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1. Introduction.

1. Aims of the paper. Suppose the state of a system is characterized by a number
n ∈ Z+ = {0, 1, 2, ...} of identical indistinguishable particles. If any single particle, inde-
pendently of others, can die after a random life-time producing a random number l ∈ Z+

of offspring, the generator of such a process will clearly have the form

(G1f)(n) = n

∞∑
m=−1

g1
m(f(n + m)− f(n))

with some non-negative constants g1
m. More generally, if any group of k particles randomly

chosen (with uniform distribution, say) from a given group of n particles can be transformed
(at some random time) into a group of l ∈ Z+ particles ( due to some process of birth,
death, coagulation, etc), the generator of such a process will have the form

(Gkf)(n) = Ck
n

∞∑

m=−k

gk
m(f(n + m)− f(n)) (1.1)

with some non-negative constants gk
m, where Ck

n denote the usual binomial coefficients
and where it is understood that these coefficients vanish whenever n < k. Finally, a
spontaneous birth (or input) of a random number of particles (if allowed to occur) will
contribute a term of type

∑∞
m=0 g0

m(f(n+m)−f(n)) to the generator of our process. The
generator of the type

∑K
k=0 Gk describes all k-nary interaction with k ≤ K. The usual
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scaling of the state space n 7→ nh, h being a positive parameter, combined with the scaling
of the interaction Gk 7→ hkGk leads to the Markov chain on hZ+ with the generator

Gh =
K∑

k=0

Gh
k , (Gh

kf)(hn) = hkCk
n

∞∑

m=−k

gk
m(f(hn + hm)− f(hn)). (1.2)

We are interested in the limit n →∞, h → 0 with nh → x ∈ R+, and where gk
m = gk

m(h)
may also depend on h. To analyze this limiting procedure we shall consider operator (1.2)
as a restriction on hZ+ of the operator (which we shall again denote by Gh with some
abuse of notations) defined on functions on (0,∞) by Gh =

∑K
k=0 Gh

k , where

(Gh
kf)(x) =

x(x− h)...(x− (k − 1)h)
k!

∞∑

m=max(−k,−x/h)

gk
m(h)(f(x + hm)− f(x)) (1.3)

for x ≥ h(k − 1) and vanishes otherwise. Clearly x(x − h)...(x − (k − 1)h) tends to xk

as h → 0 and one can expect that (with an appropriate choice of gk
m(h)), the sum of the

k-nary interaction generators (1.3) will tend to the generator of a stochastic process on
R+ with generator of the form

∑K
k=0 xkNk, where each Nk is the generator of a spatially

homogeneous process with i.i.d. increments (i.e. a Lévy process) on R+, which is given
therefore by the Lévy-Khintchine formula with the Lévy measure having support in R+.
We conclude that the study of measure-valued limits of process with k-nary interaction
lead us to the study of Feller process having non-local pseudo-differential generators with
increasing (at least polynomially, if K is finite) coefficients (more precisely, with polyno-
mially increasing symbols). At the moment, it seems that there are almost no rigorous
general results on processes with generators of this kind, even in case of finite-dimensional
process in Euclidean spaces. The known results are devoted essentially to the bounded
symbols (see e.g. review [JS]).

This paper is devoted to (i) the problems of existence, uniqueness, non-explosion,
stochastic monotonicity and heat kernel estimations of one-dimensional Markov processes
having non-local generators with coefficients of polynomial growth, (ii) to the proof of
rigorous results on convergence of random evolution of systems of identical particles with
k-nary interaction (given by generators of type (1.2)) to the processes of this kind.

2. Formulation of the main result. We shall denote by C[0,∞] the Banach space of
continuous bounded functions on (0,∞) having limits as x → 0 and as x → ∞ (with the
usual sup-norm). We shall also use the closed subspaces C0[0,∞] or C∞[0,∞] of C[0,∞]
consisting of functions such that f(0) = 0 or f(∞) = 0 respectively, and a dense subspace
C̃[0,∞] that is a linear span of constant functions and the set of smooth functions on
[0,∞) with a compact support.

Consider an operator L in C[0,∞] given by the formula

(Lf)(x) =
K∑

k=1

xk

(
akf ′′(x)− bkf ′(x) +

∫ ∞

0

(f(x + y)− f(x)− f ′(x)y)νk(dy)
)

, (1.4)
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where K is a natural number, ak and bk are real constants, k = 1, ..., K, all ak are non-
negative, and all νk are Borel measures on (0,∞) satisfying

∫
min(ξ, ξ2)νk(dξ) < ∞. (1.5)

As a natural domain D(L) of L we take the space of twice continuously differentiable
functions f ∈ C[0,∞] such that Lf ∈ C[0,∞].

To formulate our main result, let us introduce the following notations. Let k1 ≤ k2

(respectively, l1 ≤ l2) denote the bounds of those indexes k where ak (respectively, bk) do
not vanish, i.e. ak1 > 0, ak2 > 0 and ak = 0 for k > k2 and k < k1 (respectively, bl1 6= 0,
bl2 6= 0 and bk = 0 for k > l2 and k < l1).

Theorem 1.1. Suppose that
(i) νk vanish for k < k1 and k > k2,
(ii) if l2 < k2, then νk2 = 0,
(iii) if l1 = k1 − 1 and bl1 = −l1al1 , then νk1 = 0,
(iv) bl2 > 0 whenever l2 ≥ k2 − 1,
(v) if l2 = k2, then there exists δ > 0 such that

1
al2

∫ δ

0

ξ2νl2 (dξ) +
1
|bl2 |

∫ ∞

δ

ξνl2 (dξ) <
1
4
.

Then
(i) if k1 > 1 (respectively k1 = 1), L generates a strongly continuous conservative

semigroup on C[0,∞] (respectively not conservative semigroup on C0[0,∞]));
(ii) the corresponding process Xx(t) (x denotes a starting point) is stochastically mono-

tone: P (Xx(t) ≥ y) is a non-decreasing function of x for any y (where P (E) denotes, as
usual, the probability of the event E);

(iii) there exists a dual process X̃(t) (with a generator given explicitly in Section 6,
see (6.9)), whose distribution is connected with the distribution of X(t) by the formula

P (X̃x(t) ≤ y) = P (Xy(t) ≥ x). (1.6)

Remark. The long list of conditions (i)-(v) in the Theorem is made in order to cover
the most reasonable situations where either the diffusion (second order) term or the drift
(first order) term of L dominates the jumps and where consequently the perturbation
theory can be used for the analysis of L with the jump part considered as a perturbation.
As a simple example with all conditions satisfied one can choose an operator (1.4) with
a1 > 0, aK > 0, bK > 0 and with ν1 = νK = 0.

We shall describe now the simplest natural approximation of the Markov process X(t)
by systems of interacting particles with k-nary interactions, i.e. by Markov chains with
generators of type (1.2), (1.3).

Let the finite measures ν̃k be defined by ν̃k(dy) = min(y, y2)νk(dy). Let β1
k, β2

k be
arbitrary positive numbers such that β1

k − β2
k = bk and let ω be an arbitrary constant in

(0, 1). Consider the operator Gh =
∑K

k=1 Gh
k with

(Gh
kf)(hn) = hkCk

n

[ak

h2
(f(hn + h) + f(hn− h)− 2f(hn))
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+
β1

k

h
(f(hn + h)− f(hn)) +

β2
k

h
(f(hn− h)− f(hn))

+
∞∑

l=[h−ω]

(
f(nh + lh)− f(nh) + lh

f(nh− h)− f(nh)
h

)
vk(l, h)

]
,

where [h−ω] denotes the integer part of h−ω and where

vk(l, h) = max
(

1
hl

,
1

h2l2

)
ν̃k[lh, lh + h).

Theorem 1.2. For any h > 0, under the assumptions of Theorem 1.1, there exists
a unique (and hence non-explosive) Markov chain Xh(t) on hZ+ with the generator Gh

given above. If the initial point nh of this chain tends to a point x ∈ R+ as h → 0, then
the process Xh

nh(t) converges, as h → 0, in the sense of distributions, to the process Xx(t)
from Theorem 1.1. The convergence also holds in the sense of the strong convergence of
the corresponding semigroups (i.e. in the sense of Theorem 6.1, from Ch. 1 of [EK]).

Remarks. 1. An approximating interacting particle system for a given process on R+

is by no means unique. The essential features of the approximations are the following: (1)
k-nary interaction corresponds to pseudodifferential generators L(x, ∂

∂x ) being polynomials
of degree k in x, and requires the common scaling of order hk, (2) acceleration of small
jumps (gk

m(h) in (1.3) of order h−2 for small |m|) gives rise to a diffusion term, (3) slowing
down of large jumps gives rise to non-local terms of the limiting generator. 2. We have
taken all k ≥ 1 in (1.4) thus excluding from the corresponding approximating particle
systems the processes with spontaneous (or external) inputs that are described by a term
k = 0 in (1.1). This is done just in order to simplify the formulation of our theorems.

Theorems 1.1 and 1.2 are proved in Section 6. The methods developed in the paper
allow to obtain other similar results with various assumptions on the coefficients of operator
(1.4) and the moments of the measures νk. For example, for the case of Lévy measures
having a finite first moment, the corresponding conditions on the coefficients can be taken
from Theorem 4.1 of Section 4.

