THE CENTRAL LIMIT THEOREM FOR THE
SMOLUCHOVSKI COAGULATION MODEL *
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Abstract

The general model of coagulation is considered. For basic classes of unbounded coagu-
lation kernels the central limit theorem (CLT) is obtained for the fluctuations around the
dynamic law of large numbers (LLN) described by the Smoluchovski equation. A rather
precise rate of convergence is given both for LLN and CLT.

1 Introduction

In this paper we shall establish a central limit theorem for the fluctuations of the Markus—
Lushnikov process in the limit of large particle numbers. Consider, for now, the case where
coagulation rates are a function only of particle masses, so that any two particles, of masses x
and 2’ say, coagulate to form a particle of mass x + 2’ at a given rate hK (x,2’). Here, N =1/h
is the number of initial particles and the coagulation rates are scaled to give the following law of
large numbers. The process of empirical particle distributions Z" = (Z});> converges weakly,
as h — 0 (or equivalently N — o0o), when Z} converges weakly to ji, to the solution (y)s>o of
Smoluchowski’s coagulation equation

t
[t = flo +/ K (s pis)ds.
0

Here, for suitable measures p and p’ on (0, 00), K (u, ') is the signed measure, given by

(K Gua) = [ () = o)~ S o e ),
0,00)2

for suitable measurable functions f. Our result concerns the limiting distribution of the fluc-

tuations

El' = (2} — ) /Vh.

This is of interest if we consider the Markus—Lushnikov model as representing a good mathe-
matical description in some applied context and wish to understand, for large particle numbers,
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how this model deviates from the deterministic evolution given by Smoluchowski’s equation. It
is also important in quantifying the stochastic errors which may arise in a computational ap-
proach to Smoluchowski’s equation using Monte—Carlo techniques. Though formal calculations
leading to the formal expression of the covariance of the limiting infinite dimensional Gaussian
(Ornstein-Uhlenbeck) process are not difficult, the rigorous identification of the limit turns out
to be not simple, this problem being placed as problem 10 in the list of open mathematical
problems on the coagulation theory in the well known review [1].

To make things more precise, we shall fix some notations. We shall denote by X a locally
compact topological space equipped with its Borel sigma algebra and by E' a given continuous
non-negative function on X such that E(z) — oo as ¥ — oo . Denoting by X° a one-point
space and by X7 the powers X x ... x X (j-times) considered with their product topologies, we
shall denote by X their disjoint union X = U?’;O X7, which is again a locally compact space.
In applications, X specifies the state space of a single particle, X stands for the state space of
a random number of similar particles, and F describes some key parameter of a particle. In
the standard model X = Ry = {x > 0} and E(z) = = denotes the mass of a particle.

By C(X) (respectively C (X)) we denote the Banach space of continuous bounded functions
on X (respectively its subspace of functions vanishing at infinity) with the sup-norm denoted
by || -], by M(X) - the Banach space of finite Borel measures on X with the norm also denoted
by || - ||, and by M (X)) - the set of its positive elements. The brackets (f,Y") denote the usual
pairing (given by the integration) between functions f and measures Y, and |u| for a signed
measure p denotes its total variation measure. The elements of X will be denoted by bold
letters, e.g. x = (z1,...,2,) € X" C X. For a subset [ in {1,...,n} we shall denote by |/|
and I respectively its cardinality and its complement in {1,...,n}, and by x; the element of
XM given by the collection of x; with i € I.

Assume that we are given a continuous transition kernel K(z1,x9;dy) from X x X to X,
i.e. a continuous function from X x X to MT(X) (the latter equipped with its weak topol-
ogy). This kernel will be called the coagulation kernel and it will be assumed to preserve
E, ie. K(xy,x9;dy) has support contained in the set {y : E(y) = E(z1) + E(x2)}. More-
over, K(x1,x9;dy) is symmetric with respect to permutation of x; and z, and has intensity
K(x1,22) = [y K(21, %2; dy) enjoying the following additive upper bound:

K(21,22) < C(1+ E(21) + E(x2)) (1.1)

with some constant C' > 0 and all x, xs.
The process of coagulation that we are going to analyze here is a Markov process Z(t) on
X specified by the generator

L= 3 [(alxny) - 960K xisdy (1.2)

Ic{1,...,n}:|I|=2

(where x = (1,...,2,)) of its Markov semigroup acting on an appropriate space of functions
on X. It is known and not difficult to deduce from the theory of jump type processes (see
e.g. [5]) that the process Z(t) is well defined by this generator (see e.g. a detailed probabilistic
description of Z(t) in [34]). In the next Section the analytic properties of the Markov semigroup
specified by L will be made precise.

The transformation



X = (21,...,&n) = hox = h(0y, + -+ ds,), (1.3)

with h being a positive (scaling) parameter, maps X’ to the space Ms(X) of positive measures
on X of the form hd,. By Z! we shall denote a Markov process on Mjs(X) obtained from
Z(t) by transformation (1.3) combined with the scaling of L by h, i.e. Z! is defined through
the generator

LG ) = S [(abxny) - g0 xrdy)
—h Z / (hox + h(5, — bx,)) — Gy(hS)) K (x1: dy) (1.4)

on C(Mys(X)), where G,(hdy) = g(y) for any y € X.
The law of large numbers dynamics (LLN) for the processes Z!' is given by the kinetic
equation, whose most natural form is the weak one, i.e. it is the equation

< 0.m) /X ) / ) — gan) — g(a2) K (21, 20 dy)pe(da)p(dzz) — (L5)

on y,; that has to hold for all ¢ € C(X). It is known (see [34]) that if a family of initial
measures hoyp) for Zth is uniformly bounded with bounded moments of order 5 > 2, i.e. if

sup [ (14 B ()hin(dy) < o (1.6)

and if hoy(n) tends *-weakly to a measure jg on X, as h — 0, then the process ZI" with the
initial data hdx(n) tends weakly to a bounded solution p, of (1.5) with initial condition i that
preserves F and has bounded moments of order 3, i.e. such that

sup [ (1+ B (g)pli) < o (17)
and

/X Bly)un(dy) = /X E(y)poldy) (18)
for all ¢ > 0.

The first objective of this paper is to establish the corresponding central limit theorem
(CLT), i.e. to show that the process

FMZY, o) = h™ P (ZM(Z8) — (o))

of normalized fluctuations of Z}! around its dynamic law of large numbers p; converges in
some sense to a generalized Gaussian Ornstein-Uhlenbeck process on M(X) or a more general
space of distributions. We obtain this result under some mild technical assumptions on the
coagulation kernel thus presenting a solution to the problem 10 from the list of open problems
on coagulation from [1].



It is worth noting that though for the classical processes preserving the number of particles
(like interacting diffusions or Boltzmann type collisions) the results of CLT type are well es-
tablished and widely presented in the literature (see e.g. [13], [6], [29]) and references therein),
for the processes with a random number of particles the work on CLT began recently. For
coagulation processes with discrete state space X = N and uniformly bounded intensities the
central limit for fluctuations was obtained in [8] using stochastic calculus. For general processes
of coagulation, fragmentation and collisions on X = R, but again with bounded intensities,
the central limit was proved by a different method in [21], namely by analytic methods of the
theory of semigroups. The results of the present paper are obtained by developing further the
approach from [21].

The second objective of the paper is to provide precise estimates of the error term both in
LLN and CLT for a wide class of bounded and unbounded functionals on measures. Note that
the usual “prove compactness in the Skorohod space and choose a converging subsequence”
probabilistic method does not provide such estimates (see, however, [13] for a progress in this
direction for interacting diffusions).

The method of [29] (that goes back to [32] and [30]) is based on the direct study of the
solutions to the infinite-dimensional Langevin equation, describing the fluctuation process, in
the strong sense. A courageous attempt to work with the Smoluchovski equation (and thus with
processes changing the number of particles) on the same basis was made in [8], where extreme
technical difficulties were met forcing the authors to reduce their analysis not only to bounded
coefficients but even to only discrete mass distributions. Our approach enhances probabilistic
tools by the sound analytic input yielding the convergence of semigroups as an intermediate
step before embarking on the probabilistic analysis of the distribution of fluctuations in the
appropriate Hilbert space extensions of the space of Borel measures. The main novelty of our
approach (both technically and methodologically) lies in the systematic study of the derivatives
of the solutions to kinetic equations with respect to initial data (this approach is inspired by the
analysis of such derivatives for the Boltzmann equation in [19]). The existence and regularity
of these derivatives in weighted spaces of functions and measures are analyzed and the validity
of CLT is proved to be connected with a certain kind of stability of these derivatives. The
estimates obtained are rather subtle, the main technical stuff being developed in Sections 5
and 7. Ideologically the corner stones of our analysis are positivity, duality and perturbation
techniques. On the technical side, we are led to the heavy use of appropriately chosen Banach
scales, in particular weighted Sobolev spaces, which one would expect for this kind of problems
(see e.g. various Banach scales in [28] for the analysis of the Schrodinger equation, [2] for
quantum stochastic setting and [30], [29] for classical interacting particles). The key points of
our analysis are well reflected in the step-by-step breakdown of our results in the sequence of
theorems formulated in the next section, showing the steady progress in the strengthening of
the convergence and estimates via (i) error term estimates for the LLN, (ii) convergence of the
linear functionals of the fluctuating measures with precise rates of convergence, (iii) the semi-
group convergence, (iv) the convergence of finite-dimensional approximations and finally (v)
the convergence of the distributions on trajectories, each step having its peculiarity and specific
technical issues in this infinite-dimensional setting as opposed to more or less straightforward
connection of similar kind of results in the case of usual Feller semigroups.

The final estimates and their proofs depend on the structure and the regularity properties of
the coagulation kernel. We demonstrate various aspects of our approach analyzing the following



three classes of kernels:

(C1) K(x1,22) = C(E(21) + E(x2)).

Remark. This is a warming up example for the solutions to the main equations are given
more or less explicitly in this case see Proof of Proposmon 5.2).

(C2) K(x1,22) < C(1+ /E(x1))(1 4+ /E(x2))

Remark. This model is analyzed to show the kmd of results one can expect to obtain without
assuming any differential or linear structure on the state space X. The unavoidable shortcoming
of these results is connected with the absence of an appropriate space of generalized functions
to work with. Hence the estimate of errors in LLN and CLT have to depend on something
like the norm of F* = (Z} — po)/v/h in M(X). But general po can not be approximated by
Dirac measures Z! in such a way that F* be bounded in M(X). Hence the possibility to apply
these results beyond discrete supported initial measures i is rather reduced, so that there is
no big loss in assuming (C2), which is a stronger constraint than (1.1). On the other hand,
these results are open to extensions to very general spaces.

(C3) X =Ry, K(x1,29,dy) = K(x1,22)0(y — 1 — x2), E(z) = x, K is non-decreasing in
each argument 2-times continuously differentiable on (R4 )? up to the boundary with all the
first and second partial derivatives being bounded by a constant C'.

Remark. This is the case of our main interest. Unlike previous cases the estimate here
turns out to depend on the norm of F{* coming from the dual space to continuously differen-
tiable functions, and this norm can be easily made small for an arbitrary measure po on X.
Therefore, to shorten the exposition, we shall prove CLT completely, up to the convergence
of the distributions of processes on the Skorohod space of cadlag functions, only for this case,
restricting the discussion of the first two cases only to the convergence of linear functionals. For
simplicity, we choose here the state space X = R, of the standard Smoluchowski model, the
extensions to finite-dimensional Euclidean spaces X being not difficult to obtain. Similarly we
choose very strong assumptions on the derivatives (in particular, the kernels K (z,y) = z® 4+ y*
with o € (0, 1) are excluded by our assumption, as the derivatives of this K have a singularity
at the origin). Finally let us stress that all kernels from (C1)-(C3) clearly satisfy (1.1) (possibly
up to a constant multiplier).

We refer to reviews [1] and [24] for a general background in coagulation models, and to [15]
for simulation and numerical methods.

The content of the paper is the following. In the next section we formulate the main results,
and other sections are devoted to their proofs. In particular, Sections 4 and 5 are devoted
to a detailed analysis of the equation in variations (linear approximation) around the solution
of kinetic equation (1.5) that describes the derivatives of the solution to (1.5) with respect to
the initial measure pg. At the end of Sect. 5 a new property of the kinetic equation itself is
established that is crucial to our proof of CLT, but seems to be also of independent interest.
Namely Propositions 5.5, 5.8 show that the solution depends Lipschitz continuously on the
initial measure in the topology of the dual to the weighted spaces of continuously differentiable
functions or certain weighted Sobolev spaces. In Appendix A we describe our key notations
for weighted spaces of functions and distributions. In Appendix B three general result are
presented (on variational derivatives, on the linear transformation of Feller processes and on
the dynamics of total variations of measures), used in our proofs and placed separately in
order not to interrupt the main line of arguments. In Appendix C some auxiliary facts on
the evolutions specified by unbounded integral generators are presented. Though they should



be essentially known to probabilists dealing with jump processes, the author did not find an
appropriate reference.

To conclude the introduction we shall fix other important notations concerning variational
derivatives and propagators.

For a function F' on M ;(X) the variational derivative 6 F' is defined by

SF(Y;z) = lim 1(F(Y +56,) — F(Y)),

s—04 S
where lim,_o, means the limit over positive s. Occasionally we shall omit the last argument
here writing 6F(Y) instead of §F(Y;.). The higher derivatives 8'F(Y;zy,...,2;) are defined
inductively.

As it follows from the definition, if §F(Y’;.) exists and depends continuously on Y in the
weak topology of M(X) (or any M;(X)), then the function F(Y + sd,) of s € Ry has a
continuous right derivative everywhere and hence is continuously differentiable, which implies
that

F(Y+0,)—F(Y)= /1 SF(Y + sd,;x) ds. (1.9)

We shall need an extension of this identity for more general measures in the place of the Dirac
measure d,. To this end the following definitions turn out to be useful. For two non-negative
continuous functions ¢, f, f(z) — 0o as & — oo, we say that F' belongs to C'(M(X), ¢),
I =0,2,...,if F € C(My(X)) and for all k = 1,...01, 6*F(Y;xy,...,x;) exists for all
1,05 € XF Y € My(X) and represents a continuous mapping M (X) — C32" o (X"),
where M ;(X) is considered in its weak topology. We shall write shortly C'(M (X)) for
CH My (X), f). All necessary formulae on the variational derivatives in these classes are col-
lected in Lemma B.1.

We shall sometimes omit X from the notation writing shortly, say, M instead of M ;(X),
which should not lead to ambiguity.

Remark. The introduction of the cumbersome notations C™(Mf(X), ¢) is motivated by
the fact that (under our assumption on the growth of the coagulation rates) if one considers
the solution to the kinetic equations p, with oy € M, gs, then usually [, € My, ps-1 and
the derivatives of p; with respect to the initial data belong to C,pr with certain k < (3, see
Sections 4 and 5.

