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It is shown that Markov chains in Zd
þ describing k-nary interacting particles of d different types approximate (in the

continuous state limit) Markov processes on Rd
þ having pseudo-differential generators p ðx; ið›=›xÞÞ with symbols

p (x,j ) depending polynomially (degree k) on x. This approximation can be used to prove existence and non-
explosion results for the latter processes. Our general scheme of continuous state (or finite-dimensional measure-
valued) limits to processes of k-nary interaction yields a unified description of these limits for a large variety of
models that are intensively studied in different domains of natural science from interacting particles in statistical
mechanics (e.g. coagulation-fragmentation processes) to evolutionary games and multidimensional birth and death
processes from biology and social sciences.
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INTRODUCTION

This paper is the second in a series of papers devoted to k-nary interacting particles (see

Refs. [18,19]) and ideologically it is a development of Ref. [18]. However, formally it does

not depend on Ref. [18], which is devoted to one-dimensional processes, where quite special

tools are available. On the contrary, the main results of this paper dwell on the theory

developed in Ref. [17].

Let Zd denote the integer lattice in Rd and let Zd
þ be its positive cone (which consists of

vectors with non-negative coordinates). We equip Zd with the usual partial order saying that

N # M iff M 2 N [ Zd
þ. A state N ¼ {n1; . . .; nd} [ Zd

þ will designate a system consisting
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of n1 particles of the first type, n2 particles of the second type, etc. For such a state we shall

denote by suppðNÞ ¼ {j : nj – 0} the support of N (considered as a measure on {1, . . . , d}).

We shall say that N has a full support if supp(N) coincides with the whole set {1, . . . , d}.

We shall write jNj for n1 þ · · · þ nd.

For a locally compact topological space, we denote by B(X) (resp. C(X)) the Banach space

of all measurable bounded functions (respectively, continuous and bounded) equipped with

the usual sup-norm. By Cc(R
d) (respectively, C s(Rd)) we shall denote the space of

continuous functions with a compact support (respectively, having s continuous derivatives).

We shall also use the standard notations of the theory of pseudo-differential operators.

Namely, for a continuous function p: R2d 7! C we shall denote by p(x, 2 i7) the (pseudo-

differential) operator with the symbol p defined as

pðx;2i7ÞuðxÞ ¼ ð2pÞ2d=2

ð
Rd

e ixj pðx; j Þ ûðj Þ dj; u [ SðRdÞ;

where ûðjÞ ¼ ð2pÞ2d=2
Ð

e2ixj uðxÞ dj is the Fourier transform of u.

Roughly speaking, k-nary interaction means that any group of k particles (chosen

randomly from a given state N) are allowed to have an act of interaction with the effect that

some of these particles (maybe all or none of them) may die producing a random number of

offspring of different types. More precisely, each sort of k-nary interaction is specified by:

(i) a vector C ¼ {c1; . . .;cd} [ Zd
þ, which we shall call the profile of the interaction, with

jCj ¼ c1 þ . . .cd ¼ k, so that this sort of interaction is allowed to occur only if N $ C

(i.e. cj denotes the number of particles of type j which take part in this act of

interaction);

(ii) a family of non-negative numbers gC(M) for M [ Zd, M – 0, vanishing whenever

M $ 2C does not hold.

The generator of a Markov process (with the state space Zd
þ) describing k-nary interacting

particles of types {1, . . . , d} is then an operator on BðZd
þ) defined as

ðGk f ÞðNÞ ¼
C#N;jCj¼k

X
Cc1

n1
. . .Ccd

nd

M

X
gCðMÞð f ðN þ MÞ2 f ðNÞÞ; ð1:1Þ

where Ck
n denote the usual binomial coefficients. Notice that each Ccj

nj
in Eq. (1.1) appears

from the possibility to choose randomly (with the uniform distribution) any cj particles of

type j from a given group of nj particles. Consequently, the generator
PjKj

k¼0Gk of k-nary

interactions with profiles not exceeding a given profile K can be written as

ðGK f ÞðNÞ ¼
C#K

X
Cc1

n1
. . .Ccd

nd

M[Zd

X
gCðMÞð f ðN þ MÞ2 f ðNÞÞ; ð1:2Þ

where we used the usual convention that Ck
n ¼ 0 for k . n. The term with C ¼ 0

corresponds to the external input of particles.