3. Content of the paper. The preliminary Section 2 is devoted to a short exposition
of some known facts from the analytic theory of one-dimensional diffusions that we shall
need. Namely, we shall consider the operator

A = a(x)
d2

dx2
+ b(x)

d

dx
(1.7)

on (0,∞), where a and b are smooth functions on (0,∞) (a is everywhere strictly posi-
tive) and describe an explicit construction of its resolvent, which depends crucially on the
asymptotic behavior of a and b near 0 and ∞.

In Section 3 we start with some general estimates on the resolvents of operators (1.7)
and then apply these estimates to a particular case of (1.7), where a(x) and b(x) behave
like some powers of x as x →∞ or x → 0. In particular, we give a complete classification
of the boundary points and rather precise estimates for the resolvents of such operators.
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The main example which is related to the interacting particle systems is given by the case
of a and b being polynomials:

a(x) =
k2∑

j=k1

ajx
j , b(x) = −

l2∑

j=l1

bjx
j , (1.8)

where 1 ≤ k1 ≤ k2, 1 ≤ l1 ≤ l2, ak1 > 0, ak2 > 0, bl1 6= 0, bl2 6= 0, and where all aj are
non-negative.

Section 4 is devoted to a study of Markov processes on (0,∞) with polynomial pseu-
dodifferential generators, i.e. the generators of the form L = A + N , where A is given by
(1.7), (1.8) and where

Nf =
K∑

k=l

xkNkf (1.9)

with non-local (Lévy type) operators

Nkf(x) =
∫

(f(x + ξ)− f(x)− f ′(x)ξ)νk(dξ), (1.10)

and where all νk are Borel measures on (0,∞) satisfying (1.5). If νk satisfy stronger
assumptions

∫
ξνk(dξ) < ∞, one considers usually simpler nonlocal operators Nk of the

form
Nkf(x) =

∫
(f(x + ξ)− f(x))νk(dξ). (1.11)

We give criteria on existence, uniqueness and non-explosion for processes with such gen-
erators.

In Section 5, we study Markov chains with generators of type (1.1) discussing the
questions of uniqueness, monotonicity and of the construction of the dual chain.

In Section 6 we combine the results on one-dimensional Feller processes obtained in
Sections 2 - 4 with simple results on interacting particle systems obtained in Section 5 and
prove Theorems 1.1 and 1.2. In particular, we shall use the monotonicity and duality results
for interacting particle systems to prove the corresponding results on monotonicity and to
construct duals for the processes on R+ with generators having coefficients of polynomial
growth. The results on duality give a rigorous meaning (in the framework considered)
of the well known idea of duality between fragmentation and coagulation processes as
discussed e.g. in [Al].

We have studied the semigroups of our processes by their resolvents. An important
problem is to estimate their transition probability densities. As the processes with non-
local generators were studied by perturbation arguments from diffusions it is natural to
start with the analysis of transition probability densities (also called heat kernels or Green
functions) of diffusion operators having polynomial coefficients. This seems to be a difficult
problem, which is of independent interest. In Appendix we put forward an approach
to this problem based on the direct construction of the asymptotic probability density
using semiclassical approximation (see [Kol2], [Kol3] and references therein for systematic
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exposition of this method for Feller processes in case of local and non-local generators with
bounded coefficients). Notice that a familiar method of frozen coefficients widely used for
asymptotic construction of the Green function of differential equations seems to be not
very promising for rapidly growing coefficients.

We consider only the equation

∂u

∂t
=

1
2
ax2 ∂2u

∂x2
− 1

2
(bx + cx2)

∂u

∂x
(1.12)

with b > 0 and c > 0 (in case c = 0, this is an exactly solvable model, so called Black-
Scholes diffusion, in case c < 0, the corresponding process explodes in finite time almost
surely). This equation describes a diffusion approximation to particle systems with pairwise
interaction, which is the simplest and the mostly used type of interaction. As a corollary of
the general results of Section 6 it follows that the process X(t) on (0,∞) corresponding to
(1.12) is stochastically monotone and has a dual process defined by the evolution equation

∂ũ

∂t
=

1
2
ax2 ∂2ũ

∂x2
+

1
2
(bx + 2ax + cx2)

∂ũ

∂x
.

We shall construct an asymptotic Green function (or a heat kernel) for equation (1.12).
This asymptotics can be used to construct the processes with non-local generators (and

their transition probabilities) using perturbation techniques directly in terms of semigroups
and not in terms of resolvents as in Section 4. One can hope that this method can be
generalized to at least some multi-dimensional generators.

It seems worth noticing here that in order to see how the heat kernel for a diffusion
with polynomial coefficients must look like, one can observe that the equation

∂u

∂t
=

h

2
x4 ∂2u

∂x2
, h > 0,

(describing a diffusion on (0,∞) having an inaccessible entrance boundary at infinity (the
classification of boundary points is recalled in Section 2)) has an exact heat kernel of the
form

1√
2πht

x

x3
0

exp

{
− 1

2th

(
1
x
− 1

x0

)2
}

.

4. Other related models. (1) Systems with cancellation (particle-antiparticle systems)
and Feller processes on R. So far we have considered processes on Z+ and their limiting
processes on R+. Similarly one can obtain processes on R as limits of particle-antiparticle
interacting systems on Z. Namely, let us consider a model with two type of particles, a
particle and an antiparticle, that can not coexist (they annihilate simultaneously). Then
a state of the system is described by an integer number n ∈ Z, where |n| is interpreted
as the number of particles if n > 0 and as the number of antiparticles if n < 0. The
process of k-nary interaction is described as follows. Any group of k particles from a given
family of |n| particles or antiparticles can produce a random number m ∈ Z of offspring
(m particles if m > 0 or |m| antiparticles if m < 0) thus changing the the state from n to

6



n + m (cancellation is taken into account). Considering then the same limiting procedure
as above one arrives at Feller processes on the whole line with polynomial generators.

(2) Putting K = ∞ in (1.4) one can get similar results for some pseudodifferential
generators of Markov processes with analytic symbols.

(3) If the measures νk in (1.4) do not satisfy (1.8), but the weaker condition

∫
min(1, ξ2)νk(dξ) < ∞,

the existence of the process and of the approximating particle system can still be obtained.
However, it requires an additional correcting term in the approximating generators Gh

k in
case of ∞ being an entrance boundary.

5. Conclusions and future work.
This paper describes a R+-valued limit of a re-scaled number of particles under k-nary

interaction generalizing the famous continuous time Galton-Watson model (in particular,
Feller diffusion) that corresponds to the case of K = 1 in (1.4). Notice that R+ can
be considered as the space of measures on a one-point set. In this sense, the Galton-
Watson process is considered as a simplest one-dimensional (measure-valued) superprocess
(see [Dyn]), the general (infinite-dimensional) superprocess being obtained formally by the
same limiting procedure as the Galton-Watson process. Similarly, the generalization of
the Galton-Watson model considered in this paper is important for the author not only
in its own right, but as a simplest (one-dimensional) toy model of a quite general limiting
procedure that leads to bona fide (infinite dimensional) measure-valued processes which
constitute a far reaching generalization of superprocesses. These more general processes
will be studied in the next publication of this series (see [Kol4]). The deterministic versions
of these infinite dimensional processes have been obtained formally in [Be], [BK].

The one-dimensional case considered here deserves a special treatment, because, on the
one hand, this is a natural first step in the study of general models, and on the other hand,
a beautiful analytic theory of one-dimensional diffusions is available that gives an explicit
construction of their resolvents, which in turn allows for the construction of processes with
non-local generators by means of perturbation theory giving a full description of these
processes.

2. Preliminaries: analytic treatment of one-dimensional diffusions.

We recall here some known facts from analytic theory of one-dimensional diffusion
equations developed essentially in [Fe] and [Hi]. Our exposition is based on the Chapter 2
of book [Man], where one can find proofs of all the results presented here.

We shall study the properties of the operator (1.2) considered as an unbounded opera-
tor in the Banach space C[0,∞] with the domain D(A) being the set of twice continuously
differentiable functions f ∈ C[0,∞] such that Af ∈ C[0,∞].

Let a and b be infinitely smooth functions on (0,∞) such that a is everywhere strictly
positive. Let

B(x) =
∫ x

1

b(y)(a(y))−1 dy
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and let functions m and p on (0,∞) be defined by the requirements that p(1) = m(1) = 0
and that

m′(x) = (a(x))−1eB(x), p′(x) = e−B(x). (2.1)

Then the diffusion operator (1.7) can be written in the form

A = a(x)
d2

dx2
+ b(x)

d

dx
= a(x)e−B(x) d

dx

(
eB(x) d

dx

)
= DmDp,

where
Dm = (m′(x))−1 d

dx
, Dp = (p′(x))−1 d

dx
.

The classification of the boundary points is given in terms of the following non-negative
functions

u1(x) =
∫ x

1

m(s) dp(s), v1(x) =
∫ x

1

p(s) dm(s).

Definition. The boundary point 0 (respectively ∞) is called accessible boundary of
DmDp if u1(0) < ∞ (respectively u1(∞) < ∞), and inaccessible otherwise. An inaccessible
boundary, say ∞, is called an entrance boundary if v1(∞) < ∞, and a natural boundary
if v1(∞) = ∞. An accessible boundary, say ∞, is called regular, if v1(∞) < ∞, and it is
called an exit boundary if v1(∞) = ∞.

Notice that a boundary is regular if both p and m are finite in a neighbourhood of
the boundary.