If S; is a family of topological linear spaces, t € R™, we shall say that a family of continuous
linear operators U"" : S™ +— S' r < t (respectively t < r) is a propagator (respectively a
backward propagator), if U"! is the identity operator in S for all ¢ and the following propagator
equation (called Chapman-Kolmogorov equation in the probabilistic context) holds for r < s <
t (respectively for t < s <r):

Ubsus™ =yt (1.10)

By ¢ and k we shall denote various constants indicating in brackets (when appropriate) the
parameters on which they depend.

For an operator U in a Banach space B we shall denote by ||U|| 5 the norm of U as a bounded
linear operator in B.

At last, we shall use occasionally the obvious formula

Z f(x;) = %//f(21722)5x(d21)5x<d22)_%/f(z, 2)0x(dz), (1.11)

[C{1,m} | 1]=2



valid for any f € C*¥™(X?) and x = (1,...,7,) € X"

2 Results

In the formulations of our main results below (as well as throughout the text) we freely use the
notations for weighted norms and spaces described in detail in Appendix A.

First we recall some known results on the Cauchy problem for equation (1.5). A proof of the
following two results can be found in [34] and [18] respectively. Recall that we always assume
that our continuous coagulation kernel K (x1, z5; dy) preserves E and enjoys the estimate (1.1).

Proposition 2.1 If a finite measure o has a finite moment of order 3 > 2, i.e. if

/X (1 + E°(y))oldy) < oo, (2.1)

then equation (1.5) has a unique solution p, with the initial condition pg satisfying (1.7) and
(1.8) for arbitrary t. Moreover,

sup /X EP(y)pa(dy) < e(C,t, 8, (1 + B, o)) (B, o) (2.2)

s<t

with a constant ¢, and the mapping po — iy is Lipschitz continuous so that

sup e (6) = s (1) 14 < (Ct, B, (L+ B, pg + 15)) (L + BV, ug + 1) g — pill1pe (2.3)

for anyw € [1,5 —1].

Proposition 2.2 Solutions p; from the previous Proposition enjoy the following reqularity
properties:

(i) for any g € By, ps o (Tespectively g € By, ps-1 o) the function [ g(z)p(dzx) is a contin-
uous function of t (respectively continuously differentiable function of t and (1.5) holds);

(i) the function t — p; is absolutely continuous in the norm topology of My gs—1(X) and
is continuously differentiable and satisfies the strong version of (1.5) in the norm topology of

My ps—(X) for any v € (1, 5].
Remarks.

1. The basic ideas of proving Proposition 2.1 go back to the analysis of the Boltzmann
equation in [35]. Formulas (2.2), (2.3) are proved in [34] only for § = 2 and w = 1
respectively, but the above extension is straightforward.

2. Statement (ii) of Proposition 2.2 is proved in [18] only for v = 3, but the extension given
above is straightforward. In fact (ii) is done in the same way as the similar statement of
Theorem C.2 from Appendix.



It is worth to observe that the operator Lj, has the form of the r.h.s. of equation (C.1) from
the Appendix with My instead of X and with the (time homogeneous) intensity

ahd) =h Y / K(xz:dy) < 3Ch~(1+ E, ho,)(1, hoy). (2.4)

IC{1,...n}:|1|=2

As the jumps in (1.4) increase neither (1,hdy)) nor (E,hdy), it is convenient to consider the
process Z} on a reduced state space

Z%,el = {Y € M}u; : (1,Y) < ey, (E’ Y) < 61}.

On this reduced space the intensity (2.4) is bounded (not uniformly in h). Hence L; is bounded
in C(M;5") and generates a strongly continuous semigroup of contractions there, which we
shall denote by T}.

Let T; be a semigroup specified by the solution of (1.5), i.e. Ty f(u) = f(p), where p, is the
solution of (1.5) with the initial condition p given by Proposition 2.1 with some 5 > 2. We can
formulate now our first result. Recall again that all notations for weighted norms used below
are given in Appendix A.

Theorem 2.1 [The rate of convergence in LLN] Let g be a continuous symmetric function on
X™ and F(Y) = (9, Y®™). Assume Y = hox belongs to M5, where x = (x1,...,x,). Then
under the condition (C1) or (C2)

sup|T'F(Y) — TF(Y))

s<t
< hR(Comy b oy en)llgll g mmen (1 + X2 Y)(1 4+ BF Yy (2.5)
for any k > 1 and under the condition (C3)
sup| T} F(Y) = TLF(Y)|
< < h,@(C,m,k,t,eo,el)|]g||o(zl,sym (xmy (1 + B3 Y)(1 4 EF, Yy (2.6)

+Ek)®m

for any k > 0 with a constant k.

Remarks.

1. We give the hierarchy of estimates for the error term making precise an intuitively clear
fact that the power of growth of the polynomial functions on measures for which LLN
can be established depends on the order of the finite moments of the initial measure. In
Section 7 we prove the same estimates (2.5), (2.6) for more general functionals F' (not
necessarily polynomial).

2. The estimates in case (C2) can be improved. However, not going into this detail allows
one to keep unified formulae for cases (C1) and (C2).



The idea of the proof of this theorem is based on the representation

t
L) = TPFY) = [ T8 (L~ OLF(Y)ds 27
0

for the Lh.s. of (2.5), (2.6), where L is the generator of the deterministic semigroup 7;(Y) =Y,
that yields the solution to the Cauchy problem of Smoluchovski kinetic equation (1.5). It turns
out further (see Section 3) that this difference is expressed in terms of the variational derivatives
of Y; with respect to the initial data Y. Analysis of those derivatives is then carried out via
the solutions to the system in variations (or linearization) of Smoluchovski equation around its
solution. This rather heavy analysis with variety of necessary estimates in different norms is
carried out in Sections 4 and 5, Theorem 2.1 being finally proved in Section 6.

Recall that

FP 2y, o) = h™Y2(Z0(Z) = (o))
is the process of the normalized fluctuations. The main goal of this paper is to prove that as

h — 0 this process converges to the generalized Gaussian Ornstein-Uhlenbeck (OU) measure-
valued process with the (non-homogeneous) generator

AtF(Y) = %///(5}7(}/)7 5y - 5z1 - 622)K(Z’1, 22, dy)(Y(dzl),ut(dzz) -+ Nt(dz1)y(d22))
: 2 ®2 '
+ Z ///(5 F(Y)7 (5y - 521 - 522) )K(Zl, 29, dy)ut(dzl)ut(dZQ), (2.8)

The formal calculation of this generator is not difficult and is carried out in Section 3. A
rigorous construction of the corresponding OU process already requires some work. Namely,
the corresponding semigroup will be obtained in Theorem 2.3 on the set of cylinder functions
with the existence of the process itself following then from the tightness of the approximations
(obtained in Theorem 2.6) together with the uniquely specified finite dimensional limiting
distributions.

The generalized infinite dimensional Ornstein- Uhlenbeck processes and the corresponding
Mehler semigroups represent a widely discussed topic in the current mathematical literature,
see e.g. [23] and references therein for general theory, [33] for some properties of Gaussian
Mehler semigroups and [7] for the connection with branching processes with immigration. The
peculiarity of the process we are dealing with lies in its 'growing coefficients’. We shall analyze
this process by the analytic tools developed in Sections 4 and 5. Let us start its discussion
with an obvious observation that the polynomial functionals of the form F(Y) = (g,Y®™),
g € C*¥™(X™)  on measures are invariant under A;. In particular, for a linear functional
F(Y)=1(9,Y) (i.e. form=1)

AP =5 [ [ [ () = ) = gl K ey i)Y () + )Y (d2). (29)

Hence the evolution (in the inverse time) of the linear functionals specified by the equation

F, = —-MNFy, F,(Y) = (g1,Y) can be described by the equation

§(2) = —Arg() = — / / (99) — 9(x) — g(2)) K (z, 2: dy)ps(d) (2.10)
9



on the coefficient functions g, (with some abuse of notation we denoted the action of A; on
the coefficient functions again by A;). Let U be the backward propagator of this equation,
i.e. the resolving operator of the Cauchy problem ¢ = —A;g for ¢ < r with a given g,. As
we shall show in Propositions 5.2 - 5.4, the evolution U"" is well defined in C}, gr(X) in cases
(C1)-(C2), and in C’ffEk (X) in case (C3).

We shall formulate now various versions of CLT that are of interest in their own right (in
particular, due to the precise rates of the error terms), but also reflect the steps of proving the
last (and more advanced) version on the convergence of the distributions on the trajectories of
the fluctuation process.

The next result describes the (trace of) CLT on linear functions. Though this is a sort of
reduced CLT, as it 'does not feel’ the quadratic part of the generator of the limiting Gaussian
process, technically it is the major ingredient for proving further advanced versions: convergence
of semigroups, convergence of finite dimensional distributions, convergence of the distributions
of trajectories in the weak sense, and the final formulation of Theorem 2.6.

Theorem 2.2 [reduced CLT: convergence of linear functionals] Under condition (C1) or (C2)

sup|E(g, FY'(Zg, o)) — (U9, Fy'(Zg, o))

s<t

< K(C, 1, k, e0, 1) VAl glleme (1 + B2 Z0 4 p1g)? (1 + || Er 2D o 2.11)

2
Mot ) €
for allk > 1, g € Cy pgx(X), and under condition (C3)

sup|E(g, F(ZY, o)) — (U%*g, E})]

s<t

2
< R(Cyt keo,e)Vilgllozo (14 E*, 28+ u0)* ( 1+ | F(Zg o) e
1+Ek 1+ Ek+1
(2.12)

for all k > 0, g € C’lszk(X), where the bald E denotes the expectation with respect to the
process Z!.

A proof of this theorem is given in Section 6. It is a consequence of Theorem 2.1 and the
estimate on the second moment of the fluctuation process obtained in Proposition 7.1.

To shorten the exposition, the further more refined versions of CLT will be given only in
the most important case (C3). Though all the results have natural modifications in cases (C1)
and (C2), let us stress again that for their applicability in cases (C1), (C2) one needs the initial
fluctuation F" to be bounded in the norm of M, gr+1(X), which is possible basically only for
discrete initial distributions .

For our purposes it will be enough to construct the propagator of the equation F' = —A,F
only on the set of cylinder functions Cff = C;'(MT' ), m = 1,2, on measures that have the
form

@?1,--4}5" (Y> = f((@bl, Y)v a8 (¢n7 Y)) (2'13)
with f € C(R"), and ¢y, ..., o, € Cﬁ’%k. By Cj, we shall denote the union of C! foralln =0, 1, ...

(of course, functions from C are just constants). Similarly one defines the cylinder functions
Cr((Lr° .)") under condition (C3).

2,1+ Ek

10



The Banach space of k times continuously differentiable functions on R? (with the norm
being the maximum of the sup-norms of a function and all its partial derivative up to and
including the order k) will be denoted, as usual, by C*(R?).

Theorem 2.3 [limiting Mehler propagator] Under the condition (C3) for any k > 0 and a pyg
such that (1 + E**1 ug) < oo there exists a propagator OUS" of contractions on Cj, preserving
the subspaces Cit, n = 0,1,2,... such that OU""F, F € Cy, depends continuously on t in the
topology of the uniform convergence on bounded subsets of M g, m = 1,2 (respectively also of
(ngﬁrEk)’ in case k > 1/2) and solves the equation F' = —A.F in the sense that if f € C*(R%)

in (2.13), then
d

EOU”(I)?“W"(Y) = —AOUM S (Y), 0<t<r, (2.14)
uniformly for'Y" from bounded subsets of M .. (respectively (L;nl(jf—Ek)/)

Our goal is to prove that this generalized infinite-dimensional Ornstein-Uhlenbeck (or Mehler)
semigroup describes the limiting Gaussian distributions of the fluctuation process F}.

Theorem 2.4 [CLT: convergence of semigroups] Suppose k > 0 and hy > 0 are given such
that

sup (14 E**5 7 1 115) < 0. (2.15)
h<hg
(i) Let ® € Cp(M2, ) be given by (2.13) with f € C*(R") and all ¢; € C7L,(X). Then

sup |[EQ(F'(Zg, po)) — OU™ (Fy)]

s<t

< K(C,t,k, eq, e1)Vh max 5l 2.0 . | flles@ny (1 + B>, Z0 + p19)* (1 + 1R i (X)) :
J 1+E 1+ Ek+1

(2.16)

(i) If ® € CR(MF ) (with not necessarily smooth f in the representation (2.13)) and F
converges to some Fy as h — 0 in the x-weak topology of MLEHM then

lim B (F (). ) — OU®(Fy)| = 0 2.17)

uniformly for E from a bounded subset of M%+E’f+1 and t from a compact interval.

Theorem 2.5 [CLT: convergence of finite dimensional distributions/ Suppose (2.15) holds,
O1yenes Oy € C’ffEk(R+) and Fl' € (L;:?+Ek+2)' converges to some Fy in (Lg:(l)JrEHz)’, as h — 0.
Then the R™-valued random variables

(bill th ((¢17F£(Z(I)7/7M0))7'”a(¢n7FtIZ(Z(})laMO)))a O<t1 S St’ru

'''''

converge in distribution, as h — 0, to a Gaussian random variable with the characteristic
function

n n t; n
vt (D1, oo ) = exp{i Y p; (U105, Fy) =) / > pipkII(s, Uy, U ¢y) ds},
j=1 j=1 "1t

i1 | k=j
(2.18)
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where to = 0 and

W o0) =5 [ [ [©80.6, 6 - 0K G s dydldz). (219)

In particular, fort =t, = ... =t, it implies

n

lim E exp{i > (¢, F} = expfi ZI(U&%, ) —

=1 j=

> /0 T(s, U p;, U py,) ds}.

J,k=1

Note that passing from Theorem 2.4 to Theorem 2.5 would be automatic for finite dimen-
sional Feller processes, but in our infinite dimensional setting this is not at all straightforward
and requires additional use of the Hilbert space methods leading to some uniform bounds on
the process of fluctuation obtained in Section 7.

Theorem 2.6 [CLT: convergence of the process of fluctuations] Suppose the conditions of The-
orems 2.4, 2.5 hold. (i) For any ¢ € C’ffEk(RJr) the real valued processes (¢, F'(ZL, o))
converge in the sense of the distribution in the Skorohod space of cadlag functions (equipped
with its standard Jy-topology) to the Gaussian process with finite-dimensional distributions
specified by Theorem 2.5. (i) The process of fluctuations E(ZE, o) converges in distribu-

tions on the Skorohod space of cadlag functions D([0,T]; (L3’3+Ek+2(R+))’) (with Jy-topology),
where (L;:LEHQ(RJF))’ is considered in its weak topology, to a Gaussian process with finite-

dimensional distributions specified by Theorem 2.5.

Proof is given at the end of Section 8. Let us note only that once the previous results are
obtained everything that remains to prove for Theorem 2.6 is the tightness of the approxima-
tions, i.e. the existence of a limiting point, because all finite dimensional distributions of such
a point are already uniquely specified by Theorems 2.4, 2.5.

