points to control the extent to which network segments can
run both close to and nearly parallel to the Euclideang geodesic. Finally (Subsection
4.4) we use the opposing estimates of SubsectibAsand4.3to derive a proof of the
theorem using the method of contradiction.

4.1 Reduction to case of a pair of uniformly random city points

First we indicate how condition (a) of Theorésmmplies condition (b). Under condi-
tion (a) we can use the coupling betwe®p andY,, to show thatt{x" ND,}/n —
wp: therefore for largen the number of city points irD,, is approximatelyrpn. On
the other hand the same coupling can be used to bound the total variation distance
between the two conditional distribution5(Y,,| X,, € D,,) and L (Y,,|Y,, € D,,) =
Uniform(D,,), and to show that this bound tends to zero. We can then use rejection
sampling techniques to coupl&(Y,,|X,, € D,,) and Uniform(D,,) so that the trun-
cated Vasershtein distance tends to zero; as the distance is a metric we can combine this
coupling with the (conditioned) coupling df (X,,|X,, € D,,) andL (Yn|X,, € D,,)
to obtain a coupling which satisfies conditi).

We now note that it is sufficient to consider the analogous result for a configuration
x™ of n city points in the diskD,,. For then we can apply the result to the lesser
configurationy*(™ (for k(n) as given in condition (b) of Theoref) and obtain

excess(G(Y*™)) = Q(/logk(n)) = Q(/logmpne) = Q(\/logn),

while

excess(G(y¥™)) = —1€XC€SS(G(Xn))

1

P p— excess (G(X")) ,

from which Theoren® follows.
We therefore conside™ C D,, being L,,-equidistributed as the uniform distribu-
tion onD,,. So by definition there is a couplif{d(, Y1) (here we omit dependence on



n) whereX; has uniform distribution or™, Y; has uniform distribution o®,, and

X, -1

A, = E[min (1,' T )} — 0asn — oo. (15)

Write (X2, Y>) for an independent copy of;, Y. In the definition ofexcesst
makes no asymptotic difference if we allgw= i in average; ;), SO we may take

excess(G(X™)) = E[{(X1,Xs) — dist(Xy, X2)]. (16)
Set
An - Hyl - X1| S Ln] N [|Y2 - X2| S Ln] (17)
so that by Markov’s inequality

Definel(Y1, Ys) by supposing that; is plumbed in to the network using a connection
by atemporaryline segment with endpoinfg; and X;. A direct computation shows
that onA,,

((Y1,Y2) —dist(Y1,Y2) <
(0(X1, X2) + [ X1 = Ya[ + [Xo — Ya) — (dist(Xy, Xo) — [ X1 — V1| — | X2 — Y2)
< U(X1, Xo) — dist(Xy, Xa) + 4L,
Consequently
E[((Y1,Ys) — Y7 —Ya|; A,] < excess(G(X")) + 4L, . (19)

By hypothesisL,, = o(+/logn), and so the proof of Theorefreduces to showing
that the left side (the excess for two random cities chosen uniformly in the disk) is

Q(vlogn).

4.2 Near-parallelism for case of small excess

We now substantiate our previous remark that the network geodesic must run almost
parallel to the Euclidean geodesic if the excess is small.

It is convenient to situate the disR,, in the complex plan€ in order to have a
compact notation for rotations. For- 0 we defineZ; and® by

. Yo— Y1
exp (i®) = 21
Zy = Yi+txexp(i®) . (20)

Let~ : [0, 4(Y7,Y2)] — C be the unit-speed network geodesic running figno
Y3 (using the temporary plumbing to move frorh to X; and then again frony; to
X5). Then (bearing in mind that/(¢)| = 1)

o(Y1,Ys) dist(Y1,Ys)
(Y = / W (s)[ds > / ()] (e, (21)
0 0



wherer(t) is the first times at which(y(s) — Y7, exp (i¢®)) = t. (Note thatr’ can be
infinite, but only at a countable number of points.) This and the following constructions
are illustrated in Figuré.