Example. If b(x) vanishes in (1.2), then p(x) = x − 1, m′(x) = 1/a(x), and ∞ is
always inaccessible. It is a natural or an entrance boundary if the integral

∫∞
1

(x/a(x)) dx
is infinite or finite, respectively.

Let a sequence of functions un(x) on (0,∞) be defined inductively by

u0(x) = 1, un+1(x) =
∫ x

1

∫ y

1

un(s) dm(s) dp(y), n = 1, 2, ...,

Proposition 2.1.
(i) the series

u(x, λ) =
∞∑

n=0

λnun(x)

is convergent for all λ;
(ii) for λ > 0 the functions

u+(x, λ) = u(x, λ)
∫ ∞

x

u(y, λ)−2 dp(y), u−(x, λ) = u(x, λ)
∫ x

0

u(y, λ)−2 dp(y)

are well defined for x ∈ (0,∞), and u(x, λ), u+(x, λ), u−(x, λ) are non-negative solutions
of the homogeneous equation

λw =
(

a(x)
d2

dx2
+ b(x)

d

dx

)
w = DmDpw;
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(iii) for λ > 0, Dpu+ and Dpu− are increasing functions of x and moreover

Dpu+(x, λ) = λ

∫ x

1

u+(y, λ) dm(y)− 1 ≤ 0,

Dpu−(x, λ) = λ

∫ x

1

u−(y, λ) dm(y) + 1 ≥ 0

for all x; this implies, in particular, that u+ (respectively u−) is a decreasing (respectively,
increasing) function of x, and that the finite limits Dpu+(∞, λ) and Dpu−(0, λ) exist;

(iv) if 0 (respectively, ∞) is inaccessible, then Dpu−(0, λ) = 0 (Dpu+(∞, λ) = 0,
respectively).

Let us introduce the Wronskian

W = Wλ[u−, u+] = (Dpu−(x, λ))u+(x, λ)− (Dpu+(x, λ))u−(x, λ). (2.2)

By direct differentiation one shows that W = Wλ[u−, u+] does not depend on x. From
Proposition 2.1 (iii) it follows that W > 0. Let us now define an operator Lλ in C[0,∞]
by the formula

Lλf(x) = W−1u+(x)
∫ x

0

u−(y)f(y) dm(y) + W−1u−(x)
∫ ∞

x

u+(y)f(y) dm(y). (2.3)

Proposition 2.2. For an arbitrary f ∈ C[0,∞], the function F = Lλf is twice
continuously differentiable and satisfies the non-homogeneous equation

λF −DmDpF = f. (2.4)

Moreover, if 0 (respectively, ∞) is accessible, then F (0) = 0 (respectively, F (∞) = 0).
If 0 (respectively, ∞) is a natural boundary, then F (0) = λ−1f(0) (respectively, F (∞) =
λ−1f(∞)).

Proposition 2.3. (i) DmDp is the generator of a strongly continuous semigroup
on C[0,∞] and hence of Markov process on (0,∞) if and only if both 0 and ∞ are in-
accessible boundaries. In this case, formula (2.3) defines the resolvent of DmDp, i.e.
Lλ = (λ−DmDp)−1 and F = Lλf defines the unique bounded solution of equation (2.4).
In particular, Lλ1 = 1/λ, where 1 denotes the function that equals 1 identically.

(ii) If 0 is accessible and ∞ is inaccessible (respectively 0 is inaccessible and ∞ is
accessible), then DmDp generates a strongly continuous contraction semigroup in the space
C0[0,∞] (respectively, C∞[0,∞]). If both 0 and ∞ are accessible, then DmDp generates a
contraction semigroup in C∞[0,∞]∩C0[0,∞]. In all these cases, formula (2.3) still defines
the resolvent, but the corresponding process is only sub-Markovian (i.e. non-conservative).
In particular, λLλ1 ≤ 1, but does not equal 1 identically.

3. Estimates for the resolvent of one-dimensional diffusion operators.

The following is the key estimate for the derivatives of the resolvent of a one-dimen-
sional diffusion operator that we shall need.
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Proposition 3.1. For an arbitrary f ∈ C[0,∞]

| d

dx
Lλf(x)| ≤ 2‖f‖p′(x)(|m(x)|+ C√

λ
), (3.1)

| d2

dx2
Lλf(x)| ≤ ‖f‖(2(a(x))−1 + |p′′(x)|Dp(Lλf)(x)) (3.2)

hold with some constant C and λ > 1. Moreover, if ∞ or 0 is inaccessible, then also

| d

dx
Lλf(x)| ≤ 2‖f‖p′(x)

∫ ∞

x

m′(y) dy, (3.3)

or respectively

| d

dx
Lλf(x)| ≤ 2‖f‖p′(x)

∫ x

0

m′(y) dy. (3.4)

Proof. From (2.4) on gets by integration that for an arbitrary positive x0

F ′(x) =
d

dx
Lλf(x) = p′(x)

(∫ x

x0

m′(y)(λF (y)− f(y)) dy + (DpF )(x0)
)

.

This implies

| d

dx
Lλf(x)| ≤ p′(x)

(
2‖f‖

∫ x

x0

|m′(y)| dy + |(DpF )(x0)|
)

(3.5)

for λLλ1 ≤ 1. If ∞ or 0 is inaccessible one takes x0 to be ∞ or 0 respectively in (3.5).
Using Proposition 2.1 (iv), one obtains (3.3) or (3.4) respectively. To get (3.1), one takes
x0 = 1 in (3.5) and one needs to prove only that

(DpF )(1) ≤ C‖f‖/
√

λ.

To do this let us differentiate (2.3) to find that

(Lλf)′(x) = W−1u′+(x)
∫ x

0

u−(y)f(y) dm(y) + W−1u′−(x)
∫ ∞

x

u+(y)f(y) dm(y).

Using the estimates
∫ ∞

x

u+(y, λ) dm(y) ≤ W

λ
(u−(x, λ))−1,

∫ x

0

u−(y, λ) dm(y) ≤ W

λ
(u+(x, λ))−1.

(which are due to Lλ1 ≤ 1/λ and (2.3)) and the fact that |Dpu+(1)| = |Dpu−(1)| = 1 (see
Proposition 2.1 (iii)), yields

(DpF )(1) ≤ ‖f‖ 1
λ

(
1

u+(1, λ)
+

1
u−(1, λ)

)
. (3.6)
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Next, from the definition of un(x) and u(x, λ) it follows that there are constants C1, C2

such that
1

(2n)!
C2n

1 (x− 1)2n ≤ un(x) ≤ 1
(2n)!

C2n
2 (x− 1)2n

and hence
C1 exp{C1

√
λ(x− 1)} ≤ u(x, λ) ≤ C2 exp{C2

√
λ(x− 1)}

for x ∈ (1/2, 2) (in particular, u(1, λ) = 1). Consequently

u+(1, λ) ≥ C

∫ 2

1

(u(y, λ))−2 dy ≥ C

C2
2

∫ 1

0

e−C2
√

λx dx ≥ C̃/
√

λ

for λ > 1 with some C̃, and similar estimate holds for u−(1, λ). These estimates and (3.6)
imply the required estimate for (DpF )(1) thus completing the proof of (3.1). At last, the
identity d2/dx2 = m′p′DmDp + p′′Dp and equation (2.4) imply

(Lλf)′′(x) = m′p′(λLλf − f) + p′′Dp(Lλf),

which implies (3.2).
Proposition 3.2. Let A be given by (1.7) and suppose that real numbers k, l, α, β

are given with α > 0, β 6= 0 such that as x →∞

a(x) = αxk(1 + O(x−1)), b(x) = −βxl(1 + O(x−1)),

and these estimates can be differentiated, i.e. a′(x) = O(xk−1) and b′(x) = O(xl−1) as
x →∞. Then

(i) ∞ is inaccessible natural boundary if and only if max(l, k − 1) ≤ 1;
(ii) suppose max(l, k − 1) > 1; (1) if l < k − 1, then ∞ is inaccessible entrance

boundary, (2) if l > k − 1 and β > 0 (respectively β < 0) then ∞ is inaccessible entrance
(accessible exit, respectively), (3) if l = k − 1 (it implies, in particular, that k > 2 ) and
1− k < β/α < −1, then ∞ is accessible regular, (4) if l = k− 1 and β/α ≤ 1− k, then ∞
is accessible exit, (5) if l = k−1 and β/α ≥ −1, then ∞ is inaccessible entrance boundary;

(iii) if l < k − 1, then as x →∞, λ →∞,

| d

dx
Lλf(x)| ≤ ‖f‖ 2

α
(1 + O(x−1) + O(λ−1/2))×

{
x1−k/|k − 1|, k 6= 1,
ln x, k = 1

, (3.7)

and

| d2

dx2
Lλf(x)| ≤ 2ρ

α
‖f‖x−k(1 + o(1))); (3.8)

with ρ = 1;
(iv) if l > k − 1, then as x →∞, λ →∞, one has (3.8) with ρ = 2 and

| d

dx
Lλf(x)| ≤ 2

|β|x
−l‖f‖(1 + O(x−1) + O(λ−1/2)), (3.9)
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(term O(λ−1/2) can be omitted for β > 0);
(v) if l = k − 1 and 1− k < β/α < −1, then (3.8) holds with ρ = 1 and

| d

dx
Lλf(x)| ≤ 2‖f‖xβ/αm(∞)(1 + O(x−1) + O(λ−1/2)); (3.10)

(vi) if l = k − 1, but conditions of (v) do not hold, then

| d

dx
Lλf(x)| ≤ ‖f‖ 2

α
x1−k(1 + O(x−1) + O(λ−1/2))×

{ |1− k − β/α|−1, 1− k 6= β/α,
ln x, 1− k = β/α

(3.11)
and (3.8) holds with ρ = 1+ |1− k−β/α|−1 (respectively with ρ = 1+ ln x) if 1− k 6= β/α
(respectively otherwise).