3 Calculations of generators

From now on we denote by 1, = (o) the solution to (1.5) given by Proposition 2.1 with a
> 2. To begin with, let us extend the action of T}* beyond the space C'(M;5).

Proposition 3.1 For any positive eg,e; and 1 < [ < m the operator Ly is bounded in the

space Cyypt ym (MG5) and defines a strongly continuous semigroup there (again denoted by

T!) such that
||7:€h||0(1+El7A)m(MZ%’El) < eXp{C(O, m, l)elt} (31>

Proof. Let us show that
LLF(Y) <ce(Cim,l)e F(Y) (3.2)
for Y = hd, and F(Y) = (1 + E',Y)™. One has
LyFY)=h Y /[(1 + ELY + h(6, — 0,))™ — (1 4+ EL YY) K (x; dy).

Ic{1,...,n}:|I|=2

12



(1+ B h(8y = 0s, = 82,)) < h[(B(:) + E(x;))' — E'(2:) — E'(x;)]
< he(D)[E™ () E(x;) + B(a) B' ()]
and using the obvious inequality (a + b)™ — a™ < ¢(m)(a™ b + b™) one obtains
LyF(Y) < he(m,l) > [(1+ELY)" 'h(E" () E(x;) + E(x;) B ()
IC{1,.n}:|I]=2

+ R (BT () E(xy) + B(e) B (a)) ™K (x1; dy)

< c(C,m,l) / /[(1 + BN Y)Y BN (2)E(2) + E(21) BV (2))

+ R HETN(21)E(2) + E(21) B (22))™](1 + E(21) + E(22))Y (d21)Y (d2y),
where we used (1.11). By symmetry it is enough to estimate the integral over the set where
E(z1) > E(z2). Consequently L,F(Y') does not exceed

c / (14 B YY" B () E(2) + B (B (20) E(22))™] (1 + E(20))Y (dz2)Y (d2s)

<e(l+ BLY)M(EY) + b e / B0 () B ()Y (d2)Y (d).

To prove (3.2) it remains to show that the second term in the last expression can be estimated
by its first term. This follows from the estimates:

m/l
(E™Y)=hY E™z;) <h (Z El(xi)> — pm(EL Y )
(Em(l71)+l’ Y) < hfl(Em(lfl)’ Y) (E, Y) < hfm(lfl/l) (El, Y)m(lfl/l) (E, Y)
Once (3.2) is proved it follows from (2.4) that L; is bounded in Cyypt ym (M), and (3.1)

follows from Theorem C.1 (or Proposition C.1).
The following statement is a straightforward extension of the previous one.

Proposition 3.2 The statement of Proposition 5.1 remains true if instead of the space Cq gt ym

one takes a more general space C'(HEzl,,)ml...(1+Ezj7,)mj.

Next we shall calculate the generator £ of the deterministic semigroup 7; and compare it
with Lh.

Proposition 3.3 (i) If F € CY(Mgs(X),1+ E°1), then

d

ST () = & F(u) = L), (3.3)

with
LE(Y) = % /X /X | GF(Yig) = 6P(Ys1) = 6P(Ys0)) K v, e dy)Y ()Y (dz). (3.4

13



(i) If the variational derivative 6°F(Y;2,y) exists for Y € M|, s and is a continuous
function of three variables (Y taken in its x-weak topology), then for any Y = hdx

L, F(Y)—-LF(Y) = _h / /(5F(Y; y) —20F(Y;2))K(z, z;dy)Y (dz)

+h3/01(1—s)ds 3 /52 (Y + 5h(6, — 8, ): 1), (6, — 6, )%2) K (x1: dy).

IC{1,...n}:|1|=2

(3.5)
(iii) If F € C(M(X)), Y = héy, then
LuF(Y) = % / / / (F(Y + h(6, — 6., —6.,)) — F(Y)K (21, 2: dy)Y (d21)Y (dz)
_ % //[F(y + h(d, — 20.)) — F(Y)]K(z, z; dy)Y (dz). (3.6)
In particular, if F(Y) = (¢.Y) with a continuous function é, then
L) =3 [ [ [16) = 020 = 6K (o1 i)Y (d20)Y (d2)
_ _// —26(2)|K (=, 7 dy)Y (d2). (3.7)

Proof. (i) Follows from equation (B.3) and Proposition 2.2(i).
(ii) Applying equation (B.2)(a) to formula (1.4) yields

LFY)=h ) /(5F(Y;-),5y—5xI)K(XI;dy)
1c{1,..np: =27 %

+h3/01(1—s)ds > /52 (Y + sh(8, — x,); ), (0, — 0x,)¥*) K (xr; dy).

IC{1,...n}:|1|=2

Transforming the first term of the r.h.s. of this equation by (1.11), yields (3.5).
(iii) Is obtained by applying (1.11) directly to (1.4).

Proposition 3.4 The backward propagator
U COMMG™) = COLME™)

of the process of fluctuations F!* obtained from Z!' by the deterministic linear transformation
QMY = R Y2(Y — ), is given by

Uit F = (@)1 Q8 (3.8)
where QPF(Y) = F(Q'Y), and satisfies the equation

d

h;t,s hit,s
dSUﬂt F=Ui"AF; t<s<T, (3.9)
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for F e C*(My s, ms-1(X)), where

AMF(Y) ///5F — 6.,)K (21, 20;dy)Y (d21)Y (d2)
// (OF(Y K (z, 2 dy) (e + VRY)(dz)
vh / [ @06, 5. = 5. K (o1 i )Y () + Y (@)

__///52 (8, — 26.)2) K (2, 2 dy) (e + VAY ) (d2)

v / / / (C2F(Y), (5, — 62y — 6.,)°2)K (21, 2: dy)Y (d21)Y (d2)
@/11_s2d8///53py+m5 = 020, (8 — 0y — 02)5)

x K(z1 2o dy) (e + VRY ) (dz1) (. + VRY ) (d2s)
W (1— ) ds//53 F(Y + sv/A(8, — 26.), ), (8, — 26.)5%) K (=, 2: dy) (e + VY )(d2).
(3.10)

Proof. According to Lemma B.2 the backward propagator U ]’}f’r is given by (3.8) and satisfies
(3.9) for F' € C(Qo11(M}5")) (see Lemma B.2 for this notation), where

B
Ay = ()L, QMp — h1/2 (5—;@ ut) : (3.11)

Applying (3.6) yields

i ] [ (“28=ty ) ()

X K(z1, 225 ;dy)Y (dz1)Y (dzo)

__//[ <Y+h (6, — 205) — )_F(Y\;ﬁmﬂ K (2, 2 dy)Y (d=)

and consequently

() Lay F( zh/// F(Y +Vh(s, —%)—F(Y)]
x K (21, 225 dy) (VAY + ) (dz0)(VRY + ) (dzy)

1 / / F(Y +Vh(6, — 25.) = F(V)K (2, 2:dy)(VRY + m)(dz).  (3.12)

Applying equation (B.2) (b) yields

F(Y +Vh(8, — 6., — 0.,)) = F(Y) = VR(OF(Y), 8, — 6., — 6.,) + 2(62F(Y>, (6y = 0z — 05,)7)
h3/2
+ T (1 - 8)2(53F(Y + 3\/5(5?/ - 521 - 52’2))7 (6y - 52’1 - 522)®3) ds.
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Hence developing the r.h.s. of (3.12) in h yields the term at h~/2 of the form

%///(5F(Y),5y—6zl—522)K(21,22;dy)m(dzl)ut(d22)7

the term at hY being precisely A;F(Y) given by (2.8), plus the remainder terms of order at
least h'/2. As the above term of order h~'/2 cancels with the second term in (3.11) one obtains
(3.10).

4 Derivatives with respect to initial data: existence

This section is devoted to the analysis of the derivatives of the solutions to equation (1.5) with
respect to the initial data. Namely we are going to study the signed measures defined as

6 = &l zids) = S (i asds) = T <o+ 56) — o). (4)
We will occasionally omit some arguments in & to shorten the formulas.

Since the general known results on the derivatives of the evolution systems with respect to
initial data are not applicable directly to (1.5) (due to unbounded coefficients), our strategy in
this Section will be to introduce approximations with bounded kernels, apply standard results
on variational derivatives to them, and then carefully pass to the limit.

To motivate the formulation of rigorous results, let us start with a short formal calculation.
Differentiating formally equation (1.5) with respect to the initial measure po one obtains for &
the equation

0.6) = /X ) / ) = 9(@2))K (21, 223 dy)€x(dy) re(dca). (4.2)

Of course, this is by no means a coincidence that this equation is dual to (2.10).
Introducing the second derivative

ne = (@, w) = mi(po; T, w; dz) = hm (€t(uo + 80w; ) — & (po; ), (4.3)

S—)

and differentiating (4.2) formally one obtains for 7, the equation

d
79 m(@,ws, ) /XXX/ ) = g(x1) — g(2)) K (21, 22; dy)
X [e(x, w; dzy) pe(dxe) + & (x; daey) € (w; dxs)). (4.4)

The aim of this section is to justify these calculations and to obtain rough estimates for & and
M-

We start our analysis with a result on approximation of the solutions to kinetic equations
by equations with bounded kernels. Let us introduce a cut-off kernel K,, that enjoys the same
properties as K and is such that K, (x1,x9;dy) = K(x1,z2;dy) whenever E(zq) + E(z2) < n
and K, (z1,x2) < Cn everywhere.

For convenience, we shall assume 3 > 3 everywhere in this section.
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Proposition 4.1 Let pg — u} be the solution, given by Proposition 2.1, to the equation (1.5)
with K, instead of K. Then u} — p; in the norm topology of My ge(X) with w € [1,5 — 1)
and x-weakly in My gs uniformly for t from compact sets.

Proof. As the arguments given below use a rather standard trick in the theory of kinetic
equations (similar ideas lead to a proof of Proposition 2.1) we shall give them only for w = 1.

Let o}' denote the sign of the measure pj' — u; (i.e. the equivalence class of the densities of
pp — iy with respect to |uf — | that equals £1 respectively in positive and negative parts of
the Hahn decomposition of this measure) so that |uy — | = o7 (1 — pe). By Lemma B.3 one
can choose a representative of o' (that we shall again denote by ¢7') in such a way that

Bl =l = [ (00004 B = ) ) s (4.5)

Applying (1.5) one obtains from (4.5) that

(14 B, | / ds / (14 E))(y) — (071 + B)) () — (07 (1 + E))(a)]
X (K (21, 22 dy) pig (dwy) pig (dwz) — K (21, 223 dy) s (dr ) ps(da2)]. - (4.6)

The expression in the last bracket in (4.6) can be rewritten as

(K — K) (1, w25 dy) g (dar ) g (dwa)
+ K (w1, a5 dy)[(p (dy) — ps(day) ) p (dwz) + ps(dar) (pg (de) — ps(da))]. (4.7)

As p? are uniformly bounded in M, gs and

(1+ B(zy) + E(z2)) /X(Kn =K (g, m0: dy) < Cnc(1 + E(zy) + E(w2))*

for 2 4+ € < 3, the contribution of the first term in (4.7) to the r.h.s. of (4.6) tends to zero as
n — oco. The second and the third terms in (4.7) ar similar. Let us analyze the second term
only. Its contribution to the r.h.s; of (4.6) can be written as

/ s / "(1+ B))(y) — (01 + E)) () — (0" (1 + E))(x2)]
X K (w1, 205 dy)oy (1) | py (dzy) — ps(day) |y (dao),
which does not exceed
3 s [104 D)) = 0+ B + (1 + B)aa)

X K (1, @3 dy) |2 () — iy (o) 2 (ds),

because (67(x1))? = 1 and |o%(x;)| < 1, j = 1,2. Since K preserves F and (1.1) holds, the
latter expression does not exceed

¢ [ s [+ Ba)( + By + Blaa)lii(de) = udey i (de)

t
<C [ as(ur Bl = p e
0
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Consequently by Gronwall’s lemma one concludes that

s€[0,t]

i — peliee = (14 B, | — pe|) = 0(1) o0 €xp {t sup Huslhw} :

Finally, once the convergence in the norm topology of any M gy with v > 0 is established,
the *-weak convergence in M, ps follows from the uniform (in n) boundedness of .

Proposition 4.2 (i) Under the assumptions of Proposition 2.1 the backward propagator U"" of
equation (2.10) is well defined and is strongly continuous in the space Cy ps-1 (X ). Moreover,
there exists a unique solution & to (4.2) in the sense that & = 0, & is a x-weakly continuous
function {t > 0} — M gs-1(X) and (4.2) holds for all g € C141g(X). Finally,

1€ (5 )l e < K(E [l o]l 14140 ) (1 + E¥) () (4.8)

for all w € [1,06 — 1] and some constant k, & 1is continuous with respect to t in the norm
topology of My gs-1-c and is continuously differentiable in the norm topology of My ps—2-< for
all e > 0.

(i) If & are defined as & but from the cut-off kernels K,, with p} instead of ;, then £ — &,
as n — oo in the norm topology of M1y g with w € [1,8 — 2) and in the x-weak topology of
M1+E5—1-

(#1) & depends Lipschitz continuously on g in the norm of Myipge for w € [1,6 — 2] so
that

U 1€ (15) = (1)1 e < (Ot oy ea, (B>, s+ ) = pill e (14 B ().
(v) & can be defined by the r.h.s; of (4.1) with the limit existing in the norm topology of

Mg (X) withw € [1,8 — 1) and in the x-weak topology of My, ps—1.

Proof. (i) Equation (4.2) is dual to (2.10) and is a particular case of equation (C.14) from
Appendix with

Augla / / K (2, @ dy)n(d2), (4.9)

and

Bug(x) = /X 4(2) /X K (= s dy)pa(d-). (4.10)

In the notations of Theorem C.2 one has in our case

_ /X /X K (2,23 dy)pa(dz) < C(1+ B(@)) ]l 1sm,

and for all w < —1

)L+ E(x) + E(2))p(dz)
1+ E(z)

IBglhsr = 1B/ 1+ B < Copl 22 )

< Cllglhsp- / (14 B*(2)(1+ B(2))u(d) < 3Cgllveme aellis o
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Moreover, as w > 1

A(1+ E¥)(2) < C/X((E(l“) +E(2))° = E9(2))(1 + E(2) + E(2))mu(dz)

< Ce(w) /X(E“’l(x)E(Z) +E¥(2))(1 + E(2) + E(x))mu(dz) < Ce(w) (1 + E) (@) || pl14 pree-

Hence the required well-posedness of the dual equations (2.10) and (4.2) and estimate (4.8)
for w = 3—1 follow from Theorem C.2 (i), (ii) with 1, = 1+ E*, s € [1, 3—2), and ¢y = 14+ EF~1,
The last statement of (i) follows from Theorem C.2 (iii). Estimate (4.8) for other w € [1, 3 —1]
follows again from Theorem C.2 (i) and the estimates for a; and B, given above. !