Figure 4: lllustration of construction &f;, Y5, andZ;. The angle®(¢) anddy, ds, . ..
are computed using the angles of incidence of network segments on the perpendicular
running througtZ;; Y. ,, is the minimum of absolute values of all such angles of points

of intersection withiny /2ty + 2 of Z;.

Definingd(t) by sec 6(t) = 7/(t), and usingsec § > 1 + 6%, we deduce

dist(Y1,Y2)
(Y,Y) > dist(yl,yz)+§/ 0(t)2dt . (22)
0

Furthermore we can use Pythagoras and the geodesic property of Euclidean line
segments to show the following. Lét(¢) be the maximunir| for which, for somes,

v(s) = Zy+irexp(i®) .

If the excess for the network geodesic frafmto Y is bounded above b§(Y7,Ys) —
dist(Y1,Ys) < x thenH (¢t) < /2tx + x2.

Let Y, , be the smallesi| such that some network segment intersects the perpen-
dicular{Z; + irexpi® : r € R} at angler/2 + § and at distance at mogt 2ty + x>2
from Z, (thusd is the angle of incidence of this network segment on the perpendicular).
If £(Y1,Ys) — dist(Y1,Y2) < x anddist(Y7, Y2) > xy/pn, we can use4?2) to deduce

E(Yl,}/g) 7diSt(Y1,}/2) Z

1 [rvem 1 (w2
3 [ e 3 () < (% -l 4 X - v



(The second summand allows for the temporary plumbing in of connecang
and X, Y53, for which the anglé(t) < (0, ) is not controlled by permanent network
segments). So introduce the event

BN,X - [g(ylv Y2) - diSt(Y17 YQ) S X diSt(Yh Y2) Z R/ pn] (23)
and recall the event,, = N2_, [|Y; — X;| < L,,]. Taking expectations, we deduce

E [K(Ylv }/2) - diSt(Yla Y2) ; Bn,x N An]

1 [rvem 9 2
> 5/0 E[Y7,: Bexn Aot - "L,

Using integration by parts to replace the expectation by a probability,

71'2

]E[K(YMYQ) dlbt Ylj}/g) i By ﬂAn] + ZL”

K\/pT
/ / [Tty > u] N By NA,]ududt

/ / By N An) = P[[Tiy < ulN By N Ap]) ududt
>

K\/pT
/ / max (P [B,, NA,] —P [Ty, <ul,0)ududt. (24)

Note that from the definitions @8, , andA,,, using (L8), (19) and Markov’s inequality

excess(G(X™)) + 4L,
X

1-P[Bxy N Ay < 2A,+P[dist(Y1,Y2) > ky/pn]+ . (25)
To make progress we need to find an upper boundPfif, , < «] and this is the
subject of the next section.

4.3 Upper bounds using uniform random variables

Firstly we compute an upper bound on the joint density of the quanfitiend® from
the previous section, illustrated in Figuse

Lemma 12. Supposé?, Y- are independent uniformly distributed random points in a
disk D of radius,/pr and centre) in the complex plan€. With Z; and ¢ defined as
in (20), the joint density o¥; and ® is given overC x [0, 27) by

2
EE5EO) 1 ) s, (26)

Iz —teg € D] 22
wheree, = €'? is the unit vector making angl¢ with a referencer-axis, ands(z, ¢)
is the distance from to the disk boundaryD in the direction¢ (thus in particular
z + s(z, @)ey is on the disk boundary).



Figure 5: Illustration of construction in Lemni&.

Proof. Express the joint density fdr;, Y> as a product of a uniform density ovér
for Y7 and polar coordinates ¢ aboutY; for Ys:

Leb(dy;) r dr d¢
Tpn '

TN

I[y; € D] I[ys +re'® € D]

Obtain the result by integrating out thevariable and transforming thg variable toz
by z = y; + te'. O

Corollary 13. The density fo&Z; and® (mod ) is

f(Z,d)) =
2 2
(H[zte¢eD]W+H[z+te¢ep} (t+5(za27f+¢)) >><
Leb(dz) do
XH[O<¢<W]€;-2(I)ZZ,2/2 (27)
with an upper bound
fd) < AxI0< < 00 9)

m2pn

Proof. Equation 27) follows immediately from adding the two expressions from Equa-

tion (26) for ¢ (mod ). The upper bound follows by noting

1. the maximum will occur when — te, runs along a diameter,



2. furthermore when one of + te, lies on the disk boundary;