Proof. This consists of tedious but explicit calculations of all asymptotics first classi-
fying the boundary point ∞ and then estimating the derivatives of the resolvent by means
of (3.2),(3.3) if ∞ is inaccessible and m(∞) < ∞, and (3.2),(3.1) otherwise.

(i) Suppose l < k − 1. Then B is finite at infinity and B(x) = B(∞) + O(xl−k+1) as
x →∞. Next, p′(x) → e−B(∞) and m′(x) ∼ α−1x−keB(∞), which implies that u1(∞) = ∞
and thus ∞ is inaccessible. Since p ∼ xe−B(∞), v1 behaves like

∫
x1−kdx and is finite if

and only if k > 2. Hence ∞ is natural for k ≤ 2 and entrance for k > 2. At last, m is finite
at infinity if and only if k > 1. Hence one uses (3.1) for k ≤ 1 and (3.3) for k > 1 and
obtains (3.7). Estimate (3.8) is obtained from (3.2), because the first term on the r.h.s. of
(3.2) gives precisely the estimate (3.8) and the second term is of the lower order.

(ii) Suppose l > k − 1 and β > 0. Then

B(x) = − β

α(l − k + 1)
xl−k+1(1 + O(

1
x

)),

as x → ∞. Hence m(∞) < ∞, p′(∞) = p(∞) = ∞ and u1(∞) = ∞, and therefore ∞ is
inaccessible and one can use (3.3) to estimate the resolvent and to get (3.9), because

∫ ∞

x

m′(y) dy = − 1
α

x−k(B′(x))−1eB(x)(1 + O(x−1)),

p′(x)
∫ ∞

x

m′(y) dy =
1
β

x−l(1 + O(x−1)).

At last, v1 behaves like
∫

x−l dx and is finite if and only if l > 1 and consequently ∞ is
a natural or an entrance boundary for l ≤ 1 or l > 1 respectively. On the r.h.s. of (3.2)
both terms have now the same estimate, which gives (3.8) with ρ = 2.

(iii) Suppose l > k− 1 and β < 0. The same formula for B as above in (ii) holds, but
now p′(∞) = 0, m(∞) = m′(∞) = ∞ and one uses (3.1), (3.2) to get (3.9). Since p tends
to a finite constant as x → ∞, v1 behaves like m at infinity and thus v1(∞) = ∞. At
last, u1 behaves like

∫
x−l dx and is finite if and only if l > 1. Hence ∞ is an inaccessible

natural boundary for l ≤ 1 and an accessible exit boundary for l > 1.
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(iv) Suppose l = k − 1. Then

B(x) = −β

α
ln x+O(x−1), m′(x) =

1
α

x−k−β/α(1+O(x−1)), p′(x) = xβ/α(1+O(x−1))

as x →∞. (1). If 1− k < β/α < −1 (this can happen only for k > 2), then both p and m
are finite at infinity. Hence u1 and v1 behaves like p and m respectively and thus are both
finite at infinity. Hence ∞ is an accessible regular boundary. Using (3.1) yields (3.10).
Again (3.8) holds with ρ = 1, because only the first term on the r.h.s. of (3.2) plays the
role. (2). If −1 ≤ β/α ≤ 1− k (this can happen only for k ≤ 2), then p(∞) = m(∞) = ∞
and v1(∞) = u1(∞) = ∞. Hence ∞ is inaccessible natural boundary and using (3.1)
yields (3.11). (3). If β/α < −1 and β/α ≤ 1− k, then p(∞) < ∞, m(∞) = ∞ and again
using (3.1) yields (3.11). Next v1 behaves like m and tends to infinity as x →∞. At last
u1 behaves like

∫
x1−k dx (may be with an additional multiplier ln x) and is finite if and

only if k > 2. Hence ∞ is an inaccessible natural for k ≤ 2 and an accessible exit for
k > 2. (4). If β/α ≥ −1 and β/α > 1 − k, then p(∞) = ∞, m(∞) < ∞, u1 behaves
like p and thus tends to infinity as x → ∞. Hence ∞ is inaccessible and one gets (3.11)
using (3.3). At last, v1 behaves like

∫
x1−k dx and is finite for k > 2 (implying ∞ is an

entrance boundary) and tends to infinity as x →∞ for k ≤ 2 (implying that ∞ is a natural
boundary).

Proposition 3.3. Let A be given by (1.7) and suppose that real numbers k, l, α, β
are given with α > 0, β 6= 0 such that as x → 0

a(x) = αxk(1 + O(x)), b(x) = −βxl(1 + O(x)).

(i) 0 is inaccessible natural boundary if and only if min(l, k − 1) ≥ 1;
(ii) suppose min(l, k − 1) < 1; (1) if l < k − 1 and β < 0 (respectively, β > 0), then 0

is an inaccessible entrance boundary (respectively, accessible exit); (2) if l > k − 1, then 0
is accessible, regular for k < 1 and exit for 1 ≤ k < 2; (3) if l = k − 1 (and hence k < 2)
and −1 < β/α < 1 − k, then 0 is accessible regular, (4) if l = k − 1 and β/α ≥ 1 − k,
then 0 is accessible exit, (5) if l = k − 1 and β/α ≤ −1, then 0 is inaccessible entrance
boundary;

(iii) if l > k − 1 and k ≥ 1, one has (3.7), (3.8) with ρ = 1 as x → 0 with O(x−1)
replaced by O(x); if l > k−1 and k < 1, one has the estimate (Lλf)′(x) = O(1)+O(λ−1/2);

(iv) if l < k − 1, then (3.8) with ρ = 2 and (3.9) hold as x → 0 with O(x−1) replaced
by O(x);

(v) if l = k − 1 and −1 < β/α < 1 − k, then (3.10) holds as x → 0 with O(x−1)
replaced by O(x);

(vi) if l = k − 1 and conditions of (v) do not hold, then, as x → 0, (3.11) holds and
(3.8) holds with ρ being the same as in Proposition 3.2 (vi) (again O(x−1) is replaced by
O(x) everywhere).

Proof. Is the same as that of Proposition 3.2. Let us consider only the case l > k− 1.
Then B is finite near the origin and

B(x) = B(0) + O(x), p′(x) = e−B(0)(1 + O(x)), m′(x) =
1
α

x−keB(0)(1 + O(x))
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as x → 0. Therefore m(0) < ∞ if and only if k < 1, v1 behaves like m and hence v1(0) < ∞
if and only if k < 1. Next, u1 behaves like the integral of m and is finite if and only if
k < 2. We conclude that 0 is inaccessible natural for k ≥ 2, accessible exit for 1 ≤ k < 2
and accessible regular for k < 1. Moreover, if k ≥ 1, we get (3.7) (with O(x−1) replaced
by O(x)), using (3.4) for k ≥ 2 and using (3.1) for 1 ≤ k < 2. If k < 1, we use (3.1) to get
the boundedness of (Lλf)′(x).

4. One-dimensional Feller processes with non-local generators.

When considering a non-local term of a generator as a perturbation of a local operator
one finds that the allowed growth of the symbol of a non-local term with respect to the space
variable depends on the moments of the corresponding Lévy measures. We demonstrate
this connection by proving here a pair of results on the existence and uniqueness of one-
dimensional Feller processes with non-local generators using perturbation theory and the
estimates from the previous section. One result is valid for Lévy measures with a finite
first moment and the other for general Lévy measures. The conditions of Theorems 4.1
and 4.2 below are designed in the attempt to present reasonably general but still not too
overcomplicated assumptions that ensure that respectively the drift or the diffusion term
in L dominates the jumps. As we mentioned in the introduction, the simplest example
when all conditions of Theorem 4.2 hold is given by an operator (1.4) with a1 > 0, aK > 0,
bK > 0 and with ν1 = νK = 0. Other similar results can be obtained under various
assumptions on kj , lj and the moments of the Lévy measures νj .

First let us give a classification of boundary points for operators of type A + N with
A given by (1.7) and N being a non-local operator of the Lévy type, for example of form
(1.4).

Definition. Let L = A + N , where A is given by (1.7) and N is a non-local operator
of type (1.9) (or with a more general dependence on x). Let us say that both ∞ and 0
are inaccessible boundary points for L if (the closure of) L (defined on twice continuously
differentiable functions f ∈ C[0,∞] such that Lf ∈ C[0,∞] ) generates a conservative
strongly continuous semigroup on C[0,∞]. If this is the case, we call ∞ (0, respectively)
a natural boundary, if the subspace C∞[0,∞] (respectively, C0[0,∞]) is invariant under
this semigroup, and an entrance boundary otherwise. We say that 0 is accessible and ∞
is inaccessible (respectively ∞ is accessible and 0 is inaccessible) if L generates a non-
conservative strongly continuous semigroup on C0[0,∞] (respectively, on C∞[0,∞]). We
say that both 0 and ∞ are accessible if L does not generate a semigroup neither on C0[0,∞],
nor on C∞[0,∞], but only on their intersection.