(ii) The proof is the same as the proof of Proposition 4.1 above.

(iii) The proof of this statement is practically the same as for the corresponding statement
(see Proposition 2.1(i)) for the solution of kinetic equation and uses the same trick as in the
proof of Proposition 4.1 above. Namely denoting & = & (i), j = 1,2, one writes

1€} — & ll1yes = /0 ds/[(as(l + E9)(y) — (0s(1 + E%))(21) — (05(1 + E¥))(72)]
X K (1, x5 dy)[€; (dwy) puy (dao) — €2(day) i (day)],

where o, denotes the sign of the measure £} — &2 (again chosen according to Lemma B.3). Next,
rewriting

& (day ) py(dmg) — E2(day)pl(dwg) = o5(21)[€) — E2|(dwr) py (daa) + E2(dar) (py — p3) (dws)

one estimates from above the contribution of the first term in the above expression for ||¢} —
& lrpe by

[ s [120) = B2Gan) + B(a) + 1K o, el = €21}l
< c)C [ ds [[B7 ) Blen) + (e + (1 + Blor) + Bla)Ie} = €l drail (oo

t
<w(Cwnener) [ dsllh =l lidlpon
0

and the contribution of the second term by

t
K(C,w, €0 1) / A1} — 2|y €21 ot
0
< KJ(O?(")? €0, €1, (E2+wv :u(l) + Mg))t”#[l) - HJ(Q)Hl-i-E“’+1 ||§g||1+E“’+1'

It remains to apply Gronwall’s lemma to complete the proof of statement (iii).
(iv) General results on the derivatives of the evolution systems with respect to the initial
data seem not to be applied directly for (1.5). But they can be applied to the cut-off equations

Note that 14 E(z) should be of the order o(1),_ o0 (2 /%1 )(x) in order to fulfill the condition on the intensity
a; from Theorem C.1. Hence the necessity of the condition w < 5 — 2.
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(and this is the only reason for introducing these cut-offs in our exposition). Namely, as can
be easily seen (this is a simplified "bounded coefficients” version of Proposition 2.2(ii)), the
solution uf to the cut-off version of the kinetic equations (1.5) satisfies this equation strongly
in the norm topology of M, gs—« for any € > 0. Moreover, pu! depends Lipshtiz continuously
on i in the same topology, the r.h.s. of the cut-off version of (1.5) is differentiable with respect
to ¢ in the same topology and &' satisfies the equation in variation (4.2) in the same topology.
Hence it follows from Proposition 6.5.3 of [25] that

I
&' = &' (pos 2y dz) = lim =(pf' (o, +50z) — pue(pio))

in the norm topology of M, gs- with € > 0. Consequently

(9, 1 (o + hdz)) — (g, 1 (o)) = /0 (9, €M (o + 804313 -)) ds

for all g € Ci1ps—o(X) and € > 0. Using statement (ii) and the dominated convergence
theorem one deduces that

h
(9, (o + héz)) — (g, pe(po)) = /O (9,&(po + 8043 -)) ds (4.11)

for all g € C14pv(X) with v < 8 — 2. Again using the dominated convergence and the fact
that & are bounded in M ps—1 (as they are x-weak continuous there) one deduces that (4.11)
holds for g € C1, gs-1 oo(X). Next, for these g the expression under the integral in the r.h.s. of
(4.11) depends continuously on s due to Theorem C.2 (iv), which justifies the weak form of the
limit (4.1) (in the *-weak topology of M gs-1). At last, by statement (iii) £ depends Lipshitz
continuously on s in the r.h.s. of (4.11) in the norm topology of My gy with v < §—2. As &
are bounded in M gs-2 it implies that & depends continuously on s in the r.h.s. of (4.11) in
the norm topology of My, g with v < 3 — 1. Hence (4.11) implies (4.1) in the norm topology
of Myg+(X), v < — 1, completing the proof of Proposition 4.2.

Proposition 4.3 (i) Under the assumptions of Proposition 2.1 there exists a unique solution
ne to (4.4) in the sense that ny = 0, 0 is a *-weakly continuous function t — M, ps—2 and
(4.4) holds for g € C14g(X). Moreover

m¢ (2, w; )14 0 < K(C, L, ||poll1450)

x Sel[l()g](\lés(fv;‘)H1+Ew+a!|€s(w;‘)\|1+E+Ilfs(w;~)||1+Ew+aH€s(ﬂf;-)|!1+E) (4.12)

forl1 <w < (-2 and some k.

(i) If n are defined analogously to n; but from the cut-off kernels K, then n — n; in the
norm topology of Mi+gy with v < 8 — 3 and in the x-weak topology of My, gs--.

(7ii) my can be defined by the r.h.s. of (4.3) in the norm topology of My, gy with v < (3 — 2
and in the x-weak topology of M ps—2.

Proof. (i) Linear equation (4.4) differs from equation (4.2) by an additional non homoge-
neous term. Hence one deduces from Proposition 2.1 (i) the well posedness of this equation
and the explicit formula

t
nt(a:,w):/ VSO (z, w)ds, (4.13)
0
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where V%* is a resolving operator to the Cauchy problem of equation (4.2) given by Proposition
4.2(i) (or directly form Theorem C.2) and Q,(x,w) is the measure defined weakly as

(g,Qs(x,w))z/X X/X(g(y)—g(xl)—g(xz))K(xl,m;dy)&(x;dafl)&t(w;dﬂfz) (4.14)

From this formula and the properties of & obtained above statement (i) follows.
(i) This follows from (4.13) and Proposition 2.2(ii).
(iii) As in the proof of Proposition 2.2(iv), we first prove the formula

h
(9,&(po + how; x,-)) — (g, &(pos 2, 7)) = /0 (g, m(po + 80y, w; -))ds (4.15)

for g € C(X) by using the approximation 7}, and the dominated convergence. Then the
validity of (4.15) is extended to all g € U}, gs—2 o, using the dominated convergence and the
above obtained bounds for 7, and &;. By continuity of the expression under the integral in the
r.h.s. of (4.14) we justify the limit (4.3) in the x-weak topology of M, gs—2(X) completing the
proof of Proposition 4.3.

5 Derivatives with respect to initial data: estimates

Straightforward application of Theorem C.2 of the Appendix would give exponential dependence
on (EP, ) of the constant k in (4.8). And this is not sufficient for our purposes. The aim
of this Section is to obtain more precise estimates for &. Unlike the rough results of the
previous section that can be more or less straightforwardly extended to very general models
with fragmentation, collision breakage and their non-binary versions (analyzed in [3], [17], [18]),
the arguments of this section use more specific properties of the model under consideration.

We shall use the notations of the previous section, assuming in particular that A; and B;
are given by (4.9), (4.10) respectively. Due to the results of the previous section we are able
to assume that all the Cauchy problems we are dealing with are well-posed. Recall that we
denote by U"" the backward propagator of the equation (2.10).

Let us start with an estimate of the backward propagator Uﬁl’r of the equation § = —A;g
that holds without additional assumptions (C1)-(C3).

Proposition 5.1 For all k > 0, Uﬁl’r is a contraction in Cpyypry—1 and
UL 9(@)] < #(C k7, e0, ) [|gllgmr [(1+ EF) () + (B, o). (5.1)

Proof. UY" is a contraction in Cl11pr)-1 by Proposition C.1, because A;((1+ E*)™') <0
(and this holds, because E*(y) > E*(z) in the support of the measure K (z,z;dy)). Next

A1+ EY(2) < C/[(E(x) +B(2))" = E*@)](1+ B(2) + E(2))e(dz).
Using the elementary inequality
((a + D) —a") 1+ a+b) < c(k)(a"(14b) + b +1)
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that is valid for all positive a, b, k with some constants c(k) yields
A1+ BY)(x) < Ce(k)[E"(2)(eo + e1) + eo + (B, ).

Then by (2.2)
A (14 E¥Y(2) < k(O k,t,eq, e1)[E*¥ () + 1+ (EF po)].

Hence (5.1) follows by Lemma C.2 and the fact that U%" is a contraction.
To simplify formulas we shall often use the following elementary inequalities :

(a) (E'v)(E*,v) < 2(EM'Lv)(B,v),
(b) (E* v)E(z) < (E* v) + (B, v)E*(2). (5.2)
valid for arbitrary positive v and k,1 > 1. 2

Proposition 5.2 Under condition (C1) suppose k > 1. Then

U g(@)| < &(C.k, 7, eo,ea)l|gllipme L+ EF(2) + (B, o) (1 + ()], (5.3)
ot 1€ (o3 2, Ml or < K(C,t, eo,e0)[1 + EX(x) + (1 + B(2))(EM, o), (5.4)

and

sup||ns(po; z, w; -)[[14p0 < K(C, K, 1, e, €1)

s<t
< [(1+ EM (@) + (BM i) (1 + B2(x)) + (B, jo) (1 + E(2))) (1 + E(w))
+ (14 EM (w) + (BM o) (1+ B (w)) + (B, o) (1 + E(w)))(1 + E(2))].  (5.5)
Proof. The simplicity of condition (C1) stems from the observation that the two dimensional

functional space generated by the function E and constants is invariant under both A; and

By, and also the full image of B; belongs to this space. Hence representing the solution to
g=—(Ay — By)g as t
9=Ui9:+9 (5.6)

one finds that g belongs to the above mentioned two dimensional space and satisfies the equation
g=—(A—=B)j+BU g,  Gl==0  t<r. (5.7)

The corresponding homogeneous Cauchy problem

0=—(A—B)o, ¢ =a+fE,
can be written as
at"’ﬁtE(x) :Cat(el+(1aut)E(x))v Ay :aa/Br :6
2Say, to get (a), one writes (E',v)(E*,v) = [ [ E'(z)E*(y)v(dz)v(dy) and decomposes this integral into the

sum or two integrals over the domains {E(z) > E(y)} and otherwise; then, say, the first integral is estimated
by [ [ EFF (@) B(y)v(dr)v(dy)
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in terms of ¢ = oy + G, E(z) and clearly solves explicitly as
¢p = e 7D 4 {ﬁ + a/ (1, ps)e~ 2 =9ds| B(x),
t

which implies that

[0l < 5(r, e0)l|9rll145-
It follows from (5.1) that

|BUR 9-(2)] < K(C,re0, e1)llgellmn [Be(1 + E®) + (B, o) Bel] ()
< w(C,r,e0, e1)l|gr [l (1 + (BM 1)) (1 + (). (5-8)

Solving the non-homogeneous equation (5.7) by the Du Hamel principle and using the repre-
sentation (5.6) yields (5.3). But by duality one gets

185 (o3 2, )1 g = sup{(g, & (po; 7)) + gl < 1}

= sup{(U"*g,0z) : [lgll1r < 1} = sup{U*g() : llgll11pr < 1},
which implies (5.4).
Now from (4.13)

sup||n(po; 2, w; ) liapr < tsupHV“Q (z,w)[l14px = tsup sup (U™'g,Qu(z,w))
s<t s<t |g|<1+Ek

< k(C,t, eq, e1) sup sup{ (g, Qs(z,w)) : [g9(y)] < 1+ E"(y) + (1 + E(y))(E*, po)}

s<t

k(C, k,t,eq, €1 sup// [1+ E*(21) + E*(z9) + (E*, o) (1 4+ E(zy) + E(22))]

s<t

(1+ E(21) + E(x2))8s(2; day )€ (w; day).

Dividing this integral into two parts with E(x1) > E(z3) and E(x1) < E(z3) one can estimate
the first part as

ksup / / 14 B (1) + (B o) (1 Ba)(1 -+ E(an))als diey ) diy)

< :@ssglta 165 (w; )| ([166(@5 Mg mrer + (B po)1€s(@; )] l1452)
< k(1 + E(w))[1+ E"' ()
+ (B* o) (1 + E*(z)

(1+ E(x))(E**, jo)

(1+ E(2))(E°, o))

(B o) (L+ E*(2) + (B, o) (1 + E(x))],
(

b). As the integral over the second part is estimated

+
+
k(1 + E(w))[1 + E* Y (z) +

)
where we used both (5.2)(a) and (5.2)
similarly one arrives at (5.5).

Proposition 5.3 Under condition (C2)
1" || <exp{dC(t —r)(eo +€1)} (5.9)

and the estimates (5.3)-(5.5) hold for all k > 1.

I+VE —
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Proof. Since

A1+ // (VE(2) + E(z) — VE(2)K(z, x; dy) . (de)

<c / VE@(1 + VED) (1 + VE@))ue(de)
<C(l++FE +Eut < Cleg+2e1)(1++/FE

according to Proposition C.1 the positivity preserving backward propagator Uz’t of the equation
g = —A;g is bounded in C, 5(X) with the norm not exceeding exp{C(t —7)(eo + 2e1)}. On
the other hand

Bi(1+VE)(2) < C’/(l +VE(@)*(1 + E(2))p(dx)
<2C(eg+e1)(1 4+ E(2)).

Hence B; are uniformly bonded in C,, /(X) with the norm not exceeding 2C/(eg + e;). Hence
(5.9) follows from the series representation (C.16) for the backward propagator U™ of the
equation g = —(A; — By)g.

Now we use the same arguments as in the proof of Proposition 5.2 with

|BUY g (2)| < K(C,t =1, eq, en)llgellim (1 + VE(2)) (1 + (B, o))

instead of (5.8). Namely, in the representation of the solutions to ¢ = —(A; — Byi)g by the
series (C.16) the first term is independent of B, and all other terms belong to €}, z(X) and
applying the above estimates for Uff and By in this space one deduces (5.3). Other estimate
follows now straightforwardly as in the previous Proposition (even with some improvements
that we do not take into account).

Proposition 5.4 Under condition (C3) for any k > 0 the spaces C1+Ek and C1+Ek (see Ap-
pendiz A for these notations) are invariant under U™ and
(@) W9 (@) < &(C.rkyeo,e)llgllere (14 E(@) + (B, o)),
() U9 (@) < w(Corskseoen)llglezo (14 EX(x) + (B, o)), (5.10)
sup Hfs(Mm MNrer,, < 6(Cr ks eo,en)[B(x)(1+ (B, o)) + EM (2)], (5.11)

and
SsliIt)HnS(Mo; T, w;, )||Mf+Ek < /{(07 t, k, eo, 61)(1 + (Ek+17 :U“U))
X [(B(x)(1+ B2, po) + E¥2(2)) E(w) + (E(w)(1 + E*, jig) + E¥?(w)) E(x)]. (5.12)

Proof. Notice first that if ¢,(0) = 0, then ¢ = 0 for all ¢ according to the evolution
described by the equation § = —(A; — B;)g. Hence the space of functions vanishing at the
origin is invariant under this evolution.
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Recall that E(x) = z in case (C3). Differentiating the equation § = —(A4; — B;)g with
respect to the space variable x leads to the equation

) oK
§(a) == Ag)@) = [ (ol +2) = gla) = 9(:)) G, 2Dpu(d2) (513)
For functions g vanishing at the origin this can be rewritten as

9 (x) = —Ag — Dig

Do) = [ ( / o(y)dy — / oy dy) 92 (2, 2l d2).