3. and furthermore when = 0 is located at the centre of the disk (se s(z, +¢) =
N/ZDE
O

Now consider the line segme#i ,, centred atZ;, with end-points given by the

pair +i/2tx + x? exp (i¢®); and consider the rose-of-directions empirical measure of
angles made by intersections of network edges with this segment:

Re(A) = #{ network intersections o8y , with angle of incidence lying im }
(29)
(here angles are measured modujand A C [0,7)). We may apply a Buffon-type
argument to bountf [R, , (A)] using Inequality £8). Consider the contribution to the
expectation from a fixed line segment of the network of lengtthe result of disin-
tegrating the integral expression for this according to the valug isfan integral of
f(z, ¢) with respect to: over a region formed by intersecting the disk with a parallel-
ogram of base side-lengthand heigh+/2tx + x2 sin « (here the angle: depends
implicitly on ¢). Of course the integral vanishesjifZ A. Thus Inequality 28) yields
a bound

4len(G(x™))

m2pn,

E [Re . (A)] X/AQ 2tx + x2 sin ada.

For constani;, the even{Y, , < u]isthe evenfR, (% —u, 5 4+ u) > 1] and so

PTiy<ul < E[Ry(5-u5+u)
< 26 1enCXY) o T . (30)
n

m2p

4.4 Calculations

We have assembled the ingredients for the proof of Thedreamd now perform the
calculations to get a quantitative lower bound.

Choose constants (as explained lateandx = x,, such that for sufficiently large
n (assumed in what follows)

P[B,, NA,] > 2713 (31)
Combine (9) and @4) (and the fact that?/4 < 3) to get

Ky/pT OO
excess(G(X™)) + 7Ly > / / max (2_1/3 —P[Y:y <ul 70) u du dt.
0 0

By (30) and hypothesis of Theoref there exists a constait such that

| B
P[Y,, <u] < F \V2tx + x2 X u.



Applying the formulaf;™ max(0, a — fu)u du = % we see

1 4t = log(k\/pn + §) —log &
+x? 2xB

1 Ky/pT
S(GOX) + TLy > — (32
excess(G(X™)) + 7Ly > B/o Six (32)

Recall this holds under the assumption thatand x satisfy 31). To finish we turn
to an argument by contradiction: that is, suppose that (passing to a subsequence if

necessarygxcess(G(x™)) = o(y/logn). By hypothesis.,, = o(v/logn). Inspecting
(25) we see that we can choose soge= o(+/log n) and some smalt > 0 such that
(31) holds. But thenJ2) takes the form

Q(logn)
O(\/@) > 0( /log n) ’

which is impossible.

5 Closing remarks and supplements

5.1 Spatial network design

Within the realm of spatial network design, the closest work we know is thatefner

and Newman 20Q@vho consider the similar notion ofdistribution networkor trans-
porting material from one central vertex to all other vertices. They give a simulation
study (their Figure) of a certain algorithm on random points, and comment

Thus, it appears to be possible to grow networks that cost only a little more
than the [minimum-length] network, but which have far less circuitous
routes.

Our TheorenB provides a strong formalization of this idea.

5.2 Fractal structure of the Steiner tree on random points

Longstanding statistical physics interest in continuum limits of various discrete two-
dimensional self-avoiding walks arising in probability models,

¢ uniform self-avoiding walks on the lattice,
e paths within uniform spanning trees in the lattice,
e paths within minimum spanning trees in the lattice,

has recently been complemented by spectacular successes of rigorous lthedey, (
Schramm, and Werner 2004t is conjectured that routes in Steiner trees on random
points have similar fractal propertie€¢ad 200% route-length between points at dis-
tancen should grow as” for somey > 1. However, as our construction shows, such
results have little relevance to spatial network design.