Using the theory of one-dimensional diffusion sketched in Section 2 one can show that
this definition is consistent with the classification of boundary points of one-dimensional
diffusions given above.

Theorem 4.1. Let a differential operator A be given by (1.7), (1.8), where bl2 > 0
whenever l2 = k2 − 1. Let N be given by (1.9), (1.11), where Borel measures νj do not
vanish only for j = min(l1, k1 − 1), ..., max(l2, k2 − 1) and are such that

∫∞
0

ξνj (dξ) < ∞
for all j and moreover,

1
|bl2 |

∫ ∞

0

ξνl2(dξ) <
1
2

(4.1)
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in case l2 > k2 − 1, or
1

|al2 |(k2 − 1)

∫ ∞

0

ξνk2−1(dξ) <
1
2

(4.2)

in case l2 ≤ k2−1. Moreover, suppose that νl1 = 0 if l1 = k1−1 and bl1 = −l1al1 . Then the
operator A+N (defined on the same domain D(A) as A), generates a strongly continuous
contraction semigroup on the same space C[0,∞] (or its subspaces C∞[0,∞], C0[0,∞) or
C∞[0,∞]∩C0[0,∞) ) and with the same type of boundary points as the semigroup defined
by A, and hence a Markov (or sub-Markov) process on (0,∞).

Remarks. 1. The assumption bl2 > 0 for l2 = k2−1 is made above only to simplify the
formulation. The same remark concerns Theorem 4.2 below. 2. Recall (see (1.8) and the
description of the coefficients afterwards) that we consider only the case k1 ≥ 1 and l1 ≥ 1
(which is of major interest from the point of view of interacting particle systems); however,
similarly, one can analyze non-positive k1 and l1. 3. It is plausible that the constant 1/2
on the r.h.s. of (4.1), (4.2) can be improved to become 1 (using more refined methods, see
[Kol4]). However, it seemingly can not be allowed to be more than one, because then the
integral term N could dominate the local operator A, which could lead to the explosion.

The proof of the theorem is based on the following technical statement.
Proposition 4.1. The assumptions of Theorem 4.1 imply the estimate

‖NLλ‖ < 1, λ > Λ, (4.3)

for some Λ.
Proof. Let us consider only the case l2 > k2 − 1 and l1 > k1 − 1 (other cases are

obtained quite similarly by using the corresponding formulas from Propositions 3.2 and
3.3).

For an arbitrary δ and a continuous function φ, one has

∫ ∞

0

(φ(x + ξ)− φ(x))ν(dξ) ≤ max
y∈[x,x+δ]

g′(y)
∫ δ

0

ξν(dξ) + 2max
y≥x

g(y)
∫ ∞

δ

ν(dξ).

Using (3.7) and (3.9) respectively for l1 and l2 one gets for any positive x0 and all j that

max
x≤x0

|xj(NjLλf)(x)|

≤ ‖f‖
[
Kx

j−(k1−1)
0 (1 + O(x) + O(λ−1/2))

∫ δ

0

ξνj(dξ) +
2xj

0

λ

∫ ∞

δ

νj(dξ)

]
(4.4)

with some constant K and

max
x≥x0

|xj(NjLλf)(x)| ≤ 2
bl2

‖f‖xj−l2
2 (1 + O(x−1) + O(λ−1/2))

∫ ∞

0

ξνj(dξ). (4.5)

As j ≤ l2 and due to (4.1), one can choose x0 large enough, so that the sum over all j of
the r.h.s. of (4.5) does not exceeds 1− ε for some ε > 0. By choosing δ small enough, one
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can ensure that the sum of the first terms of the r.h.s. of (4.4) is arbitrary small. At last,
by choosing appropriate Λ, one makes the sum of the second terms on the r.h.s. of (4.4)
arbitrary small, and hence (4.3) follows.

Proof of Theorem 4.1. Since A generates a semigroup, the statement of the theorem is
an immediate consequence of Proposition 4.1, the standard perturbation theory arguments
and the Hille-Yosida theorem (see e.g. [EK]), because (4.3) ensures the invertibility of the
operator 1 + LLλ and thus the surjectivity of λ−A− L.

Let us give a similar result for Lévy measures νj without a finite first moment.

Theorem 4.2. Let a differential operator A be given by (1.7), (1.8), where bl2 > 0
whenever l2 = k2 − 1. Let N be given by (1.9), (1.11), where all νj satisfy (1.5). Suppose
that if l2 ≥ k2 (respectively l2 < k2), then νj do not vanish only for k1 ≤ j ≤ k2 (respectively
k1 ≤ j ≤ k2 − 1); moreover, suppose that if l2 = k2, then there exists δ > 0 such that

1
al2

∫ δ

0

ξ2νl2 (dξ) +
1
|bl2 |

∫ ∞

δ

ξνl2 (dξ) <
1
4
. (4.6)

At last, suppose νk1 = 0, if l1 = k1 − 1 and bl1 6= −l1al1 . Then the operator A + N is
the generator of a contraction semigroup on the same space as A, and hence of a Markov
process on (0,∞).

Proof. As above, this is a consequence of the following statement.

Proposition 4.2 The assumptions of Theorem 4.2 imply (4.3) for some Λ.

Proof. It is quite similar to the above. Consider only the case l2 ≥ k2. By Proposition
3.2 (iv), for an arbitrary x0 and δ > 0

max
x≥x0

|xj(NjLλf)(x)| ≤ ‖f‖[ 4
ak2

xj−k2
0

∫ δ

0

ξ2νj(dξ) +
4
|bl2 |

xj−l2
2

∫ ∞

δ

ξνj(dξ)], (4.7)

(up to the terms of the lower order). For j < k2 this can be made arbitrary small by
choosing x0 large enough. If j = k2 and l2 > k2, one can choose δ small in such a way
that the first term become arbitrary small and then again by choosing x0 one can make
the second term arbitrary small. At last, in case j = k2 = l2, one take δ from (4.6)
to make the r.h.s. of (4.7) to be less than 1 − ε with some ε > 0. Next, we use the
elementary inequality |F ′(x)| ≤ B‖F‖ + B−1 maxξ≥x |F ′′(ξ)| (that is valid for any real
twice differentiable function F and any number B > 0) to estimate the first derivative of
the resolvent and hence to obtain from (3.8) (Proposition 3.3.) that

max
x≤x0

|xj(NjLλf)(x)| ≤ K‖f‖[xj−k1
0 (

∫ δ

0

ξ2νj(dξ) +
1
B

∫ ∞

δ

ξνj(dξ)) + xj
0

B

λ

∫ ∞

δ

νj(dξ)],

(4.8)
with some constant K. Hence, choosing first small δ, then large B and then large λ we
can make sequentially the first, the second and the third term here arbitrary small.
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5. K-nary interaction of indistinguishable particles.

Consider a system of identical indistinguishable particles with interaction of k-nary
type, k = 1, ...,K (we exclude the simple spontaneous inputs with k = 0 for simplicity of
some notations), which is a Markov process on 0, 1, ... with the generator of the form G =∑K

k=0 Gk with Gk given by (1.1). Occasionally we shall use two additional assumptions
on the coefficients gk

n:
(i) subcriticality condition:

∞∑

m=−k

gk
mm ≤ 0 for all k. (5.1)

(ii) non-existence of long left jumps:

gk
m = 0 for all m < −1. (5.2)

The restriction (5.2) provides the generators with some additional nice properties (see
below), and at the same time in all practically used models of coagulation (m < 0 in (1.1))
one usually excludes (see e.g. [Al]) the possibility of the coagulation of more than two
particles in one go.

The q-matrix of the process under consideration is clearly defined by

Q =
K∑

k=0

Qk, Qk
nj = Ck

ngk
j−n, j 6= n (5.3)

(in particular, Qk
nj = 0 for n < k). As usual one defines Qn = −Qnn =

∑
j 6=n Qnj . Clearly

Q is conservative and a Feller q-matrix (the latter means that Qnj → 0 as n →∞ for any
j). This implies that Q is also a Reuter matrix, i.e.

∑∞
l=j Qnl → 0 as n → ∞ for any

j. For unification of some formula we shall consider (5.3) to hold for all j, n by putting
gk
0 = −∑

m 6=0 gk
m (this convention clearly does not change the generator (1.1)).

It is well known that to any conservative q-matrix there corresponds a unique Markov
chain, called the minimal Markov chain of q (see e.g. [An]), defined by transition prob-
abilities being the minimal solution of the corresponding Kolmogorov backward equation
(or, equivalently, as a Markov chain corresponding to q with a minimum life-time). Let
Zm(t) be the minimal Markov chain starting at m and corresponding to the q-matrix Q
from (5.3).

The significance of condition (5.1) is revealed by the following result.
Proposition 5.1 The subcriticality condition (5.1) implies that the process Zm(t) is

a positive supermartingale for any m.
Proof. By Dynkin’s formula for Markov chains (see e.g. [Br]), the process f(Zm(t))−∫ t

0
(Gf)(Zm(s)) ds is a martingale for any m and all non-negative f , for which the integral

is defined and has a finite expectation. Take f(x) = x. By (5.1), Gf(x) ≤ 0 for all x.
Hence the expectation of Zm(t) does not increase in time and Zm(t) is a supermartingale.
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Corollary 5.2. Under (5.1) the matrix Q defines a unique Markov process, which is
a regular jump Markov process without explosions at finite times.