1D:0]] < 2C@lI(E, ) = 2Cex||o]l,

with

Since
and UY" is a contraction, it follows from representation (C.16) with D, instead of B, that
HUt’THcllvO(x) < k(C,r —t, e, 1),
proving (5.10)(a) for £ = 0. Next, for & >0
IDi6(a)] < Clélipn [ (o4 270 b+ 240k )
< Celb)$lhe [+ 0 4 2)un(d),

which by (2.2) does not exceed

c(Ck, en) @l me[(1+ 2*) + (BF, o).

Hence by Proposition 5.1
[ 05D a)lds < (r = OK(Cor ko en)lglhs 1+ B )+ (B o)l

which by induction implies

/ U Dy, -+ Dy U g(x)|dsy - - - ds
<51 <---<s,<r

r—1t)"
< Um0 e en)lglhss [+ B5G2) + (B4 o).

Hence (5.10)(a) follows from the representation (C.16) to the solution of (5.13).
Differentiating (5.13) leads to the equation

§"(x) = —Alg")(x) — ¥y, (5.14)
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where

v=2 [+ 2) - g @) Gt Dl

+/ (/:+Zg’(y)dy—/ozg’(y>dy) %2;2((%2)%@2)-

We know already that for g, € C? g the function g belongs to 1 + E* with the bound given
by (5.10)(a). Hence by the Du Hamel principle the solution to (5.14) can be represented as

=UYg! + / Ul ds.
t

As
()] < K(Cr —t,e0, 1) (1 + EF(x) + (EF, o)),
(5.10)(b) follows, completing the proof of (5.10), which by duality implies (5.11).
Next, arguing as in the proof of Proposition 5.2 one gets

sup [|ns(pos @, w; )llae < tsupsup{[(U™'g, Qu(a,w))] : [lgllzo <1}
+E s<t 1+Ek

s<t
K(Ca t7 €0, 61) sup sup (ga QS('I7 U})),
s<t g€ell
where
={g:9(0) = 0,max(|lg'(y)], l¢" (W)]) < 1+ E*(y) + (E*, o)}

It is convenient to introduce a two times continuously differentiable function y on R such that
x(z) € [0,1] for all z, and x(z) equals one or zero respectively for z > 1 and z < —1. Then
write Q, = Q! +02 With Q! (respectively Q?) being obtained by (4.14) with x(z1 —x2) K (21, 1)
(respectively (1 — x(x1 — 29)) K (21, 22)) instead of K(x1,x5). If g € Ig, one has

(9, 2z, w) / / (21 + 22) — g(21) — g(@2))X (@1 — 22) K (20, 22)€s (1 vy ) (w; i),

which is bounded in magnitude by

(%2 /[(Q(m +z9) — g(x1) — g(x2))x (21 — 22) K (21, 22)]&s (2 d)

[€s(w, )| mi1x) sup
2

< [€s (w, ) a1 (, )||M1+Ek+1(X)
2
X sup (1+ Ek“(fﬂl))lax?axl [(g(z1 + x2) — g(21) — glw2))x (21 — 22) K (21, 22)]| -
Since
82
922071 [(g(z1 + 22) — g(z1) — g(22)) X (11 — T2) K (21, 72)]

= g1+ 22) () 1,22 + (o o+ ) — f ) PE S
O(XK) (21, 22)

83:'2

0*(X\K) (21, x5)
8.1’181'2 ’

+ (g (21 + 22) — g'(21)) + (g(21 + 22) — g(z1) — g(72))
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this expression does not exceed in magnitude C(1+ E¥(zy) + (E*Y, 1) (1 + E(z1)) (up to a
constant multiplier). Consequently

(9, (@, w)] < K(OVEe(w, M aggcollée@, M, oo+ (BY o).

1+Ek+1

Of course, the norm of Q? is estimated in the same way. Consequently (5.11) leads to (5.12)
and completes the proof of Proposition 5.4.

We shall prove now the Lipschitz continuity of the solutions to our kinetic equation with
respect to initial data in the norm-topology of the space /\/l1 LER

Proposition 5.5 Under the condition (C3) for k >0 and m = 1,2

sup [lus (o) = s (i) lany,,, < (Ot b eosen) (Lt BY pig i) lo = wgllay, o (5:15)

Proof. By (4.1) and (B.1)

(9. (1) — 20(42)) / is [ [ st + stuh - id)ssd) b - i) (de). (510

Since

(9. &(Y325.)) = (U g,&(Y, 25.)) = (Uo’t )(2),
it follows from Proposition 5.4 that (g,&(Y’; x;.)) belongs to C7™
g belongs to this space and that

||(ga &(Y, x; '))Hcm’ok(X) < K(Cat7 k? €0, el)HgHCm’Ok(X)(l + (Ek+17 Y))
1+E 1+E

i Ek as a function of x whenever

Consequently (5.15) follows from (5.16).
We shall discuss now the L2-version of our estimates.

Proposition 5.6 Under condition (C3) assume f is a positive either non-decreasing or bounded
function. Then UY" are contractions in Lyysp. (Thus Uy yield natural examples of sub-
Markovian propagators with growing coefficients.)

Proof. First observe that

| e+ ) = uo)g@uterie < 0 (5.17)

for any y > 0 and a non-decreasing non-negative ¢g (and any wu, if only the integral is well
defined). In fact, it is equivalent to

(Tyu7u)L2,1/g S (UJU)L2,1/g7

where Tyu(x) = u(x + y), which in turn follows (by Cauchy inequality) from (T,u, T,u)
(4, )L, ,,,- And the latter holds, because

La1/g <

(Tyu7 Tyu)LQ,l/g = / UQ(I + y>g2(‘%‘) dx
0
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Assume now that f is non-decreasing (and pos1t1ve) From (5.17) it follows that for arbitrary
y>0

/Ooo(u(:v + 1) — u(@)) K (z,y) f*(x)u(z) dz < 0 (5.18)

(we used here the assumed monotonicity of the kernel K'), and hence (Azu, u) < 0. Hence

UZ’T can not increase the norm of Ly /. To conclude that it is actually a semigroup of contrac-
tions it remains to observe that due to Proposition 5.1 there exists a dense subspace in Ly /s
that is invariant under Ui{r. Assume now that f is bounded. We again have to show the validity
of (5.18) for a dense invariant subspace of functions u. First note that as the evolution UY" is
well defined on continuous functions and preserves positivity and differentiability (by Proposi-
tions 5.1 and 5.4) it is suffice to show (5.18) for positive functions v with bounded variation.
Assuming that this is the case one can represent positive u as the difference u = u™ —u~ of two
positive non-decreasing functions (by decomposing its derivative in its positive and negative
parts). As —(u (z +y) —u(x)) <0, to show (5.18) one needs to show that

Loy

|t~ @)K ) fa)ala) dn <0
and as —u~ is negative this in turns follows from
I, = /Ooo(u+(x +y) —ut(2) K (2,y) f(x)u" (z) do < 0.
Denoting by M an upper bound for f? we can write
= [ )= @)K ) Mule) da= [ ey = (@) K ) (M= (@) ua) da,
which is negative, because the integrand in the second term is positive and the first term is

negative by (5.17).
We shall consider now equation (5.13) that can be written in the form

g (x) = —Ald)(z) — D;g — Dig, (5.19)

oo = [ ([ swarSe.s)) mae),
(Do) (x) = / (m / o(y) dy — /¢ dy> ——(z, 2) ().

Proposition 5.7 Under condition (C3) for any fi(x) = 1+ 2%, k > 1/2, the spaces sz ,
m = 1,2, are invariant under U and

where

||Ut7r||LgL}O S /{(07 T, ka €o, 61)(1 + (Ek+1/27M0))7 m = 17 2.
Tk
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Moreover, for g € Ly’ fk one can represent (UY"g) as the sum of a function from L2f with the

norm not exceeding H(C r, k, e, el)HQHLm o and a uniformly bounded function with the sup-norm

not exceeding k(C, 7,k o, e1)||gll o (1 + (E’““/2 f10)). Consequently
Jk
sup €5 (pto; 2 .)H(L;,(;k), < K(C,r, K, eo, 1) [E(@) (™, o) + (1 4+ E¥V2(2)]. (5.20)

Proof. Let us show first that
HDtluLz,fk < el2kC- (521)

In fact, for a continuous positive ¢ and an arbitrary z > 0

|y1z<x/ o) dyll,, = hm/ NZ(bH ZZ)z s

i,7=1

<2im [ 1o S0+ L )(¢/fk)<x+"z)12%dx

n—oo

2,7=1

because
1 ok ok

@ = To@n) = Tl@ + je/n)

for all 7 < n,z < z. Taking now into account that

/“Z<$§j 815+ )0/ ) + By de < 0/ £,

i,7=1
one deduces that is
e [ Sl , < 2240lR,,
xr

Consequently
L 00 Ttz )
ummm&30/|mg/ O(0) Ayl peldz) < C2er 0]l
0 x

which implies (5.21).
As clearly the same bounds hold for ||D}||c(r,), the equation

J'(z) = =A(g')(x) — D} g

specifies a propagator U*", t € [0,7], of bounded operators in both C(R..) and Ly (R4) with
uniform bounds depending on r, k, ey, e;. Next

(D7) (x)] < 2C / / : y)|dyp(dz)

for all #, which by Cauchy-Schwartz inequality does not exceed

2z
200l [ | 520 dupldz) < Ol (1 (B2 )



Hence writing the solution to the Cauchy problem for equation 5.13 with ¢, € Lay as a
perturbation series (C.16) with respect to perturbation D? one represents the solution as the
sum ¢f + ¢4 with

||¢§||L2,fk < C(kv €0, €1, T)||¢T||L2,fk

and

dhllom,) < (14 (BMY2, 10))k(C k, €0, €1, 7) 100 o,
so that

0511y, < (14 (B2, 10)k(C keq, e1,7) |60l Ly,

whenever k£ > 1/2. In particular for these k

U lge < (U4 (B2, 10))s(C b o, e1,7).

As (&(posx;.),9) = (02, U%g), this implies (5.20) by (A.1). The evolution U*" in the space
Lg:?k is analyzed quite similarly.

We conclude with the following analog of Proposition 5.5, whose proof follows from Propo-
sition 5.7 by the same argument as Proposition 5.5 follows from Proposition 5.4.

Proposition 5.8 Under the condition (C3) for k > 1/2 and m = 1,2

sup (1) = ps (1) a0 < (C 1Ky e, e) (14 B2, g i) g = iillagr e (5:22)

6 The rate of convergence in the LLN

Proof of Theorem 2.1. Recall that 1,(Y) means the solution to equation (1.5) with initial data
to = Y given by Proposition 2.1 with a § > 2. We shall write shortly Y¥; = 1, (Y') so that
T,F(Y) = F(u(Y)) = F(Y;). For a function F(Y) = (¢,Y®™) with g € C'(slny)Q@m’oo(Xm),
m > 1, and Y = hdy one has

t
T,F(YY)-T'F(Y) = / T/ (L — L)TF(Y) ds. (6.1)
0
As T,F(Y) = (g,Y,®™), Propositions 4.2 and 4.3 yield
OLE(Y ) =m [ g, ye - ym)&G (V23 dy) Y (dys - dyn),
X’I‘VL

and

627—‘:‘,F(Ya z, 'LU) =m 9(917 Y2, - 7ym)77t(Y7 T, w; dyl)}g@(mil)(dyZ T dym)
Xm

+m(m — 1)/ 9y, v, Y65 2 dyn )& (V5 w03 dyo) Y2 (dys - - dy). (6.2)

Let us estimate the difference (L, — £)T;F(Y) using (3.5) (with T F instead of F'). Let us
analyze only the more weird second term in (3.5), as the first one is analyzed similar, but much
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simpler. We are going to estimate separately the contribution to the last term of (3.5) of the
first and second term in (6.2).

Assume that the condition (C1) or (C2) holds and a & > 1 is chosen. Note that the norm
and the first moment (E, -) of Y +sh(d, —d,, —9d,,) do not exceed respectively the norm and the
first moment of Y. Moreover, for s € [0,1], h > 0 and z;, z;,y € X with E(y) = E(z;) + E(z;)
one has

(E*)Y + sh(8, — 0y, — 6z,)) = (E*,Y) + sh(E(z;) + E(x;))* — hE*(2;) — hE*(z;)

k3

< (BXY) + he(k)(B* (2 E(xy) + B(x) " (x))
with a constant ¢(k) depending only on k. Consequently by Proposition 5.2
[7:(Y + sh(dy — 6z, — 0z); 2, w5 )|l 14mx < K(CL Kkt eg,e1)(1 + E(w))

{1+ EM (@) + (BMLY) + he(k) (B* (1) E(x)) + E(x:) E*(2,))](1 + E*(x))
+(EY2Y) + he(k) (B (2) E(x;) + B(a:) B (2;)](1L+ E(2)} + ...,

where by dots is denoted the similar term with x and w interchanging their places. Hence the
contribution to the last term of (3.5) of the first term in (6.2) does not exceed

K(C, 1, k,m, e0,€)|gll 1 pmen (14 EX Y)Y 02 Y (14 (i) + Bx;) {1+ E¥ (a:) + EM (a5)
i#]

+[(EMLY) + he(R)(E*(2:) B(x;) + E(x:) B*(2)))(1 + B (2;) + E*(x;))

+[(EMY) + he(k) (BM () Exg) + B2 B (;))(1+ Ew:) + E(x;))}-

Dividing this sum into two parts, where E(z;) > E(z;) and respectively vice versa, and noting

that by the symmetry it is enough to estimate only the first part, allows to estimate the
contribution to the last term of (3.5) of the first term from (6.2) by

K(C,t, k,m, eq, e1)|gllqeryem (1 + E* y)ym=1p3 Z
i#]
{1+ B (@) + (1 + B @) (B, Y) + he(k) E* (2,) E(x;)]
+ (L4 B () [(BM2,Y) + he(k) B2 (2:) E(25)]}-

The main term in this expression (obtained by ignoring the terms with hc(k)) is estimated by
Kllgllaymmem (1 + EXY)"IR[(1+ BS2Y) + (1+ BLY ) (BSLY) + (1+ B, Y) (B2, V)],
where the first two terms in the square bracket can be estimated by the last one, because
(BYY)(EMY) < 2(E% Y)(EM3)Y).