The aim of the paper is to show that the measure-valued limits (which in the present finite-

dimensional framework means just the continuous state limits) of the Markov chains with

generators (1.2) are given by Markov processes on Rd
þ having pseudo-differential generators

with polynomially growing symbols. Use this limiting procedure in order to prove the

existence and non-explosion of such Markov processes on Rd
þ.
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To this end, instead of Markov chains on Zd
þ we shall consider the corresponding scaled

Markov chains on hZd
þ, h being a positive parameter, with generators of type

ðGh
K f ÞðhNÞ ¼

C#K

X
h jCjCc1

n1
. . .Ccd

nd

M[Zd

X
gCðMÞð f ðNh þ MhÞ2 f ðNhÞÞ; ð1:3Þ

which clearly can be considered as the restriction on BðhZd
þÞ of an operator on BðRd

þÞ (which

we shall again denote by Gh
K with some abuse of notations) defined as

ðGh
K f Þ ðxÞ ¼

C#K

X
Ch
CðxÞ

M[Zd

X
gCðMÞð f ðx þ MhÞ2 f ðxÞÞ; ð1:4Þ

where we introduced a function Ch
C on Rd

þ defined as

Ch
CðxÞ ¼

x1ðx1 2 hÞ. . .ðx1 2 ðc1 2 1ÞhÞ

c1!
. . .

xdðxd 2 hÞ. . .ðxd 2 ðcd 2 1ÞhÞ

cd!

in case xj $ ðcj 2 1Þh for all j and Ch
CðxÞ vanishes otherwise.

As

h!0
lim CCðxÞ ¼

xC

C!
¼
Yd

j¼1

x
cj

j

cj

;

one can expect that (with an appropriate choice of gC(M), possibly depending on h) the

operators Gh
K will tend to the generator of a stochastic process on Rd

þ which has the form of

a polynomial in x with “coefficients” being generators of spatially homogeneous processes

with i.i.d. increments (i.e. Lévy processes) on Rd
þ, which are given therefore by the Lévy–

Khintchine formula with the Lévy measures having support in Rd
þ.

The paper is organized as follows. In second section we formulate our main results:

Theorems 1–3. Theorems 2 and 3 are obtained as consequences of more general results from

Ref. [17] (obtained by developing some ideas from Refs. [13–16]) and Theorem 1 is proved

in the third section. Fourth section is devoted to some examples of the processes with k-nary

interaction taken from various domains of natural science.

Let us stress for conclusion that this paper describes a Rd
þ-valued limit of a re-scaled

number of particles under k-nary interaction. As Rd
þ is the space of measures on a finite set

{1, . . . , d}, we have got a measure-valued limit of the Markov chain initially defined on

Zd
þ. Alternatively, as is usual in the theory of superprocesses and interacting super-

processes (see e.g. Refs. [9,10,23] and references therein), one considers points on Zd
þ as

integer -valued measures on {1, . . . , d} (empirical measures) and the limit Nh ! x, h ! 0;

describes the limit of empirical measures as the number of particles tend to infinity but the

“mass” of each particle is re-scaled in such a way that the whole mass tend to x. The finite-

dimensionality of the limit is of course due to the fact that we have considered only a finite

number of types of particles. In the next papers of this series (see Refs. [19,20]), we shall

consider bona fide (infinite dimensional) measure-valued processes, which arise as limits for

general systems of k-nary interacting particles (which may be characterised by various

discrete or continuous parameters like position in space, mass or genotype for biological

models, etc) and which can be described by generators that have the form of polynomials

with coefficients given by the Lévy–Khintchine formula or its infinite-dimensional

analogues (the case of linear polynomials corresponds to superprocesses). More precisely, if

all jumps are scaled uniformly, one obtains a deterministic limit described by a general
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kinetic equation (derived formally in Ref. [4], developing some ideas from Ref. [3]) that

includes as particular cases the well known equations of Vlasov, Boltzman, Smoluchovskii

and others. If one accelerates some short range interactions (say, with jMj ¼ 1 in Eq. (1.3)),

one gets a second order parabolic operator as part of a limiting generator, and if one slows

down the long range interactions (large M in Eq. (1.3)), one gets non-local (Lévy-type)

terms.

RESULTS

By Zt(GK) (respectively ZtðG
h
KÞ we shall denote the minimal Markov chain on Zd

þ

(respectively, on hZd
þ) specified by the generator of type (1.2) (respectively, Eq. (1.3)). For a

given L [ Zd
þ; we shall say that Zt(GK) and the generators GK, Gh

K are L-subcritical

(respectively, L-critical) if

M–0

X
gCðMÞðL;MÞ # 0 ð2:1Þ

for all C # K (respectively, if equality holds in Eq. (2.1)), where (L, M) denotes the usual

scalar product in Rd. Putting for convenience gCð0Þ ¼ 2
P

M–0gCðMÞ, we conclude from

Eq. (2.1) that the Q-matrix QK of the chain Zt(GK) defined as

QK
NJ ¼

C#K

X
Cc1

n1
. . .Ccd

nd
gCðJ 2 NÞ ð2:2Þ

satisfies the condition
P

J QK
NJ ðL; J 2 NÞ # 0 for all N ¼ {n1; . . .; nd}.