Proof. Uniqueness follows from non-explosion of the minimal chain, and non-explosion
follows from Proposition 5.1 and Doob’s martingale inequality.

Proposition 5.3. If (5.2) holds, then the matrix (5.3) is stochastically monotone,
i.e. ∑

j≥l

Qnj ≤
∑

j≥l

Qn+1,j (5.4)

holds for all n,l such that l 6= n + 1.
Proof. By linearity, it is enough to prove the statement for each k separately. If

n < k − 1, both sides of (5.4) vanish. If n = k − 1, then the l.h.s. of (5.4) vanishes, and
(5.4) is obvious (for l 6= n + 1 = k). Thus, we need to prove (6.4) for n ≥ k. In this case,
(5.4) takes the form ∑

j≥l

Ck
ngk

j−n ≤
∑

j≥l

Ck
n+1g

k
j−n−1. (5.5)

Due to the identity Ck
n+1 = Ck

n + Ck−1
n , the r.h.s. of (5.5) equals

∑

j≥l−1

Ck
n+1g

k
j−n =

∑

j≥l

Ck
ngk

j−n +
∑

j≥l

Ck−1
n gk

j−n + Ck
n+1g

k
l−1−n.

Thus (5.5) takes the form

k
∑

j≥l

gk
j−n + (n + 1)gk

l−1−n ≥ 0.

For l > n+1 all terms on the l.h.s. are non-negative. For l < n, the sum on the l.h.s. equals
k. It remains to consider the case l = n, which is equivalent to −kgk

−1 + (n + 1)gk
−1 ≥ 0,

and this clearly holds for n ≥ k.
As a corollary from Proposition 5.3, the Reuter property of Q (mentioned above), and

the general theory (see e.g. Theorem 3.4 and Corollary 4.3 from [An]), we get another
uniqueness result (independent on assumption (6.1)):

Corollary 5.4. Under (5.2), the minimal process corresponding to Q is stochas-
tically monotone, i.e. its transition probabilities Pij(t) are such that

∑
j≥l Pnj(t) is a

non-decreasing function of n for any l and t. Moreover, the minimal process is the unique
stochastically monotone process corresponding to Q.

Let us recall (see Proposition 4.2 from [An]) that if Q is a stochastically monotone
Reuter q-matrix, then Q̃ defined by

Q̃nj =
∞∑

l=n

(Qjl −Qj−1,l), (5.6)

where Q−1,l = 0, is a conservative Feller matrix such that the transition probability P̃

of the minimal Markov process defined by Q̃ is connected with the (unique) stochastic
monotone process P defined by Q by the duality equation

∑

l≤j

P̃nl(t) =
∑

l≥n

Pjl(t), (5.7)
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which in fact justifies the uniqueness result used in the above corollary.

Proposition 5.5. If Q is given by (5.3), and if (5.2) holds, then

Q̃i,i+q = Ck
i+qg

k
−q + Ck−1

i+q−1

∞∑

l=1

gk
l−q (5.8)

for k − i ≤ q ≤ 1 and vanishes otherwise (Q̃i,i+q = g0
−q for k = 0). In particular,

(i) if gk
−1 = 0, then Q̃i,i+q vanishes for q outside [k − i, 0];

(ii) if gk
l vanishes for |l| > 1, then Q̃i,i+q also vanishes for |q| > 1 and

Q̃i,i+1 = Ck
i gk
−1, Q̃i,i−1 = Ck

i−1g
k
1 . (5.9)

Proof. From (5.6) and (5.3)

Q̃im =
∞∑

l=i

Ck
mgk

l−m −
∞∑

l=i+1

Ck
m−1g

k
l−m = Ck

mgk
i−m + Ck−1

m−1

∞∑

l=i+1

gk
l−m

(where we again used Ck
m = Ck

m−1 + Ck−1
m−1), and (5.8) follows. Bounds for q that allow

non-vanishing Q̃im follow from the bounds for coefficients Ck
n and gk

n.

6. Limits of k-nary interacting particle systems and duality.

We shall show now that the one-dimensional Feller processes on (0,∞) with polynomial
pseudo-differential generators, i.e. generators of form A+N given by (1.7), (1.8) and (1.9)
are obtained as limits of scaled systems of k-nary interacting particle systems described in
the previous section.

Let ν be a measure on (0,∞) satisfying (1.5) and let ν̃ be the corresponding finite
measure: ν̃(dy) = min(y, y2)ν(dy). Let α, β1 and β2 be positive constants, and ω ∈ (0, 1).
Consider the operator

(Gh
kf)(hn) = hkCk

n

[ α

h2
(f(hn + h) + f(hn− h)− 2f(hn))

+
β1

h
(f(hn + h)− f(hn)) +

β2

h
(f(hn− h)− f(hn))

+
∞∑

l=[h−ω]

(
f(nh + lh)− f(nh) + lh

f(nh− h)− f(nh)
h

)
v(l, h)

]
, (6.1)

where [h−ω] denotes the integer part of h−ω and where

v(l, h) = max
(

1
hl

,
1

h2l2

)
ν̃[lh, lh + h).
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Remark. One could possibly use ν[hl, hl+h) instead of v(l, h) in (6.1); however, more
cumbersome v(l, h) give a better approximation and turn out to be simpler to deal with.

Clearly, operator (6.1) is a scaled version of type (1.2) of the corresponding operator of
type (1.1) describing the k-nary interaction of identical indistinguishable particles. Clearly
the corresponding process on Z+ always satisfies (5.2), and it satisfies (5.1) if and only
if β1 − β2 ≤ 0. The extension of (6.1) to the functions on R+ (like in (1.3)) yields the
operator

(Gh
kf)(x) =

x(x− h)...(x− (k − 1)h)
k!

[ α

h2
(f(x + h) + f(x− h)− 2f(x))

+
β1

h
(f(x + h)− f(x)) +

β2

h
(f(x− h)− f(x))

+
∞∑

l=[h−ω]

(
f(x + lh)− f(x) + lh

f(x− h)− f(x)
h

)
v(l, h)

]
. (6.2)

Proposition 6.1. Operator (6.2) tends to the operator

(Lkf)(x) =
xk

k!
(αf ′′(x) + (β1 − β2)f ′(x) +

∫ ∞

0

(f(x + y)− f(x)− f ′(x)y)ν(dy)) (6.3)

as h → 0. More precisely, if f ∈ C̃[0,∞] (the linear span of constants and the smooth
functions with a compact support on [0,∞)) and as h → 0, one has

|(Lk −Gh
k)f(x)| ≤ o(1)(xk + hxk−1)max

y≥x
(|f ′′′(y)|+ |f ′′(y)|+ |f ′(y)|) + O(h)x−1Lkf(x),

(6.4)
where the last term can be dropped if k ≤ 1.

Remark. If a measure ν satisfies stronger assumption
∫

ξνj(dξ) < ∞, one can take
instead of the sum in (6.1) a simpler expression

∞∑

l=[h−ω]

(f(nh + lh)− f(nh))ν[lh, lh + h). (6.5)

Then the corresponding integral term in the limiting operator (6.3) will have the form∫∞
0

(f(x+ lh)−f(x))ν(dy), and in estimate (6.4) one can write O(hω) instead of just o(1).
In such a form of the approximating system, condition (5.1) is equivalent to the condition

β1 − β2 +
∫ ∞

0

ξν(dξ) ≤ 0.

Proof of Proposition 6.1. The following estimate is obvious:

|
∞∑

n=1

g(nh)ν̃[nh, nh + h)−
∫ ∞

0

g(x)ν̃(dx)| ≤ h max
x≥0

|g′(x)|
∫ ∞

0

ν̃(dy). (6.6)
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Since
(f(x− h)− f(x)) = −hf ′(x) +

1
2
h2f ′′(x− θ), θ ∈ [0, h],

and

∞∑

l=[h−ω ]

lh2ν[lh, lh + h) ≤ h

∫ ∞

h[h−ω]

yν(dy) ≤ h

∫ ∞

1

yν(dy) + hω

∫ 1

0

y2ν(dy),

it follows that the difference between the sum in (6.2) and the integral in (6.3) can be
written as

∞∑

l=[h−ω ]

(f(x + lh)− f(x)− f ′(x)hl)v(l, h)−
∫ ∞

[h−ω]

(f(x + y)− f(x)− f ′(x)y)ν(dy))

+ max
y∈[−h,1]

|f ′′(x + y)|

O(1)

∫ h1−ω

0

y2ν(dy) +
∑

l=[h−ω]

1
2
lh2v(l, h)


 . (6.7)

and the last sum in (6.7) can be estimated as

O(hω)
∫ ∞

0

min(y2, y)ν(dy).