It remains to observe that the terms with he(k) are actually subject to the same bound, as for
instance

Wy EF () 1+ E*z;)) < hWA(E* + E*™Y)(E,Y) < c(k)h(E*3)Y)(E,Y)>
i#£]
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Consequently, the contribution to the last term of (3.5) of the first term in (6.2) does not exceed
he(Cot, k,m,eq, e1)||gllapmmyen (1 + EX V)" 11+ EFS Y) (14 EY). (6.3)

Turning to the contribution of the second term from (6.2) observe that again by Proposition
5.2

”’St(Y + 3h<5y - 5&% - 5331)3 x; ')H1+Ek < R(Ca k: t,ep, 61)

{1+ E2) + (L+ B@)[(E"Y) + he(k)(E"(2:) E()) + E(w:) E*(2;))]},

so that the contribution of the second term from (6.2) does not exceed
K(C ke m, eo, e)|lgllappryen (1 + B Y)Y 207 (1 + E(a;) + E(z)){1 + E*(x;) + E*(x;)

i#j
+ (14 E(z) + E(z;)) (B, Y) + he(k) (E* (2;) E(x5) + E(z) E*(x;))]}?,

which again by dividing this sum into two parts, where E(x;) > E(x;) and respectively vice
versa, reduces to

K(C,t, k,m, eq, 1) ||gll g pmpen (L + EX Y )20 (1 + E(2:)){1 + E*(x;)
i#]
+ (1 + E(z;) + E(2;)) (B, Y) + he(k) E* () E ()] }.

This is again estimated by (6.3). It follows now from (6.1) and Proposition 3.1 that

1Tk = TthFHC(1+E’€+3«)(1+E3,-)(1+Ek,4)m—1(MZ%EI(X)) < hi(Cit, k,m, e, e1) Hg”(lJrEk)®m’

which is the same as (2.5). The proof of (2.6) is quite the same. It only uses Proposition 5.4
instead of Proposition 5.2.

7 Auxiliary Estimates

The main technical ingredient in the proof of a weak form of CLT (convergence for fixed times,
stated in Theorems 2.2- 2.4) is given by the following corollary to Theorem 2.1.

Proposition 7.1 Under the assumptions of Theorem 2.1 let go be a symmetric continuous
function on X2. Then for any k > 1

sup
s<t

h hy ®2
B <gz, (ZHAL ) ) ‘ = s B, (P12 o)) )| = sup (U} (02, ) (L)
(7.1)

2
1+Ek

does not exceed the expression

Zy — o

Vh

RO, b, e e) g5 e meroncee (1 (B2, 204 o)) (1 + (B, ZE+ o)) (1 . H
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for any k > 1 under the condition (C1) or (C2) and the expression

h 2

Zy — o
k+4 h 3 0
K(C,t, k, e, el)HgQHC(?lviy};f;)@Q(XQ)(l + (EM 20+ o)) [ 1+ H—\/ﬁ

1
M1+Ek

for any k > 0 under the condition (C3) with a constant k(C,t,k,eq,e).

Proof. One has

. <92, (Zf(zg)\/_ﬁm(u@)m) —E <g2, (Zf(zél)\/—ﬁm(z(’)l))m) . <92, (ut(ZS)\/—EMt(uo))@)

Zth(Zg) - ut(Z(’)L) ® Mt(ZSL) - Mt(#O))
Vh Vh

+2F (gg, (7.2)

The first term can be rewritten as

1
LB (00 (212 — ()
+ 1 Zy) @ (e(Z) = Z)(Z5) + (me(Z5) — Z¢'(Z5)) @ me(Zp)).-
Under the condition (C1) or (C2) this term can be estimated by
K(C,re0, ex)llgallaameyse (14 (B2, Z5)) (1 + (B, Z3),

due to Theorem 2.1 and (5.2). The second term is estimated by
Zy — 1o ’

Vh

by (2.3), and the third term by the obvious combination of these two estimates completing the
proof for cases (C1) and (C2). The case (C3) is considered analogously. Namely, the first term
in the representation (7.2) is again estimated by Theorem 2.1, and to estimate the second term
one uses (5.15) instead of (2.3) and the observation that

lgall s eren(1+ (B o + Z1)) H

1+EF

_ 0
(g2, v%%)] < sup |(1+ E*@) " | 22 (a1, @0)v(das)| V] an
1 61’1 1+Ek
< sup (14 E*(z1)) 7 (1 + E(22)) ™ Ty (@) vl <llgallgzom VlGe -
T 21,20 011024 Mipk C(1+Ek)®2 M gk

Though the estimates of Proposition 7.1 are sufficient to prove Theorem 2.2, in order to
prove the semigroup convergence from Theorem 2.4 one needs a slightly more general estimate,
which in turn requires a more general form of LLN, than presented in Theorem 2.1. We shall
give now these two extensions.

Remark. Let us stress for clarity that U ;f;o’s((gg, .)G) means the result of the evolution U;fjo’s
applied to the function of Y given by (g, Y®?)G(Y).
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Proposition 7.2 The estimates on the r.h.s. of (2.5) and (2.6) remain valid, if on the Lh.s.
on takes a more general expression, namely

sup |, (GFH)(Y) = G(Yo) F(YO)TS H(Y)],

s<t

where F(Y) is as in Theorem 2.1 and both G and H are cylindrical functionals of the form (2.13)
with f € C*(RY) and all ¢;, j = 1,...,n, belonging to Cy,pv(X) and CffEk( ) respectively in
cases (C1)-(C2) and (C3) (with a constant C' depending on the corresponding norms of ¢;).

Proof. As
TNGFH)(Y) ~ G F(Y)T H(Y)
=T} (GFH)(Y) — (GFH)(Y) + (GF)(Y})(H(Y,) — T/ H(Y)),
it is enough to consider the case without a function H involved. And in this case looking

through the proof of Theorem 2.1 above one sees that it generalizes straightforwardly to give
the result required.

Proposition 7.3 The estimates of Proposition 7.1 remain valid if instead of (7.1) one takes
a more general expression

sgr;\E 92, B (Zg, 10)) G (F(Zg s o) :Sgg\[U?i%((gz,-)G)](Foh)L (7.3)
where G is as in the previous Proposition (with a constant C' again depending on the norms of
¢, in the representation of G as a cylindrical function of the form (2.13)).

Proof. Tt is again obtained by a straightforward generalization of the proof of Proposition
7.1 given above using Proposition 7.2 instead of Theorem 2.1.

The main technical ingredient in the proof of the functional CLT (stated as Theorems 2.5-
2.6) is given by the following

Proposition 7.4 Under condition (C3) for any k > 1/2

sup B[| ' (Zg, o) 17

s<t

(129 ) , < K(C,t Ky eg,e) (14 (B3 Z0 + 1))2(1 + HFhH2L20 ). (7.4)

Proof. The idea is to represent the Lh.s. of (7.4) in the form of the Lh.s. of (7.1) with an

appropriate function g,. Using the notation v(z) = fxoo v(dy) from the introduction for a finite
(signed) measure v on Ry (and setting 7(z) = 0 for z < 0) one has

F(o) = = / e / v(da))dy — \/LQ_W /0 " () /0 " i gy,

so that for fi(z) =1+ 2*

Fh) = (4 i 170 == [ vt [y may
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Applying (A.3) yields
2

W13 ey = Wi = 52 [ | [ vtdo) [y may 2
o | [ tatdomian) (75)

with . ) ]
—pz z w 14
gk@ay):/m(/o (1+2")e ”dZ/O(1+w) v dw)1+p2. (7.6)
Clearly
ek('I’ y)|x=0 = ek(xa?/”y:o = 0.
Moreover 96 . , ]
k _ k\ —ipx k\ ipw p
T = [ aeaner [t L
so that ”
S y)| < (k)1 + )1+ ),
and 20 . ]
—ipx 7 p
a0l = ||y ) < i ),
Since 2 N , ]
k k—1 _—ipx k\ _ipw 1Y%
W(Ly) = /_oo[kx e /0 (1 4+ w")e” dw]l—i—pg
o0 v 0 A A

and using integration by parts in the second term yields also
020y,
|ﬁ(xa
Consequently ), + 0, € 02111’;“)@2. Therefore, using (7.5) for v = F"(Z!', 19) implies that in
order to estimate the Lh.s. of (7.4) one needs to estimate the Lh.s. of (7.1) with g, = 6 given
by (7.6).
Though a direct application of Proposition 7.1 does not give the result we need, only a

slight modification is required. Namely, representing (7.1) in form (7.2) we estimate the first
term precisely like in the proof of Proposition 7.1 and the second term that now equals

‘ pe(Z) = (o) ||

vh
can be estimated using Proposition 5.8 by

| < e(k)[(1+2") (1 + %) + @+ 2"+ ).

2,0
(Lylg )

Z Ho
ket kyeo,en)(1+ BN o + ZS)\ITH 120y

Estimating the third term in (7.2) again by the combination of the estimates of the first two
terms yields (7.4).
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8 CLT: Proof of Theorems 2.2 - 2.6

Proof of Theorem 2.2. Recall that we denoted by U;fl't " the backward propagator corresponding
to the process F}* = (Z' — j1;)/vh. By (3.9), the Lh.s. of (2.11) can be written as

sup |(U3** (g, ) (Fy) — (U*g, )| = sup

s<t s<t

/0 TR (AR — AU (g, )] dr (FD).

As by (3.10)
h T, \/_ TS T, .
(AT — A )(U™%g /// (um —U"%g(z1) — U™%g(29)) K (21, 22; dy)Y (dz1)Y (dz2)
o / (U™g(y) — 2079 (=) K (=, dy) (u + VAY ) ()

(note that the terms with the second and third variational derivatives in (3.10) vanish here, as
we apply it to a linear function) the required estimate follows from Proposition 7.1.

the equation Ft = —A\,F; yields

@ft 9ft
3t

Ofi
((;51, ) +. Tt 87(925117 Y)

_ ! / / / Zaft 8y = 8., K (21, 20 dy) (Y (d2)e(dzs) + pu(d=)Y (d22)

__///Zax]axl (65 © ¢, (8, — 62 = 0:,) %) K (21, 203 dy) pu(dz1) a(d22)

with fy(21, ..., ,) and all its derivatives evaluated at the points z; = (¢%,Y") (here and in what
follows we denote by dot the derivative d/dt with respect to time). This equation is clearly
satisfied whenever

. n O%f,
s ceen) = = 3 T8 6) 5 (o, ) (s.1)
k=1

and
- [ [ — 01 ()) K (2, wi dy) () = — A (2)
with II given by (2.19). Consequently
OU ®,(Y) = B,(Y) = U L) (U, V), (U6, V), (8.2)

where U f, = Z/{fI’T fr is defined as the resolving operator to the (inverse time) Cauchy problem
of equation (8.1) (it is well defined as (8.1) is just a spatially invariant second order evolution),
the resolving operator U%" is constructed in Sections 4,5, and

(¢, 5. 0)) = 11(t, U"" ¢, U™ ¢}).
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All statements of Theorem 2.3 follows from the explicit formula (8.2), the semigroup property
of the solution to finite-dimensional equation (8.1) and Propositions 5.4, 5.7.

Proof of Theorem 2.J. The first statement is obtained by a straightforward modification of
our proof of Theorem 2.2 above, where one has to use Proposition 7.3 instead of its particular
case Proposition 7.1 and to note that all terms in formula (3.10) (that unlike the linear case
now become relevant) depend at most quadratically on Y, because for a function ¢ of form

(2.13)
Z 83:]

2

7,7=1

where the derivatives of f are evaluated at the points 2; = (¢%,Y).

The second statement follows by the usual approximation of a general ® by those given by
(2.13) with smooth f.
Proof of Theorem 2.5. The characteristic function of ® is

(1, Pn) = Bexp{ (65, F/(Z), 10))} = U™ @y U= 0, U By (),

j=1

7777777

where ®;(Y") = exp{ip;(¢;,Y)}. Let us show that it converges to the characteristic function
Gt (D1, s Pp) = QU D QU 21D, QU112 D, (F) (8.4)

of a Gaussian random variable. For n = 1 it follows from Theorem 2.4. For n > 1 one can
write

gthl tn(pla"'apn) _gt1 ..... tn(p17'-'7pn)

-----

Z hOth)1 ht] 2,5t 1@ (Uh;t] 1,t5 OUt] 1,t5 )(b OUt tj+1 OUtn_ltn(I)n. (85)

By Theorem 2.4 we know that for any j =1,...,n

WP (y) = (U QU R 0,00 QU1 D, (V)

J Il
converge to zero as vVh as h — 0 uniformly on Y from bounded domains of Ml k- We have
to show that N
ti—asti—1
Uy O; 1 U;(Y) = Ep(D; 10,(Y,_,)) (8.6)

tends to zero, where E{ is of course the expectation with respect to the fluctuation process
started in Y at time t;_,. The last expression can be written as

B (v, yze <oy @i W)Y 0) + By (Lo 20

2, fk+2 2, fk+2

>y @) (Y )). (8.7)

For Y from a bounded subset of (L2 f ,) the second term can be made arbitrary small by
choosing large enough K due to Pr0p081t10n 7.4. Due to the natural continuous inclusion
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C}Z’O C L?}ZM, m = 1,2 , a > 1/2 one gets by duality a continuous projection (Lgﬁk)/ —

MG CcM;j_ fork>1/2,ac (1/2k). Hence a bounded set in (L§:§k+2)’ is also bounded in
M, ., so that there ®; ;W;(Y;; ) is small of order V'h, implying that the first term in (8.7)
is small. Consequently expression (8.6) tends to zero uniformly for Y from bounded domain of

(L§:§k+2)’, k > 1/2. This implies that all terms in (8.5) tend to zero as h — 0.

It remains to check that (8.4) is given by (2.18), which is done by induction in n using
Theorem 2.3 and an obvious explicit formula

> vk [H(Swﬁj,cﬁi) ds}

jk=1

U f(x) = exp{i Y pja; —
j=1

for the solution of the Cauchy problem of the diffusion equation (8.1) with f(z) = exp{i >, p;z;}.
For instance,

(OU 1, ) (V) = U1 f,) (U1, Y)
tn
= exp{ip, (U™ "¢, Y) — pi/ (s, U™, U ¢,) ds}
tn—1

where f,,(z) = exp{ip,z}, and hence

OUtr =221 (B,,_,OU™1D,,)(Y)
tn
= exp{i(pn_1U">" ¢, 1 + p, U 2>"¢,, V) — pi/ (s, U, U ¢,,) ds}
tn—2

tn—1
x exp{— / [p2_ (s, U 1, U1y 1) + 2pn_1pnll(s, U2 1, U 9,,)] ds}.
tn—2

The proof is complete.

Proof of Theorem 2.6.