Proposition 2.1 If GK is L-subcritical with some L having full support, then (i) Zt(GK) is

the unique Markov chain with the Q-matrix (2.2), (ii) Zt(GK) is a regular jump process (i.e. it

is non-explosive), (iii) (L,Zt(GK)) is a non-negative supermartingale, which is a martingale iff

GK is L-critical.

Proof This is a direct consequence of Eqs. (2.1) and (2.2), and the standard theory of

continuous-time Markov chains. For example, statement (iii) follows either from Dynkin formula

(see Ref. [6]) or from the Feller backward integral recursion formula (see Ref. [2]) for Zt(GK).

Let us describe now precisely the generators of limiting processes on Rd
þ and the

approximating chains in Zd
þ. Suppose that to each C # K there correspond

(i) a non-negative symmetric d £ d-matrix GðCÞ ¼ GijðCÞ such that GijðCÞ ¼ 0 whenever

i or j does not belong to supp(C),

(ii) vectors b ðCÞ [ Rd
þ, g ðCÞ [ Rd

þ such that gjðCÞ ¼ 0 whenever j � suppðCÞ,

(iii) Radon measures nC and mC on {jyj # 1} , Rd and on Rd
þ\{0}, respectively, (Lévy

measures) such thatð
jjj

2
nCðdj Þ , 1;

ð
jj jmCðdjÞ , 1; mð{0}Þ ¼ n ð{0}Þ ¼ 0 ð2:3Þ

and supp nC belongs to the subspace in Rd spanned by the unit vectors ej with j [ suppðCÞ.

These objects define an operator in CðRd
þÞ by the formula

ðLK f Þ ðxÞ ¼ 2
C#K

X xC

C!
pCð2i7Þ; ð2:4Þ
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where

2pCð2i7Þ ¼ tr GðCÞ
›2

›x2

� �
f þ

Xd

j¼ 1

bjðCÞ2 gjðCÞ
� 	 ›f

›xj

þ

ð
f ðx þ yÞ2 f ðxÞ2 f 0ðxÞy
� 	

n CðdyÞ þ

ð
f ðx þ yÞ2 f ðxÞ
� 	

mCðdyÞ ð2:5Þ

is the pseudo-differential operator with the symbol 2pC(j), where

pCðj Þ ¼ ðj;GðCÞj Þ2 iðb2 g; j Þ þ

ð
1 2 e iyj þ iyj
� 	

n CðdyÞ þ

ð
1 2 e iyj
� 	

mCðdyÞ

and where as usual

tr GðCÞ
›2

›x2

� �
f ¼

Xd

i; j¼ 1

GijðCÞ
›2f

›xi ›xj

:

Operator (2.5) is known to represent the generator of a Lévy process in Rd, or a process

with i.i.d. (independent identically distributed) increments. Hence one can say that

operators (2.4) are polynomials in x with “coefficients” being the generators of Lévy

processes. A

Remark Conditions in (i) and (iii) concerning the supp(C) mean simply that a particle of

type i can not kill a particle of type j without an interaction. Condition (iii) highlights the

fact that in the framework of interacting particles, it is natural to write the generators of a

Lévy process in the form (2.5) with two measures n and m (the first one having bounded

support but infinite first moment), because only n is subject to an additional condition on

its support.

We shall say that operator (2.5) is L-subcritical (respectively, L-critical) for an L [ Zd
þ, if

b ðCÞ2 g ðCÞ þ

ð
ymCðdyÞ; L

� �
# 0 ð2:7Þ

for all C (respectively, if the equality holds in Eq. (2.7)).

Next, let Dh(C,G) be a finite-difference operator of the form

ðDhðC;GÞ f Þ ðxÞ ¼
1

h2
i[suppðCÞ

X
viðCÞ f ðx þ heiÞ þ f ðx 2 heiÞ2 2f ðxÞ

� 	

þ
1

h2
i–j:i; j[suppðCÞ

X h
vijðCÞ f ðx þ hei þ hejÞ þ f ðx 2 hei 2 hejÞ2 2f ðxÞ

� 	

þ ~vijðCÞ f ðx þ hei 2 hejÞ þ f ðx 2 hei þ hejÞ2 2f ðxÞ
� 	i

ð2:8Þ

with some constants vi,vij,ṽij (where ej are the vectors of the standard basis in Rd) that

approximate tr ðGðCÞð›2=›x2ÞÞ in the sense that���tr GðCÞ
›2

›x2
2 DhðC;GÞ f

��� ¼ OðhÞk f 000k: ð2:9Þ

for f [ C 3ðRdÞ. If f [ C 4ðRdÞ, then the l.h.s. of Eq. (2.9) can be better estimated by

O(h 2)k f (4)k.
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Remark Such Dh(C,G) is surely not unique, but its existence is clear, because Eq. (2.8) is

just a standard finite difference approximation of the second order operator tr ðGðCÞð›2=›x2ÞÞ.