Dividing now the difference of the sum and the integral in the first line of (6.7) into two
parts by restricting the measure ν to [0, 1] and [1,∞) respectively and then estimating the
first difference by means of (6.6) with g(y) = y−2(f(x + y)− f(x)− f ′(x)y),

g′(y) = y−4
(
(f ′(x + y)− f ′(x))y2 − 2y(f(x + y)− f(x)− f ′(x)y)

)

=
1
2
f ′′′(x + θ1)− 1

3
f ′′′(x + θ2), θ1, θ2 ∈ [0, y],

and the second difference by means of (6.6) with g(y) = y−1(f(x + y)− f(x)),

g′(y) =
f ′(x + y)y − f(x + y) + f(x)

y2
= f ′′(x + θ1)− 1

2
f ′′(x + θ2), θ1, θ2 ∈ [0, y],

yields for (6.7) the estimate

O(h)max
y≥x

|f ′′′(y)|)
∫ 1

0

y2ν(dy) + O(h)max
y≥x

|f ′′(y)|
∫ ∞

1

yν(dy)

+ max
y∈[−h,1]

|f ′′(x + y)|
(

O(1)
∫ h1−ω

0

y2ν(dy) + O(hω)
∫ ∞

0

min(y2, y)ν(dy)

)
. (6.8)
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Clearly (6.4) follows from (6.8) and the observation that

x(x− h)...(x− (k − 1)h)
k!

=
xk

k!
+ O(h)xk−1,

where the last term can be dropped for k ≤ 1.
Proposition 6.2. The dual generator G̃h

k constructed from the q-matrix of the process
corresponding to (6.1) tends to the operator given by

(L̃kf)(x) =
xk−1

(k − 1)!

(
αf ′′(x) +

∫ x

0

(f(x− y)− f(x))ν(y,∞) dy

)
+

xk

k!
αf ′′(x)

+
xk

k!

(
(β2 − β1)f ′(x) +

∫ x

0

(f(x− y)− f(x) + yf ′(x))ν(dy) + f ′(x)
∫ ∞

x

yν(dy)
)

(6.9)

in the sense that for f ∈ C̃[0,∞] and as h → 0 one has

|(L̃kf)(x)−(G̃h
kf)(x)| ≤ o(1)(xk+hxk−1)max

y≤x
(|f ′′′(y)|+|f ′′(y)|+|f ′(y)|)+O(h)x−1Lkf(x),

(6.10)
where the last term can be dropped for k ≤ 1.

Proof. By (5.9), the dual to the local part of operator (6.1), i.e. the part that
corresponds to the first three terms in (6.1) is

(x− h)...(x− kh)
k!

(
α

h2
+

β1

h

)
(f(x− h)− f(x))

+
x(x− h)...(x− kh + h)

k!

(
α

h2
+

β2

h

)
(f(x + h)− f(x))

=
(x− h)...(x− kh + h)

k!

×
(

(x− kh)
(

α

h2
+

β1

h

)
(f(x− h)− f(x)) + x

(
α

h2
+

β2

h

)
(f(x + h)− f(x))

)

which tends to the sum

α
xk

k!
f ′′(x) + (α

xk−1

(k − 1)!
− (β1 − β2)

xk

k!
)f ′(x)

of the local terms of (6.9). Also by Proposition 5.5, the part of the dual operator corre-
sponding to the sum in (6.1) is

[x/h]−k∑
q=1

[ (x− qh)...(x− qh− (k − 1)h)
k!

v(q, h)
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+h
(x− qh− h)...(x− qh− (k − 1)h)

(k − 1)!

∞∑

l=max([h−ω],q)

v(l, h)
]
(f(x− qh)− f(x))

+
x(x− h)...(x− kh + h)

k!
(f(x + h)− f(x))

∞∑

l=[h−ω]

lv(l, h),

which tends to the sum of the three integral terms in (6.9). The estimate (6.10) is obtained
analogously to (6.4).

At last, we are able to prove our main results.
Proof of Theorems 1.1 and 1.2. From Proposition 6.1 it follows (by standard results

on convergence of contracting semigroups, see e.g. [EK], Theorem 6.1 from Ch.1) that if
operator (6.3) generates a strongly continuous semigroup (and hence a Markov process)
and the space C̃[0,∞] forms a core for this semigroup, then the family of the semigroups
defined by (6.1) or (6.2) converges as h → 0 to the semigroup defined by (6.3), and
hence the corresponding Markov processes converge. The existence of the process with
the generator (1.4) under conditions of Theorem 1.1 was obtained in Section 4. Moreover,
since the process is constructed using a perturbation argument from a diffusion process,
a core for its diffusion part is also a core for (1.4). It is known (see [Man]) that C̃[0,∞]
is a core for the diffusion operators (1.7), (1.8). On functions from this core, the r.h.s. of
(6.4) is finite. Hence the part (i) of Theorem 1.1 and Theorem 1.2 follow. Moreover, from
the stochastical monotonicity of the approximating systems and the existence of the dual
process one gets directly the monotonicity of the limiting process (see [KFS] for general
definitions of stochastic monotonicity) and the existence of its dual, i.e. the parts (ii) and
(iii) of Theorem 1.1.

Appendix. Heat kernel estimates.

For the construction of the semiclassical approximation for the heat kernel of a diffu-
sion equation, it is convenient to have a bounded diffusion coefficient. Hence we change
the variable to y = a−1/2 ln x in (1.12) which leads to the equation

∂v

∂t
=

1
2

∂2v

∂y2
− f(y)

∂v

∂y
, (Ap1)

for v(y) = u(e
√

ay), where

f(y) =
1
2
(
√

a +
b√
a
) +

c

2
√

a
e
√

ay (Ap2)

The characteristic properties of function (Ap2) which will be used below are the following:
it is (strictly) positive, monotone, convex, and exponentially increasing.

In the semiclassical method one attaches to equation (Ap1) the classical mechanical
motion described by the Hamiltonian function H(y, p) = 1

2p2 + f(y)p, the corresponding
Hamiltonian system being ẏ = p + f(y), ṗ = −f ′(y)p. We shall denote by Y (t, y0, p0),
P (t, y0, p0) the solution to the Cauchy problem for this Hamiltonian system with initial
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condition y(0) = y0, p(0) = p0. The elementary property of this Hamiltonian flow (proved
by inspection) are collected in the following

Proposition Ap1. (i) if p0 ≥ −f0 = −f(y0), then ẏ(t) > 0 for all t > 0 and
Y (t, y0, p0) explodes (i.e. reaches +∞) at time

t =
∫ ∞

y0

dξ√
f2(ξ) + 2H(x0, p0)

;

(ii) if −2f0 < p0 < −f0 then Y (t, y0, p0) decreases till t̃ with ỹ = Y (t̃, y0, p0) given by

t̃ =
∫ y0

ỹ

dξ√
f2(ξ) + 2H(x0, p0)

, f(ỹ) =
√
−2H =

√
|2H|,

and after t̃ the trajectory behaves like in (i); (iii) if p0 ≤ −2f0, then Y (t, y0, p0) decreases
for all t > 0, is defined for all finite t > 0, and tends to −∞ as t →∞.

The nice property of this Hamiltonian flow is that though it is exploding in finite
times, the boundary value problem is always uniquely solvable.

Proposition Ap2. (i) The estimate ∂Y
∂p0

(t, y0, p0) ≥ t holds for all x, x0 and all
t > 0 before the explosion. (ii) For arbitrary y0, y ∈ R, and t > 0, there exists a unique
p0 = p0(t, y, y0) such that Y (t, y0, p0) = y.

Proof. (i) Differentiating the Hamiltonian equations with respect to the initial condi-
tion p0 one gets that the derivative z = ∂Y

∂p0
(t, y0, p0) satisfies the equation

z̈ = (f ′′f + (f ′)2)(Y (t, y0, p0))z, z(0) = 0, ż(0) = 1,

which easily implies the estimate (i), because f, f ′, f ′′ are supposed to be non-negative.
(ii) It follows from (i), because (i) implies that Y (t, y0, p0) is (strictly) increasing in p0 for
all given t, y0 and from Proposition Ap1 it follows that Y (t, y0, p0) → ±∞ respectively as
p0 → ±∞.

Due to the statement (i), one can define globally the smooth Jacobian J , the amplitude
φ and the two-point function S of our Hamiltonian flow by the formulas

J(t, y, y0) =
∂Y

∂p0
(t, y0, p0), φ(t, y, y0) = (J(t, y, y0)P (t, y0, p0)/p0)−1/2, (Ap3)

S(t, y, y0) =
∫ t

0

(P (s, y0, p0)Ẏ (s, y0, p0)−H(Y (s, y0, p0), P (s, y0, p0))) ds (Ap4)

where p0 = p0(t, y, y0). Then the next statement follows directly from the general theory
of the semiclassical approximation for diffusions (see, e.g., Chapter 3 from [Kol2]).

Proposition Ap3. The function

vas(t, y, y0) = (2π)−1/2φ(t, y, y0) exp{−S(t, y, y0)} (Ap5)
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is an asymptotic Green function for equation (Ap1) in the sense that it satisfies the initial
condition vas(0, y, y0) = δ(y − y0) and it satisfies the equation (Ap1) approximately up to
an additive remainder term

F (t, y, y0) =
1
2
(2π)−1/2 ∂2φ(t, y, y0)

∂y2
exp{−S(t, y, y0)}. (Ap6)

When justifying this asymptotics, i.e. when proving that vas is close to the exact
Green function of equation (Ap1), the most difficult part (unlike the case of non-degenerate
diffusion with bounded coefficients, where this part is very simple) consists in obtaining
certain estimates for the amplitude φ and the two-point function S. These estimates are
given by the following

Proposition Ap4. (i) Uniformly for all y, y0 and t ∈ (0, T ] for any given T ,

C−1t−1/2 ≤ φ(t, y, y0) ≤ Ct−1/2 (Ap7)

with some constant C > 1 and

∂φ

∂y
= O(φ),

∂2φ

∂y2
= O(φ); (Ap8)

(ii) for y from any compact set

S(t, y, y0) ∼ 1
t
(y − y0)2, y0 → ±∞,

(iii) for any y0, S(t, y, y0) behaves like c/t with some positive c = c(y0) for y → +∞,
and like (y − y0)2/t for y → −∞.