5.3 The counterintuitive observation

The counterintuitive observation following Definitidrfollows quickly from the work

of Theorem3. Suppose the configuratiot? is well-dispersed, in the weak sense that
for somey € (0,1) we find the number of city point pairs within?/? of each other

is o (()n?') (certainly this is the case for most patterns generated by uniform ran-
dom sampling from0, \/n]?). Consider a networks(x") produced by augmenting
the Steiner tree according to the construction in the proof of The@&etdsing the
properties of this construction, the following can be shown

_ l(x;,j)
E [ratio (G(x™ = E |average —— "~ —1
ratio (G(¢"))] erage ]
< constantx o(n?"!) + (1 — o(n"™ 1)) (W)
n

IN

1 logn
0] (maX (nl—’Y7 n"//2>) .

5.4 Derandomization

Theorem3 is a purely deterministic assertion, though our proof used randomization
(supplied by the Poisson line process). It seems intuitively plausible that one could give
a purely deterministic proof, say by replacing the Poisson line process with a suitable
sparse set of deterministically positioned lines having a dense set of orientations.

5.5 Quantifying equidistribution
The classical equidistribution property

the empirical distribution of n=1/227,1 < i < n} converges weakly to
the uniform distribution 010, 1]2

is equivalent (by a straightforward argument) to the property

x" is L,-equidistributed as the uniform distribution on the square of area
n, for someL,, = o(n'/?).

Replacing one sequence bf, by a slower-growing sequence makes equidistribution
a stronger assumption, and so our assumption in Theéfajn(equidistribution for
someL,, = 0(10g1/2 n)) is stronger than the classical equidistribution property. Indeed
Theoremb fails under the classical equidistribution property, as the following example
shows.

Examplel4. Let L, = n” for somey € (£, ). There exist networké:(x™) which
are L,,-equidistributed as the uniform distribution on the square of atefar which
len(G(x™)) = o(n) whilst excess(G(x™)) — 0.

For example: partitior0, n'/2)? into subsquares of side,, / log n, construct the
complete graph on all centers of such subsquares, allocategbiats evenly amongst

subsquares and position them arbitrarily close to the centers.



Remarkl5. Sample the configuratiox® independently and uniformly frord), /n]2.

Let L,, — oo, perhaps arbitrarily slowly. Then the probability that the configuration
x™ is L,-equidistributed with the uniform distribution converged tarhis follows by
dviding [0, v/n]? into cells of side-length asymptotic fa, /+/2, by conditioning orx™,

and by “blurring” the points ok™ by replacing each point € x™ by an independent
draw taken uniformly from the cell containing Then a uniform random draWj, of
one of the blurred points can be coupled to lie witliip of a uniform random draw
X, from the finite configuratio®™. A simple argument using the Binomial distribution
then shows that the total variation distance betw€eand Uniform(0, /n]?) tends to
zero; it follows thatX,, can be coupled to a Uniforrjt, /7]?) random variablé’,, so

that ¥ v
E[min(l,l ”L_ ”)x} — 0,

where the convergence takes place in probability.

5.6 Poisson line process networks

Remark8 indicates that more can be said about the mean semi-perimeter
% E [len(@C(vi, ’Uj))] 5

and this will be returned to in later work. For example, consider the network formed

entirely from a Poisson line pattern. If the pattern is conditioned to contain pgints

v; then the perimete¥C (v;, v;) will be close to providing a genuine network geodesic.
Note that questions abod{v;, v;) bear a family resemblance to the D.G.Kendall

conjecture about the asymptotic shape of large cells in a Poisson line pattern. How-

everC(v;, v;) is the result of a very explicit conditioning and hence explicit and rather

complete answers can be obtained by direct methods, in contrast to the striking work

on resolving the conjecture about large cellslés 1995 Kovalenko 1997Kovalenko

1999 Hug, Reitzner, and Schneider 2004

5.7 An open guestion

In the random points model we can pose a more precise question. Over choices of
networkG subject to the constraint

E [len(G(x™)) — len(ST(x"))] = o(n),
or the constraint
Eflen(G(x")] = O(n),

what is the minimum value di [excess(G(x™))]? Our results pin down this minimum
value, in the latter case to the range(./log n) , O(logn)] and in the former case the
range[(2 (v/Iogn) , o(w, logn)]. But it remains an open question what should be the
exact order of magnitude.
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