Moreover, other finite difference approximations to tr ðGðCÞð›2=›x2ÞÞ could be used.

Putting Bh ¼ {x [ Rd
þ : 0 # xj , h;j} and choosing an arbitrary v [ ð0; 1Þ we can now

define an operator of type (1.4) as

Lh
K ¼

C#K

X
Ch
CðxÞp

h
C

with

ðph
C f ÞðxÞ ¼ ðDhðC;GÞf Þ ðxÞ

þ
1

h j

X
bjðCÞ f ðx þ hejÞ2 f ðxÞ þ gjðCÞ ð f ðx 2 hejÞ2 f ðxÞ

� 	� 	

þ
M:Mj$h2v;j

X
f ðx þ MhÞ2 f ðxÞ þ

j

X
Mj

�
f ðx 2 hejÞ2 f ðxÞ

	0
@

1
AvðM; hÞ

þ
M:Mj$h2v;j

X
f ðx þ MhÞ2 f ðxÞ
� 	

mCðBh þ MhÞ;
ð2:10Þ

where

vðM; hÞ ¼
1

h2M 2
~n ðBh þ MhÞ; ~n ðdyÞ ¼ y2n ðdyÞ

Proposition 2.2 Operator (2.10) is L-subcritical, if and only if

bðCÞ2 g ðCÞ þ
M

X
MmCðBh þ MhÞ; L

0
@

1
A # 0:

In particular, if LK is L-subcritical or critical, then the same holds for its approximation Lh
K .

Proof It follows from a simple observation that operator (2.8) and the operator given by the

sum in Eq. (2.10) that depends on the measure n are always L-critical for any L, i.e. they are

ej-critical for all j.

Let Z
x;h
t denote the minimal (càdlàg) Markov chain in x þ hZd

þ , Rd generated by Lh
K.

We shall denote by D �R
d

þ

½0;1Þ (respectively DRd
þ
½0;1ÞÞ the space of càdlàg sample

paths ½0;1Þ 7! �R
d
þ (respectively ½0;1Þ 7! DRd

þ
½0;1ÞÞ equipped with the canonical filtration

F t ¼ s ðXs : s # tÞ, and by XtðvÞ ¼ vðtÞ, v [ D �R
d

þ

½0;1Þ, the corresponding canonical

projections. We shall say that a probability measure Px on D �R
d

þ

½0;1Þ (respectively

DRd
þ
½0;1ÞÞ is a solution to the martingale problem with sample paths in D �R

d

þ

½0;1Þ

(respectively in DRd
þ
½0;1ÞÞ and with the initial position x [ Rd

þ, if X0 ¼ x Px almost surely

and for any function f [ C1ðRdÞ> CcðR
dÞ the process

f ðXtÞ2 f ðxÞ2

ðt

0

LfðXsÞ ds ð2:11Þ

is a Ft-martingale with respect to Px. We say that the martingale problem is well-posed if for

any x [ Rd
þ, a solution exists and is unique. Our first result is the following. A
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Theorem 1 Suppose LK of form Eqs. (2.4), (2.5) is L-subcritical with some L having full

support.

(i) There exists a solution to the martingale problem for Lh
K from Eq. (2.7) with

sample paths D �R
d

þ

½0;1Þ for any x [ Rd
þ.

(ii) The family of processes ZhN, h
t , h [ ð0; 1�, N ¼ x=h, with any given x [ Rd

þ is tight and

it contains a subsequence that converges (in the sense of distribution) as h ! 0 to a

solution of the martingale problem for LK.

Part (i) is a consequence of (ii), and part (ii) is proved in third section.

Surely this result is not quite satisfactory, because it does not include the uniqueness of the

limiting point for ZNh , h
t . And without uniqueness one even cannot be sure that the solution to

the martingale problem defines a Markov process. The uniqueness of a solution to a

martingale problem is known to be usually much harder to get than the existence. In case

without interaction (jKj ¼ 1 in our setting), i.e. for superprocesses, the uniqueness is usually

obtained via duality, which seems to be not available in the general case. We shall get the

uniqueness under some additional assumptions using results from [17].

First we shall need some assumptions on the measures m and n. Let

p0ðjÞ ¼
C#K

X
pCðjÞ:

We shall suppose that there exists c . 0 and constants aC . 0, bC , aC such that for

each C.