The proof is based on a tedious but direct analysis of all parts of the phase portrait
of our Hamiltonian flow as described in Proposition Ap1. Let us prove (Ap7) for one
half of the phase portrait, namely the part with ẏ(0) ≥ 0 (other estimates are obtained
analogously). We shall write φ ∼ ψ for functions φ and ψ such that C−1ψ ≤ φ ≤ Cψ with
some constant C > 1. Hence we need to prove that φ−2 ∼ t.

Step 1. We shall need the following formulas connecting momentum p, position y, the
Jacobian J and the amplitude φ on a trajectory y = Y (t, y0, p0) such that ẏ0 = p0 +f0 ≥ 0
or, equivalently, p0 ≥ −f0:

t =
∫ y

y0

dξ√
f2(ξ) + 2H

, p =
√

f2(y) + 2H − f(y) (Ap9)

J = (p0 + f0)
√

f2(y) + 2H

∫ y

y0

dξ

(f2(ξ) + 2H)3/2
, p > −f0, (Ap10)

φ−2 =
p0 + f0

p0
p
√

f2(y) + 2H

∫ y

y0

dξ

(f2(ξ) + 2H)3/2
, p > −f0, (Ap11)
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The formula for the momentum in (Ap9) follows from the conservation of energy law (i.e.
because 2H = p2+2pf(y) is constant on any trajectory). In turn, this formula implies that
ẏ =

√
f2(y) + 2H, which gives the first formula in (Ap9) by integrating. Next, (Ap10) is

obtained from the first formula in (Ap9) by differentiating with respect to y0, and (Ap11)
follows from (Ap3) and (Ap10).

Step 2. (i) If 2H ≥ a2f2(y) (for any given a > 0), then p ∼ √
2H; more precisely,

√
2H(

√
1 + a−1 − a−1) ≤ p ≤

√
2H.

(ii) If |2H| ≤ a2f2(y), then |p| ∼ |H|/f(y); more precisely, if 0 ≤ 2H < a2f2(y), then

2
√

1 + a2 − 1
a2

H

f(y)
≤ p ≤ H

f(y)
;

if H < 0 (and hence |2H| ≤ f2(y)), then p < 0 and |H|/f(y) ≤ |p| ≤ 2|H|/f(y). These
estimates follow directly from the formula for p from (Ap9) and elementary estimates of
square roots. Namely, to get (i), one writes

p =
√

2H(

√
1 +

f2(y)
2H

− f(y)√
2H

)

and uses the fact that the function
√

1 + ω2 − ω is a decreasing function of ω. Similarly,
to get (ii) one writes

p = f(y)

(√
1 +

2H

f2(y)
− 1

)
.

In case H ≤ 0, one then uses the estimate 1−ω ≤ √
1− ω ≤ 1−ω/2 for ω ∈ [0, 1]; in case

H ≥ 0, one uses the estimate
√

1 + ω ≥ 1 +
√

1+a2−1
a2 for ω ∈ [0, a2].

Step 3. Let us prove (Ap7) assuming p0 ≥ af0 with some a > 0. Let us stress that we
are looking for estimates that are uniform with respect to f0 and depend only on a given
constant a > 0. Let x = x(y0, p0) be defined by the equation f2(x) = 2H.

If y ∈ [y0, x], then 2H ≥ f2(y) ≥ f2(y0) and

p0 + f0

p0
∈ [1, 1 + a−1].

Hence from (Ap11) and Step 2 (i) one gets

φ−2 ∼ 2H

∫ y

y0

dξ

(f2(ξ) + 2H)3/2
∼ y − y0√

2H
∼ t.

If y > x, then by Step 2 (ii)

φ−2 ∼ max(0, x− y0)√
2H

+ H

∫ y

x

dξ

(f2(ξ) + 2H)3/2

26



∼ max(0, x− y0)√
2H

+
max(y − x, 1)

f(x)
∼ max(0, x− y0) + max(y − x, 1)

f(x)
,

where we have used that f increases exponentially at infinity. One gets then the same
expression for t proving (Ap7) for this case.

Step 4. Let us prove (Ap7) assuming −f0b ≤ p0 ≤ af0 for arbitrary given a > 0,
b ∈ (0, 1). In this case (p0 + f0)H/p0 is of the order f2

0 and one gets

φ−2 ∼ f2
0

∫ y

y0

dξ

(f2(ξ) + 2H)3/2
∼ f−1

0 max(1, y − y0)

and the same expression for t.
Step 5. Let p0 = −f0(1 − ε) with ε ∈ (0, 1/2). Then 2H = −(1 − ε2)f2

0 . We shall
prove (Ap7) uniformly for all these ε, which implies (Ap7) also for ε = 0.

Suppose first that y ≤ y0 + 1. Then

f2(ξ) + 2H ∼ f2
0 (ε2 + ξ − y0)

uniformly for all ξ ∈ [y0, y] and f(y) ∼ f0. Hence

t ∼ 1
f0

∫ y−y0

0

dξ√
ξ + ε2

∼ y − y0

f0

and by Step 2 (ii)

φ−2 ∼ ε

f0

√
ε2 + y − y0

∫ y−y0

0

(ε2 + ξ)−3/2

=
1

2f0
(
√

ε2 + y − y0 − ε) ∼ y − y0

f0
∼ t.

Suppose now that y > y0 + 1. Clearly f2(ξ) + 2H ∼ f2(ξ) for ξ > y0 + 1. Hence

t ∼ 1
f0

+
∫ y

y0+1

f−1(ξ) dξ ∼ 1
f0

(1 + max(1, y − y0 − 1)) ∼ 1
f0

,

and similar expression holds for φ−2.
When the estimates from Proposition Ap4 are obtained, the justification of the asymp-

totics (Ap5) is done precisely by the same well known arguments as for the case of diffusions
with bounded coefficients, see e.g. Chapter 3 of book [Kol2]. This leads to the following
result.

Theorem Ap1. The Green functions vG and uG of the Cauchy problems for equations
(Ap1) and (1.12) respectively exist as smooth functions and for small t enjoy the estimates

vG(t, y, y0) = O(t−1/2) exp{−S(t, y, y0)}, (Ap12)

uG(t, x, x0) = O(t−1/2)x−1
0 exp{−S(t, b−1/2 ln x, b−1/2 ln x0)}. (Ap13)
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Proof. Formula (Ap13) follows from (Ap12) by the change of the variables. As we
mentioned, (Ap12) follows by rather standard arguments. Namely, a standard formula of
the perturbation theory gives for the exact Green function vG the following (formal) series
representation:

vG(t, y, ξ) = vas(t, y, ξ) +
∞∑

k=0

∫ t

0

dτ

∫ ∞

−∞
dξ vas(t− τ, y, η)FkF (τ, η, ξ), (Ap14)

where F is given by (Ap6) and Fk is the k-th power of the integral operator F defined by
the formula

Fψ(t, y, ξ) =
∫ t

0

dτ

∫ ∞

−∞
dη F (t− τ, x, η)ψ(τ, η, ξ).

In order to prove (Ap12) one needs to prove the convergence of series (Ap14) and to show
that the sum is dominated by the first term vas. This is done by the Laplace method. In
fact, let us show how the first integral in (Ap14) is estimated, namely the integral

∫ t

0

dτ

∫ ∞

−∞
dξ vas(t− τ, y, η)F (τ, η, ξ).

By (Ap6) - (Ap8), this integral can be estimated by

O(1)
∫ t

0

1√
t− τ

√
τ

dτ

∫ ∞

−∞
exp{−S(t− τ, y, η)− S(τ, η, ξ)} dξ. (Ap15)

To apply the Laplace method one looks for the stationary points of the phase, i.e. for the
solutions η0 of the equation

∂S(t− τ, y, η)
∂η

+
∂S(τ, η, ξ)

∂η
= 0,

and it is well known (and is easily seen) that the solutions are given by η0 = Y (τ, ξ, p0),
where Y (t, ξ, p0) = y, i.e. η0 lies on a trajetory of the Hamiltonian flow that joins ξ and
y in time t. Due to Proposition Ap2 this trajectory is uniquely defined, and hence η0 is
uniquely defined, and hence the phase in the Laplace integral (Ap15) has a unique minimal
point η0 such that

S(t− τ, y, η0) + S(τ, η0, ξ) = S(t, y, ξ).

Consequently (and due to the estimates of Proposition Ap4), the application of the Laplace
method to integral (Ap15) yields for this integral the estimate O(

√
t) exp{−S(t, y, ξ)},

which is of order O(t)vas(t, y, ξ), i.e. smaller than vas for small t as we claimed. Similar
estimates of other terms (obtained by induction) prove the convergence and the required
estimate of series (Ap14), which completes the proof of Theorem Ap1.

Remark. For small x−x0 one can obtain from this theorem a more precise multiplica-
tive asymptotics for the heat kernel uG. Moreover, it is not difficult to extend the estimates
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(Ap12), (Ap13) to all finite (not necessarily small) times using the Chapman-Kolmogorov
equation and again the Laplace method.
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