(i) Notice first that applying Dynkin’s formula to the Markov process Z" one finds that for
a Qe 01+Ek (X)

t
MO = (6.20) = 6.28) ~ [ (La(o. )20

is a martingale, since all three terms here are integrable, due to formula (3.7) and the assumption

Zl € My, grs. Hence (¢, F]') is a semimartingale and

(6, Fl) = % V)

with

VIO = 2=16.2) + [ (6. )(Z0ds = (6,0)

is the canonical representation of the semimartingale (¢, F}*) into the sum of a martingale and
a predictable process of bounded variation that is also continuous and integrable. (It implies,
in particular that (¢, F]*) belongs to the class of special semimartingales.)
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As we know already the convergence of finite dimensional distributions, to prove (i) one has
to show that the distribution on the Skorohod space of cadlag functions of the semimartingale
(¢, F]*) is tight, which according to Aldous-Rebolledo Criterion (see e.g. [9], [36], we cite the
formulation from [9]) amounts to showing that given a sequence of h,, — 0 as n — oo and a
sequence of stopping times 7, bounded by a constant T" and an arbitrary € > 0 there exist § > 0
and ng > 0 such that

sup sup P [|V(”)(Tn +0) — 174 (Tn)| > e] <,

n>ng 6€[0,6]

and

sup sup P [|Q(”)(Tn +60) — QM(r,)| > e} <,
n>ng 0€[0,4]

where V"™(t) is a shorter notation for Vd)h" and Q"(t) is the quadratic variation of the martingale

M g (t). Notice that it is enough to show the tightness of (¢, F/*) for a dense subspace of the
test functions ¢. Thus we can and will consider now only the bounded ¢.
To get a required estimate for V" (¢) observe that by (3.7)

Sy = \}[(Lhw (Y = (6 i) = / 160 ~ 260K ez 202

\/—/// — ¢(22) K (21, 225 dy) [ 2} (d21) Z](dz2) — pra(dzy) e (dz)]-

The first term here is clearly uniformly bounded for h — 0, and the second term can be written

% / / / [6(y) — 6(21) — S(22)] K (21, 201 dy) [F (d21) 2} (d2) + po(dz) FP(dzo)]. - (8:8)

Applying Doob’s maximal inequality to the martingale

t
(0 F!) = (0. 7)) = [ (o) (Zs

in combination with Proposition 7.4 shows that (8.8) can be made bounded with an arbitrary

small probability, implying the required estimate for V"(t).

Let us estimate the quadratic variation by the same arguments as in [18]. Namely, as the
process (¢, F*) for each h is the sum of a differentiable process and a pure jump process, both
having locally finite variation, its quadratic variation coincides with that of M g" (t) and is
known to equal the sum of the squares of the sizes of all its jumps (see e.g. Theorem 26.6 in
[14]), so that

1
QW) = QM(r) = D (¢ Fin —Fl»)' =3 3 (6, 20" = Z{)*
se[rt] s€[n,t]

As each jump of Z" is the change of hd, + hd, to hd,, one concludes that

QU () — Q™(7)| < hsup [¢]| N, — N7|
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with N; denoting the number of jumps on the interval [0,¢]. By the Lévy formula for Markov
chains (see e.g. [4]) the process N; — fg a(Z")ds is a martingale, where a(Y) denotes the
intensity of jumps at Y, given by (2.4). Hence, using the optional sampling theorem and (2.4)
implies that

t
E(N, — N,) = E/ a(Z") ds < 3Ch™teg(er + eo)E(t — 7),

and consequently

E[Q"(t) — Q"(1)] < 3C||¢leo(e1 + €0)0
uniformly for all < ¢t —60 < 7 < t. Hence by Chebyshev inequality the required estimate for ()"
follows.

(ii) By Theorem 2.5 the limiting process is uniquely defined whenever it exists. Hence one
only needs to prove the tightness of the family of normalized fluctuations F}*. Again due to
the existence of finite dimensional limits and general convergence theorems, to prove tightness
it is enough to establish the following compact containment condition (see either a result of
[31] specially designed to show convergence in Hilbert spaces, or a more general result on
convergence of complete separable metric space valued processes in [11] or [9], see also [10]):
for every € > 0 and T" > 0 there exists K > 0 such that for any h

P( sup |]Fth||(Lz,o. y > K) <e
te[0,T) 2Tk
To this end, let us introduce a regularized square root function R, i.e. R(z) is an infinitely
smooth increasing function R, — R, such that R(z) = \/x for x > 1, and the corresponding
"regularized norm” functional on (ng?ck)’ ;

GY) = R(Y.Y )29 ) = B0, Y 9 1),

where 6 is given by (7.5) (see Proposition 7.4). By Dynkin’s formula one can conclude that
the process .
M= G(F) - G(F)) - | AG(E! ds

0
is a martingale whenever all terms in this expression have finite expectations. (Note that we use
here a more general than usual version of Dynkin’s formula with a time dependent generator;
the reduction of time nonhomogeneous case to the standard situation by including time as
an additional coordinate of a Markov process under consideration is explained e.g. in [12].)
Expectation of G(F/*) is bounded by Proposition 7.4. Moreover, taking into account (8.3)
and the fact that R*)(s) = O(s"/27%) for s > 1, one sees from formulas (3.10) and (2.9) that
AMG(F!) grows at most quadratically in ", which again by Proposition 7.4 implies the uniform
boundedness of the expectation of this term. Applying to M; Doob’s maximal inequality yields
the required compact containment completing the proof of the theorem.

A Notations for weighted spaces of functions and distri-
butions

For a positive measurable function f on a topological space 7" we denote by C; = C¢(T") and
By = B¢(T) (omitting T" when no ambiguity may arise) the Banach spaces of continuous and
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measurable functions on 7" respectively having finite norm
161l = lI0lle; ) = sup(lo(2)/f(x)).

By Cto = Coo(T) and By = Bjoo(T) we denote the subspaces of C; and By respectively
consisting of functions ¢ such that (¢/f)(z) — 0 as f(z) — oco. If f is a continuous function
on a locally compact space X such that f(z) — oo, as © — oo, then the dual space to C o (X)
is given by the space M(X) of Radon measures on X with the norm ||Y||; = sup{(¢,Y) :

I6ll; < 1}
We shall need also the weighted L, spaces. Namely, define L, ; = L, ;(T') as the space of
measurable functions g on a measurable space T' having finite norm ||g||z, , = [l9/f||z,-

For X = R, = {x > 0} we shall use also smooth functions. For a positive f we denote by
C’}’O = C’}’O(X ) the Banach space of continuously differentiable functions ¢ on X = R, such
that lim,_ ¢(z) = 0 and the norm

H¢Hc}’°(x) - H¢/|’Cf(X)

is finite. By C]%’U = C’JQJO(X ) we denote the space of two-times continuously differentiable
functions such that lim, o ¢(x) = 0 and the norm

19llc2ox) = 19115 + 11”4

is finite. By M}(X) and M3(X) we shall denote the Banach dual spaces to C’}’O and CJ%’O
respectively. Actually we need only the topology they induce on (signed) measures so that for

veM(X)NMYX),i=1,2,
HV”M;(X) =sup{(o,v) : ||¢]

C},O(X) < 1}.

Similarly one defines the spaces LY oy and L* (}, p > 1, as the spaces of absolutely continuous
functions ¢ on X = R such that hmxﬂg o(z ) = (0 with the norms respectively

191l 20y = 119'l]2,. ;00 = 19/ Fllpixys 0l 20 ) = 16/ Fllzpc) + (/1) Ny,
as well as their dual (L;):?c)’ and (szc)’ .

As an important example let us estimate two of these norms for the Dirac measure §, on
R, z > 0 and the function f(y) = fi(y) = 1 +¢*:

192l 13, R —Sup{/ y)dy : lglle,, <1} =+ /(k+1);

1230 yemy = sup{/ W)y g/ fill, < 13 < /Ogﬁf,z(y)dysdkwn(x). (A1)

Not every v € M(X) belongs to M}(X) or M3(X). Suppose that f is non-decreasing and
v € M(X) is such that

oa) = [ " Udy) = o) (@f (@), @ — . (A2)
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Then by integration by parts for g € C}’O(RJF)

o)== [ gadrta) = [ g @it
0 0
(the boundary term vanish by (A.2)), so that

I llae ooy = 170y

and
Vllmex) = sup{(6,9) : 18llc, + [16llc, < 1}

/cb ds<||¢||L,,f(/ iy dy) , %+$=1,

it follows that if v € M(X) is such that

1) (/Ox fq(y)dy) 71/q, T — 00,

Similarly, as

U=
then 1 1
layey = 17legy,n S+ =1
Wil 20y = supd (0, 2) < 10/ flle, + 10/ ) I, <130 p> 1.

In particular, recalling that the usual Sobolev Hilbert spaces H*(R) are defined as the comple-
tion of the Schwarz space S(R) with respect to the scalar product

(f: g)Hk - (fv (1 - A)kg)L2 = (fﬁ (1 +p2)k]:g)L27

where

FD) = 20 [ e p(a) da
R
denotes the usual Fourier transform, and that by duality (H*) = H~* it follows that

Wl 2oy = sup{ (¥, 2) < [/ fllm < 1} = sup{(9, /7) « (|6l <1}

= il = \/ | 1Fewe. (A3

This formula is used in Section 7.
It is useful to observe that by the Sobolev embedding lemma one has the inclusion Lg’o c o0
and hence also ng%ﬂ C C};O for arbitrary £ > 0 implying by duality the inclusion M}k C (Lg:?ck)’ :
By C*™(X*) we denote the Banach space of symmetric (with respect to all permutations
of its arguments) continuous bounded functions on X*, and by C*¥™(X)- the Banach space of
continuous bounded functions on X whose restrictions on each X* belong to C*¥™(X*). For a

function f on X we denote by f® its natural lifting on X, i.e. f®(xy,...,2,) = f(z1) - f(zn).
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If fis a positive function on X = R}, we denote by C’}’Sym (X™) (respectively C;’Sym(X ™))
the space of symmetric continuous differentiable functions g on X™ (respectively two-times
continuously differentiable) vanishing whenever at least one argument vanishes, with the norm

dg dg -1
e o R (- (R
and respectively
dg 9%g 0%g
L e I = T .
7 0ele om0t lle oemy 110102l o0

B Three lemmas

We present here three general (not connected to each other) analytic facts used in the main
body of the paper. Recall that classes C'(M (X)) were defined in the introduction.

Lemma B.1 (i) If F € CY(M(X)) and Y, € M(X), then

F(Y+§)—F(Y):/O (GF(Y + s&:-),€) ds. (B.1)

(ii) If F € C*(My(X),p) or F € C}(M;(X), ), the following Taylor expansion holds
respectively:

1

(a) F(Y+&) = FY)=(0F(Y;).6)+ | (1=8)0*F(Y +s&-,7),£ ®€)ds,

>~

B)  F 46~ F(Y) = GF(V; 0,6 + S (°F(Y;-),£06)

v /0 (1= $P(EF(Y + 56+, -, ), £%) ds. (B.2)

(i11) Let ¢ < f. If t — py € My(X) is continuous in the x-weak topology of M¢(X) and is
continuously differentiable in the x-weak topology of My(X), then for any F € C*(M(X), ®)

d

T F () = (SF (s ). ). (B.3)

Proof. (i) Using the representation

F(Y 4 5(0, +0,)) — F(Y) :F(Y—I—séx)—F(Y)+/S5F(Y+s5m—l—p5y;y)dp

for arbitrary points x,y and the uniform continuity of §F(Y + sd, + pd,;y) in s, p allows to
deduce from (1.9) the existence of the limit

lim S(F(Y + 5(5, +0,)) — F(Y)) = 6F(Y: 2) + 6F (Y3 ).

s—04+ S
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Extending similarly to the arbitrary number of points one obtains (B.1) for £ being an arbitrary
finite sum of the Dirac measures d,, + ... + 0, .

Assume now that £ € M;(X) and &, — £ as k — oo x-weakly in M (X)), where all §, are
finite sums of Dirac measures. We are going to pass to the limit & — oo in the equation (B.1)
written for ;. As F' € C(My) one has

F(Y +&)—F(Y) = FY +&) - F(Y), k— oc.

Next, the difference

/O((SF(Y+s§k;~),§k)ds—/0 (0F(Y + s&;+),€) ds

can be written as

1 1
/(6F(Y+5£k§'>7§k_§>d5+/ OF(Y +8&;-) = 0F(Y + 8¢5 -),€) ds.
0 0

The second term tends to zero, because by our assumption the variational derivation 0 F' maps
M (X) continuously to Cfo(X). The first term tends to zero, because &, — & weakly and the
family of functions 6F (Y + s;.) is compact in Cfoo(X) (which is again due to the assumed
continuity of the derivation §F).

Statement (ii) is straightforward from the usual Taylor expansion. Turning to (iii) observe
that J

- F () = lim %(F(Mt—f—h) — F(p)),

which by (i) and the assumed continuous differentiability can be written as

1

. I
lim (5F(Mt+5(ﬂt+h —Mt);-)%/ Mt+7d7> ds.
0

h—0 0

We want to show that it equals the r.h.s. of (B.3). We have

1 1 h ' '
/ <5F(ut + 8(fern — )3 ), E/ ude) ds — (6F (pe; -), fur)
0 0

1 h ' ' 1 1 h '
= <5F(,ut, .), E / Mt+7—d7' - ,Mt) +/ (5F([I,t + S(Mt—i—h - [I,t), ) — 5F(Mta -)’ E / /,Lt+7_dT> ds.
0 0 0

The first term here tends to zero as h — 0 by the weak continuity of fi;. The second term
tends to zero, because the family of measures h~* foh fti+-d7 is bounded and hence compact in
the x-weak topology of M, (X).

Lemma B.2 Suppose S is a compact subset of a linear topological space Y (we are interested
in the case when Y is a topological dual to a Banach space equipped with its x-weak topology)
and Zy is a Markov process on S specified by its Feller semigroup W, on C(S) with a bounded
generator A. Let Q(2) = (z — &) /a be a family of linear transformation on Y, where a is a
positive constant and &, t > 0, is a differentiable curve in'Y . Let

Qio.11(S) = Usejo,n % (5)
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for T > 0. ThenY, = Q(Z;), t € [0,T], is a Markov process in Qo 11(S) for any T > 0 with
the dynamics of averages (propagator)

US?tf(y) = E;,f(V1)

given by the formula

U™ fly) = Q. W s f (y) (B4)
for any [ € C(Qom(S)), t < T, where Quf(y) = f(%(y)). Moreover, if such a function f is
uniformly continuously differentiable in the direction &, i.e. if the limit

i (F(0- () — () =~ (Ve ) OU) = Ve f ()

T—0 T

exists and is uniform in Qo 1)(S), then for all s <t

d
U] = UM, (B.5)

where the operator Ay is given by the formula
1

Proof. Formula (B.4) follows from the definitions of ¥, and €2;. Formulas (B.5), (B.7) follow
by differentiating (B.4) using the product rule and taking into account that the derivative V f
is supposed to be uniform.

Remark. Similarly, using the identity

0V =a"'V,,

one shows that
—l/s’t = —Asi/s’tf B.7

holds for s = t. However, to extend this to s < t one needs some additional assumptions on
the smoothness of the semigroup W,.