(A1) jIm p
m
Cðj Þ þ Im pn

Cðj Þj # cjp0ðj Þj,

(A2) Re pn
Cðj Þ $ c21jprn C

ðj Þj
aC and jðpn

CÞ
0ðj Þj # cjprnC ðj Þj

bC

where prnC is the orthogonal projection on the minimal subspace containing the support of

the measure nC.

Remarks These conditions are not very restrictive. It allows, in particular, any stable

Lévy measures of any degree of degeneracy. Moreover, if
Ð
jjj

1þbCnCðdjÞ , 1, then the

second condition in (A2) holds, because je ixy 2 1j # cjxyj
b

for any b # 1 and some

c . 0. In particular, the second inequality in (A2) always holds with bC ¼ 1. Hence, in

order that (A2) holds it is enough to have the first inequality in (A2) with aC . 1.

Let us say that type j of particles is immortal, if for any solution of the martingale problem

for LK, the j-th co-ordinate of the process Xx
t will be positive for all times almost surely

whenever the j-th co-ordinate of x was positive. In other words this means that the boundary
�Uj ¼ {x [ �Rd : xj ¼ 0} is inaccessible. Various criteria for immortality can be found in

Appendix 3 of Ref. [17], for instance, as a simple sufficient condition one can assume that

cj $ 2 whenever either GjjðCÞ – 0 or
Ð
ðxjÞ

2nCðdxÞ – 0.

Now we can formulate our first result on uniqueness.

Theorem 2

(i) Let the conditions of Theorem 1 together with (A1), (A2) be satisfied. If, in addition,

all types of particles are immortal, then the martingale problem of LK is well-posed and

has sample paths in DRd
þ
½0;1Þ; i.e. the boundary is almost surely inaccessible. Hence this
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solution defines a strong Markov process in Rd
þ, which is a limit (in the sense of

distributions) of the Markov chains Z
Nh ; h
t , as h ! 0 with Nh tending to a constant.

(ii) If, in addition to the hypotheses in (i), cj $ 2 whenever either GjjðCÞ – 0 orÐ
ðxjÞ

2nCðdxÞ – 0, and cj $ 1 whenever either bjðCÞ – 0 or
Ð

xjmCðdxÞ – 0, the

semigroup of the corresponding Markov process preserves the space of bounded

continuous functions on �R
d
þ vanishing on the boundary. If, moreover, jKj # 2 (i.e. only

binary interactions are allowed) and for jKj ¼ 2 the drift term and the integral term

depending on mC vanish, the corresponding semigroup is Feller, i.e. it preserves the

space of continuous functions on Rd that tend to zero when the argument approaches

either the boundary or infinity.

Proof This is a consequence of a more general Theorem 9 in Ref. [17].

Our second result on uniqueness will be more general. Let us say that a type j of

particles is not revivable if bjðCÞ ¼ 0 whenever j is not contained in the support of C,

and suppmC belongs to the subspace spanned by the vectors ej with j [ suppC.

In more general terminology from Ref. [17] this means that the boundary hyperspace
�Uj ¼ {x [ �Rd : xj ¼ 0} is gluing. The meaning of the term revivable is revealed in the

following result. A

Theorem 3 Under the conditions of Theorem 1 and conditions (A1), (A2), suppose that all

types of particles are either immortal or are not revivable. Then for any x [ Rd
þ there exists a

unique solution to the martingale problem for LK under the additional assumption that,

for any j, if at some (random) time t the j-th coordinate of Xt vanishes, then it remains zero

for all future times almost surely (i.e. once dead, the particles of type j are never revived).

Moreover, the family of Markov chains ZNh,h
t converges in distribution to this solution to the

martingale problem.

Proof The uniqueness follow from more general Theorem 10 from Ref. [17]. Since the

family of processes ZNh,h
t converges in distributional sense to the martingale solution Xt,

Theorem 1 applies to the effect that Xt inherits the non-revivability property, because each

process ZNh,h
t is non-revivable. A

Remark Various criteria for the semigroup of the process from Theorem 3 to be Feller can

be found in Ref. [17].

PROOF OF THEOREM 1

Step 1 The family of processes Z
Nh; h
t , h [ ð0; 1�, Nh ¼ x is tight.

Proof First we observe that the compact containment condition holds, i.e. for every e . 0

and every T . 0 there exists a compact set Ge ;T , Rd
þ such that

h
inf P

n
ZNh; h

t [ Ge ;T ;t [ ½0; T�
o
$ 1 2 e

uniformly for all starting points x from any compact subset of Rd
þ. In fact, the compact

containment condition for ðL; Z
Nh; h
t Þ follows directly from maximal inequalities for positive

supermartingales and Proposition 2.1. It implies the compact containment condition for Xx
t ,

because L is assumed to have full support. The tightness can now be deduced by standard

methods. First, as the Dynkin formula for f ðZ
Nh; h
t Þ with any f [ SðRdÞ gives explicit
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expressions for predictable projection and the quadratic variation of supermartingale

f ðZ
Nh; h
t Þ, the tightness follows from Aldous-Rebolledo criterion in precisely the same manner

as in e.g. Ref. [10] for the case of superprocesses. Alternatively, even simpler, one deduces

the tightness directly from Remark 5.2 in Chapter 4 of Ref. [11] and Step 2 below. A

Step 2 The operators Lh
K approximate LK on the space C 3ðRd

þÞ> CcðR
dÞ, i.e. for an

arbitrary function f in this space

kðLh
K 2 LKÞfk ¼ oð1Þ

x
sup 1 þ jxj

jKj
� �

jyj$jxj2h
max j f 0ð yÞj þ j f 00ð yÞj þ j f 000ð yÞj

� 	
; ð3:1Þ

with o(1) as h ! 0 not depending on f (but only on the family of measures mC,nC, see

Eqs. (3.2), (3.4) below for a precise dependence of o(1) on h).

Proof Estimate (2.9) shows that the diffusion part of LK is approximated by finite sums of

the form X
Ch
CðxÞDhðC;GÞ

in the required sense. It is obvious that the drift part of lK is approximated by the sum in

Eq. (2.10) depending on b and g. Let us prove that the integral part of 2pC(2 i7) depending

on nC is approximated by the corresponding sum from Eq. (2.10) (similar fact for the integral

part depending on m is simpler and is omitted).

Since

ð f ðx 2 hejÞ2 f ðxÞÞ ¼ 2hf 0ðxÞ þ
1

2
h2f 00ðx 2 uejÞ; u [ ½0; h�;

and

M:Mj$h2v

X Xd

j¼ 1

Mjh
2vðM; hÞ # 2

M:Mj $ h2v

X Xd

j¼ 1

Mjh
2n ðBh þ MhÞ

# 2h
Xd

j¼1

ð
y:yj$h 12v ; j

yjn ðdyÞ

# 2hv

ð
jyj

2
n ðdyÞ;

the sum in Eq. (2.10) depending on n can be written in the form

M:Mj$h2v

X
f ðx þ MhÞ2 f ðxÞ2 h f 0ðxÞ;M

� 	� 	
v ðM; hÞ þ OðhvÞ

jyj$jxj2h

sup j f 00ð yÞj

ð
jyj

2
n ðdyÞ

and hence the difference between this sum and the corresponding integral from Eq. (2.5) has

the form

M:Mj$h2v

X
f ðxþMhÞ2 f ðxÞ2h f 0ðxÞ;M

� 	� 	
vðM;hÞ2

ð
y:yj$h2v;j

f ðxþyÞ2 f ðxÞ2 f 0ðxÞy
� 	

nðdyÞ

þ
jyj$jxj2h

sup jf 00ðyÞj Oð1Þ

ðh 12v

0

jyj
2
nðdyÞþOðhvÞ

ð
jyj

2
nðdyÞ

 !
: ð3:2Þ
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To estimate the difference between the sum and the integral here, we shall use the

following simple general estimate����
M

X
gðMhÞ ~n ðMh þ BhÞ2

ð
gðxÞ ~n ðdxÞ

���� # hkg0ðxÞk

ð
~n ðdxÞ; ð3:3Þ

which is valid for any continuously differentiable function g in the cube �B1. Estimating

the difference between the sum and the integral in Eq. (3.2) by means of Eq. (3.3)

with gð yÞ ¼ jyj
22
ð f ðx þ yÞ2 f ðxÞ2 f 0ðxÞyÞ (that clearly satisfies the estimate kg0k #

supjyj$jxjj f 000ðyÞjÞ yields for this difference the estimate

jyj$jxj

sup j f 000ðyÞjOðhÞ

ð
jyj

2
n ðdyÞ: ð3:4Þ

Clearly Eq. (3.1) follows from Eqs. (3.2), (3.4) and the observation that Ch
CðxÞ ¼

Oð1 þ jxj
jKj
Þ for C # K. A

Step 3 End of the proof. As the coefficients of LK grow at most polynomially as x !1,

similarly to Eq. (3.1) one shows that the operators Lh
K , h . 0, approximate LK on the

Schwarz space S(Rd), i.e. for an arbitrary f [ SðRdÞ the estimate kðLh
K 2 LKÞfk ¼ oð1Þ as

h ! 0 holds uniformly for all f from the ball supxð1 þ jxjÞjKjþ4j f 000ðxÞj , R with any R.