Lemma B.3 [18] Let Y be a measurable space and the mapping t — u; from [0,T] to M(Y)
is continuously differentiable in the sense of the norm in M(Y') with a (continuous) derivative
[y = vy Let o, denote a density of py with respect to its total variation |ul, i.e. the class
of measurable functions (equivalence is defined as the a.s. equality with respect to the measure
\pe|) taking three values —1,0,1 and such that p, = o¢lpe| and |p] = oy almost surely with
respect to |p]. Then there exists a measurable function fy(x) on [0,T] X Y such that f, is a
representative of class oy for any t € [0,T] and

HM#WM+A%Lﬂ®M@)

We refer for a proof to the Appendix of [18] noting only that f; could be chosen as such a
representative of oy, which is at the same time a representative of the class of the densities of v}
with respect to its total variation measure |v/|, where v} is a singular part of v, in its Lebesgue
decomposition with respect to |pu.
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C On the evolutions with integral generators

Here we present an analytic study of evolutions with integral generators that are obtained as
certain perturbations of positivity preserving evolutions. As always, it is assumed that X is a
locally compact space (though this assumption is used only in Theorem C.2, other statement
being valid for arbitrary topological spaces).

We shall start with the problem

u(r) = Ayuy(x) = /ut(z)ut(x; dz) — ar(x)ue(z), wu.(z) =o(x), t>r>0, (C.1)

where ¢ and a; are given measurable functions on X such that a; is non-negative and locally
bounded in ¢ for each z, 1 (z,-) is a given family of finite (non-negative) measures on X
depending measurably on ¢t > 0, z € X, and such that sup,cjo 1y [|v¢(z, )| is bounded for
arbitrary T" and x.

Clearly equation (C.1) is formally equivalent to the integral equation

t
() = I(), = e~ E@-6 (1) 4 / G @@y (1)ds, (C.2)

where & () = fot as(z)ds and Lyv(z) = [v(2)v(z, dz).
We shall look for the solutions of (C.2) in the class of functions u.(z), ¢ > r, that are
continuous in ¢ (for each x), measurable in z and such that the integral in the expression

for Lgus is well defined in the Lebesgue sense. Basic obvious observation about (C.2) is the
following: the iterations of the mapping I form (C.2) are connected with the partial sums

Szf¢ — [6—(Et—€r) + Z

/ e—(ét—ﬁsl)LSI L. le,le_(ésl_l_ssl)lee_(gsl_ér)dsl o-ds; ¢
(=1 Jrssi<-<s1<t

(where e~% designates the operator of multiplication by e~%)) of the perturbation series
solution S*" = lim,, .., SL" to (C.2) by

(I;)m((b)t — 5;;7"_@ +/ ef(étfésl)LSI . Lsm_lef(&m_lfESm)LsmWSl coodsy,. (C.3)

r<sm<-<s1<t

Lemma C.1 Suppose
At¢($) < C¢(x)> te [OaTL (04)

for a strictly positive measurable function 1p on X and a constant ¢ = ¢(T'). Then

(L))" () < (1 +e(t—r)+---+ %cm(t - r)m) (0 (C.5)

for all0 < r <t < T, and consequently S*"1) is well defined as a convergent series for each
t,x and

SUp(a) < e (a). (C.6)
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Proof. This is given by induction in m. Suppose (C.5) holds for m. Since (C.4) implies

Lip(z) < (c+ a(2))b(z) = (¢ + &(2))v (@),

it follows that
(IZ;)erl(w)t < e*(ft(x)*ﬁr(ﬂﬁ))w<x)
t .
+ / e~ @@~EE) (0 4 € (1)) (1 +els—1)+ -+ —c"(s— r)m> () ds.

Consequently, as

/t e~ EE)E ! ~(s—r)ds= l(t —r)t— ! /t e~ &8 (5 — )=l s
: I I A

for [ > 0, it remains to show that

— 1 1 _ | B
ch {ﬁ(t—r)l— (l—l)!/r (&=8) (5 — )= lds} —I—chﬂﬁ/ ~&=8) (5 — r)lds

=1 =0
1

_ = omAly o ymtl
ct—r)+---+ (m+1)!c (t—r)mr.

~

But this holds, because the 1.h.s. of this inequality equals

m cl l Cm+1 t (6r—tr)
J— — - —\StTSs _ m
Z 1 (t—r)+ - / e (s —r)™ds.
=1 T
The following corollary plays an important role in the analysis of Section 5.

Lemma C.2 Suppose Ayp < cip + ¢ for positive functions ¢ and ¢ and all t € [0,T]. Then
Strah < et [o) 4 / t ST dr).
Proof. Using (C.5) yields
L) < (U tet—r)p+ [ @ ods,

(L0 < (14 ele =) %(t—r))w+ [ el = ryods

+
+/ —(&— SS)L / —(&s— ETgdeds

t t s
(Ij;)m(w)tgec(t”") {w—i-/ e(&és)(ﬁds—i—/ e(&és)Ls/ e &g drds + - - -

etc, and hence
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t t
— ec(tfr) {w +/ dr (e(ftfr) +/ e*(ftfgs)Lse*(fsff‘r) ds + .- ) (ﬁ}

and the proof is completed by noting that
SYp = lim Sy < lim (1) (¥):.
The existence of the solutions to (C.1) and (C.2) can be easily established now.

Proposition C.1 Under the assumptions of Lemma C.1 the following holds.

(i) For an arbitrary ¢ € By the perturbation series S™"¢ = limy, oo SL'¢ is absolutely
convergent for all t,xz, the function S™"¢ solves (C.2) and represents its minimal solution (i.e.
St¢ < u point-wise for any other solution u to (C.2)), and S*"¢(x) tends to ST ¢(x) ast — T
uniformly on any set where both a; and v are bounded.

(ii) The family S*" form a propagator in By(X) with the norm

1S5 ]l < e, (C.7)

Proof. Applying Lemma C.1 separately to the positive and negative part of ¢ one obtains
the convergence of series S*"¢ and the estimate (C.7). Clearly S*"¢ satisfies (C.2) and it is
minimal, as any solution u of this equation satisfies the equation u; = (I})™ (u); and hence (due
to (C.3)) also the inequality u, > S./ ¢

The continuity of S*" in ¢ follows from the formula

St»r¢ _ ST’T(ZS — (6*(&*&') _ 1)67(677&)(]5

T t
+ / (e &=8) _ 1)=& =8I L S5 ds + / e &8I L S5 h s (C.8)

forr <7<t

At last, once the convergence of the series S™" is proved, the propagator (or Chapman-
Kolmogorov) equation (1.10) follows from simple standard manipulations with integrals that
we omit.

For the application to time non-homogeneous stochastic processes one needs actually equa-
tion (C.1) in inverse time, i.e. the problem

U (x) = = Ay (z) = —/ut(z)ut(x; dz) + a(z)ug(x), u.(z)=0¢(z), 0<t<r,  (C.9)
with the corresponding integral equation taking the form

wy(w) = Ij(u) = 5@ =6 @) () +/ e @=8@ [y (x)ds. (C.10)
t
All the statements of Proposition C.1 (and their proofs) obviously hold for the perturbation
series S constructed from (C.10), with the same estimate (C.7), but with the backward
propagator equation (1.10) holding for ¢ < s < r with S instead of U.
To get a strong continuity of S*" one usually needs a second bound for A;. In particular,
the following holds.
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Proposition C.2 Suppose now that two measurable functions 11,1, on X are given both sat-
isfying (C.4) and such that (i) 0 < ¢y < 1o, (ii) a; is bounded on any set where 1 is bounded,
(iii) Y1 € By, oo(X). Then S*", t < r (constructed above for (C.9), (C.10)) is a strongly
continuous family of operators in By, «(X).

Proof. By Proposition C.1 S*" are bounded in By,(X). Moreover, as S""¢ tends to ¢
uniformly on the sets where 15 is bounded, it follows that

15" — ¢l — O
for any ¢ € By, (X), and hence also for any ¢ € By, «(X), since By, (X) is dense in By, «(X).

Theorem C.1 Under the assumptions of Proposition C.2 assume additionally that 11,109 are
continuous, a; is a continuous mapping t +— Cy, /o and L is a continuous mapping from t
to bounded operators Cy, — Cy, . Then By, is an invariant core for the propagator S*" in
the sense that

t7T —_— T7S —
Ap= lim 2 0=0_ yy 00
t—rt<r r—t §—T,8>T S—7r
d t,s t,s d S,T S,T
L Gtog = St Ap,  —Sh=—A,8%h, t<s<r (C.11)
ds ds

for all ¢ € By, (X), with all these limit ezxisting in the Banach topology of By, «(X). Moreover,
Cy, and Cy, o are invariant under S*", so that Cy, is an invariant core of the strongly con-
tinuous propagator S*" in Cy, . In particular, if a;, Ly do not depend on t, then A generates
a strongly continuous semigroup on Cly, ~ with Cy, being an invariant core.

Proof. The differentiability of S*"¢(x) for each z follows from (C.8) (better to say its time
reversal version). Differentiating equation (C.10) one sees directly that S*"¢ satisfies (C.9) and
al required formulas hold point-wise. To show that they hold in the topology of By, ., one
needs to show that the operators A;(¢) are continuous as functions from t to By, o for each
¢ € By,. But this follows directly from our continuity assumptions on a; and L.

To show that the space Cy, is invariant (and this wold obviously imply all other remaining
statements), we shall approximate S™" by the evolutions with bounded intensities. Let y,
be a measurable function X +— [0,1] such that x,(z) = 1 for ¢s(z) < n and x,(z) = 0
for ¢o(z) > n+ 1. Denote v (z,dz) = xn(z)v(z,dz), af = xnai, and let SL™ (respectively
A?) denote the propagators constructed as in Proposition C.2 (respectively the operators from
(C.1)) but with ©* and a} instead of v, and a;. Then the propagators S5 converge strongly
in the Banach space By, o, to the propagator S*". One can deduce this fact from a general
statement on the convergence of propagators (see e.g. [26]), but a direct proof is even simpler.
Namely, as S*" and S%" are uniformly bounded, it is enough to show the convergence for the
elements ¢ of the invariant core By,. For such a ¢ one has

d

s =50 = [ fsvsods= [ A - anseds (1)
t t

where (C.11) was used. As by invariance S3"¢ € By, , it follows that (A, — A?)S>"¢ € By, and
tends to zero in the form of B,,, as n — oo, and hence the r.h.s. of (C.12) tends to zero in
By,, as n — o0.
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To complete the proof it remains to observe that as the generators of S are bounded, the
corresponding semigroups preserves continuity (as they can be constructed as the convergent
exponential series). Hence S™" preserves the continuity as well, as S*"¢ is a (uniform) limit of
continuous functions.

Remark. Choosing a; = ||vi(x,-)|| and 1; = 1 above yield a pure analytic construction of
a strongly continuous propagator for a non-homogeneous jump type process. A more familiar
probabilistic approach can be found e.g. in [5] (at least for the homogeneous case).

For our purposes we need a perturbed equation (C.9), namely the equation

Up = _<At - Bt)ut, u=¢, 0<t<r, (C-13)

where B, are bounded operators in (), and its dual equation on measures, whose weak form
is

d

%(9»&) = (A — B)g,&) & =¢ 0<t<m, (C.14)

i.e. has to hold for some class of test functions g. Motivated by the standard observation that
formally equation (C.13) is equivalent to the integral equation

u = S — / S Bougds, (C.15)
t
whose solution u; = U"¢ one expects to obtain through the perturbation series
U= S — / S ByS*"ds ¢ + / SY" By, S B, 8" dsidsy o+ -+, (C.16)
t t<s1<so<r

one arrives at the following result.

Theorem C.2 Under the assumptions of Theorem C.1 suppose that y(x) — 00 as x — 00
and that a strongly continuous family of bounded operators B, : Cy, — Cy, is given. Then
(i) series (C.16) is absolutely convergent in Cy,(X) for any ¢ € Cy,(X) so that

10" e, < 15y, () exp{(r = 1) sup | Bille,, o0}

<s<r

and defines a strongly continuous backward propagator U in Cy, o(X) with Cy, being its
invariant core (so that the analogues of (C.11) hold);

(ii) the operator V"* = (U®")* form a weakly continuous propagator in My, yielding a
unique (weakly continuous) solution to the Cauchy problem (C.14) in the sense that it holds for
allg S Chq()();

(#3) if f is an arbitrary continuous function tending to zero as x — oo, then the operators
Vs = (U™)* are strongly continuous in the norm of My, and solves a strong version of
(C.14) with derivative taken in the norm topology of My, ¢.

() at last, if a family AY, By of operators are given satisfying all the above conditions for
each w from an wnterval and such that AY — By depend strongly continuous on w as opera-
tors Cy, — Cy, 00, then the corresponding resolving operators U™ in Cy, o depend strongly
continuous on w and their adjoint operators V'* depend weakly continuous on w in My, .
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Proof. (i) (C.16) converges, because B; are bounded. Other statements then follow directly
from the corresponding facts about S*".

(ii) The operators V"™* are weakly continuous in M, (X) just because they are adjoint to
strongly continuous operators in Cy, . Next, the analogue of the third equation in (C.11) for
U is the equation

d
—UsSTg =US" Ar _ Br
Uy ( )9
that holds in Cy, «(X) for any g € Cy, according to (i). Passing to the adjoint operators it
implies
d r,8 T,8

£ (g.VY) = (A~ B)g,VY)
showing that V"™ yield a solution to (C.14). To show the uniqueness we shall use the method
for the reduction of the uniqueness problem to the existence of certain solutions of the adjoint
problem, see e.g. [27] in the Hilbert space setting and time independent generators. Let
0 <a<b<r, Xapy(s) be an indicator function of [a,b], and v € Cy, (X). As U"" solve (C.13),

the function .
O = / U Xa) (8)v ds
solves the problem t
%@ = —(A; — By) oy + Xpap(B)v,  ¢r =0, (C.17)

in the sense that ¢; is continuous and satisfies (C.17) everywhere with possible exception of two
points, where its derivative is not continuous. Now, to prove uniqueness for(C.14) it is enough
to show that its any solution with £ = 0 vanishes. Assume that & is a weakly continuous
function in My, (X) such that § = 0 and (C.14) holds for all g € Cy,. Integration by parts,
(C.14) and weak continuity of & imply that

0= (&) li—o= /OT[(ét,ft) + ((A¢ — By) e, &)]dt

whenever ¢, has a uniformly bounded derivatives in Cy, «(X) apart from a finite number of
points. Using (C.17) yields the equation

/ba(v,ft) dt = 0.

As it holds for arbitrary 0 < a < b < r, v € Cy, (X), it implies that & = 0.
(iii) From (C.14) it follows that

@m—@ath&—&mmw 0<s<r (C.18)

which implies that & is an absolutely continuous function of ¢ in the norm My, (X). From
boundedness of & in My, r(X) (that follows from weak continuity) and the weak continuity in
My, (X) it follows the continuity in My, ;(X). At last, again from (C.18) one concludes that
& is continuously differentiable in M, ¢(X).

(iv) This is straightforward. Namely, one compares U"™* for various w by a formula similar to
(C.12). This yields the continuous dependence of U™*¢ on w for ¢ € C¥1(X). By approximation
one extends this result to all ¢ € C¥2.
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