Since S(Rd) is an algebra that separates points and vanishes nowhere, one uses Remark 5.2

from Chapter 4 of Ref. [11] to complete the proof of tightness from Step 1 and Lemma 5.1

from Chapter 4 of Ref. [11] to conclude that the distribution of the limit of a converging

subsequence of the family Z
Nh ; h
t solves the martingale problem for LK.

EXAMPLES

We discuss here shortly some examples of k-nary interactions from statistical mechanics

and population biology giving some preference to the models, where Theorems 2 or 3 are

applicable. For general background on interacting particles we refer to monographs [7] or [21].

1. Branching processes and finite-dimensional superprocesses. Branching without

interaction in our model corresponds clearly to the cases with K ¼ 1 and hence

represents the simplest possible example. In this case the limiting processes in Rd have

pseudo-differential generators with symbols p(x,j) depending linearly on the position x.

The corresponding processes are called (finite-dimensional) superprocesses and are

well studied, see e.g. Refs. [9,10].

2. Coagulation-fragmentation and general mass preserving interactions. These are

natural models for the applications of our results in statistical mechanics (for general

background on coagulation-fragmentation, see [1]). For these models, the function L

from Theorem 1 usually represents the mass of a particle. We do not discuss this here,

because the next issues of this series (see [19,20]) deal with these models in detail; the

discussion includes also infinite-dimensional measure-valued limits. Notice only that in

the present finite-dimensional situation we always get an inaccessible boundary so that

Theorem 2 applies.

3. Local interactions (birth and death processes). Generalizing the notion of local

branching widely used in the theory of superprocesses (see e.g. Refs. [9,10]), let us say
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that the interaction of particles of d types is local, if a group of particles specified by a

profile C can produce particles only of type j [ suppC. Processes subject to this

restriction include a variety of the so-called birth and death processes from the theory of

multidimensional population processes (see, e.g. Ref. [2] and references therein) such

as competition processes, predator-prey processes, general stochastic epidemics and

their natural generalizations (seemingly not much studied yet) that take into account the

possibility of birth from groups of not only two (male, female) but also of more large

number of species (say, for animals, living in groups containing a male and several

females, as by gorillas). Clearly the assumption of locality excludes migration

processes. In the framework of our general model, the assumption of locality gives the

following additional restrictions on the generators (2.4), (2.5):bjðCÞ ¼ 0, whenever j is

not contained in the support of C, and suppmC belongs to the subspace spanned by the

vectors ej with j [ suppC. This clearly implies that the whole boundary of the

corresponding process in Rd
þ is gluing and Theorem 3 is valid giving uniqueness and

convergence.

4. Evolutionary games. A popular way of modelling the evolution of behavioural

patterns in populations is given by the replicator dynamics (see Refs. [12,22] for an

extensive account of the theory), which is usually deduced by the following

arguments. Suppose a population consists of individuals with d different types of

behaviour specified by their strategies in a symmetric two-player game given by the

matrix A whose elements Aij designate the payoffs to a player with the strategy i

whenever the players apply the strategies i and j. Suppose the number of

individuals playing strategy i at time t is xi ¼ xiðtÞ with the whole size of the

population being mðxÞ ¼
Pd

j¼1xj: If the payoff represents an individual’s fitness

measured as the number of offsprings per time unit, the average fitness Aijxj /m(x)

of a player with the strategy i coincides with the payoff of the pure strategy i

playing against the mixed strategy x=mðxÞ ¼ {x1=mðxÞ; . . .; xd=mðxÞ}. Assuming

additionally that the background fitness and death rate of individuals (independent

of outcomes in the game) are given by some constants B and C yields the following

dynamics

_xi ¼ B 2 C þ
Xd

j¼1

Aij

xj

mðxÞ

 !
xi; ð4:4Þ

called the standard replicator dynamics (which is usually written in terms of the

normalized vector x /m(x)). A rigorous deduction of this system of equation in Rd
þ

from the corresponding Markov chain on Zd
þ is given in Ref. [5]. Of course, it

follows from our general Theorem 3.

Having in mind the recent increase in the interest in stochastic versions of replicator

dynamics (see Ref. [8] and references therein), let us consider now a general model of this

kind and analyse the possible stochastic processes that may arise as continuous state (or

measure-valued) limits. Denoting by Nj the number of individuals playing the strategy j and

by N ¼
Pd

j¼1 Nj the whole size of the population, assuming that the outcome of a game

between players with strategies i and j is a probability distribution Aij ¼ {Am
ij } of the number

of offsprings m $ 21 of the players ð
P1

m¼21Am
ij ¼ 1Þ and the intensity aij of the reproduction
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per time unit (m ¼ 21 means the death of the individual) yields the Markov chain on Zd
þ

with the generator

Gf ðNÞ ¼
Xd

j¼1

Nj

X1
m¼21

Bm
j þ

Xd

k¼1

ajkAm
jk

Nk

jNj

 !
f ðN þ mejÞ2 f ðNÞ
� 	

ð4:5Þ

(where Bm
j describe the background reproduction process), which is similar to the generator

of binary interaction G2 of form (1.1), but has an additional multiplier 1=jNj on the intensity

of binary interaction that implies that in the corresponding scaled version of type (1.3) one

has to put a simple common multiplier h instead of h jCj. Apart from this modification, the

same procedure as for Eqs. (1.1)–(1.3) applies leading to the limiting process on Rd
þ with the

generator of type

LEG ¼
Xd

j¼1

xj fj þ
Xd

k¼1

xk

mðxÞ
fjk

 !
; ð4:6Þ

where all fj and fjk are the generators of one-dimensional Lévy processes, more precisely

fjk f ðxÞ¼gjk

›2f

›x2
j

ðxÞþbjk

›f

›xj

ðxÞþ

ð
f ðxþyejÞ2f ðxÞ21y#1ðyÞ

›f

›xj

ðxÞyj

� �
njkðdyÞ; ð4:7Þ

fj f ðxÞ¼gj

›2f

›x2
j

ðxÞþbj

›f

›xj

ðxÞþ

ð
f ðxþyejÞ2f ðxÞ21y#1ðyÞ

›f

›xj

ðxÞy

� �
njðdyÞ; ð4:8Þ

where 1M denotes as usual the indicator function of the set M and all njk, nj are Borel measures

on (0,1) such that the function min ( y, y 2) is integrable with respect to these measures, gj

and gjk are non-negative. Let ~njkðdyÞ¼y2njkðdyÞ, ~njðdyÞ¼y2njðdyÞ and

vjk¼ðhlÞ22 ~njkð½lh;lhþ1ÞÞ; vj¼ðhlÞ22 ~njð½lh;lhþ1ÞÞ: Then the corresponding approximation

to (4.6) of type (4.5) after scaling can be written in the form

Lh
EG f ðNhÞ¼h

Xd

j¼1

Nj fh
j þ
Xd

k¼1

Nk

mðNÞ
fh

jk

 !
f ðNhÞ;

where mðNÞ¼
Pd

j¼1Nj and fh
jk f ðNhÞ equals

1

h2
gjk f ðNhþhejÞþf ðNh2hejÞ22f ðNhÞ
� 	

þ
1

h
jbjkj f ðNhþhej sgnðbjkÞÞ2f ðNhÞ

� 	
þ

l$h2v

X
f ðNhþlhejÞ2f ðNhÞþlðf ðNh2hejÞ2f ðNhÞÞ

� �
vjkðl;hÞ

þ
X1
l¼1

f ðNhþð1þlhÞejÞ2f ðNhÞ
� �

njkð½1þlh;1þlhþhÞÞ; ð4:10Þ

and similarly fh
j are defined. The terms in Eq. (4.10) that approximate diffusion, drift and

integral part of Eq. (4.7) have different scaling and have different interpretation in terms of

population dynamics. Clearly, the first term (approximation for diffusion) stands for a game

that can be called “death or birth” game, which describes some sort of fighting for

reproduction, whose outcome is that an individual either dies or produces an offspring.

The second term (approximating drift) describes games for death or for life depending on the

sign of bjk. Other terms describe games for a large number of offsprings and are analogues of
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usual branching but with game-theoretic interaction. The same arguments as given for the

proof of Theorems 1 and 3 yield the following result (observe only that no particles are

revivable in this model, and no additional assumption of subcriticallity is required due to

Theorem 1 in Ref. [17], since the coefficients grow at most linearly):

Proposition 4.1 Suppose conditions (A1), (A2) hold for all measures njk, nj. Then for any

x [ Rd
þ there exists a unique solution to the martingale problem for LEG under the additional

assumption that, for any j, if at some (random) time t, the j-th coordinate of Xt vanishes, then

it remains zero for all future times almost surely. Moreover, the family of Markov chains

Z
Nh; h
t defined by Lh

EG converges in distribution to this solution to the martingale problem as

h ! 0 and Nh ! x.

If the limiting operator is chosen to be deterministic (i.e. the diffusion and non-local term

vanish and only a drift term is left), we get the standard replicator dynamics (4.4).

Similarly one obtains the corresponding generalization to the case of non-binary (k-nary)

evolutionary games (see e.g. Ref. [8] for biological and social science examples of such

games), the corresponding limiting generator having the form
Pd

j¼1xjFj; where Fj are

polynomials of the frequencies yj ¼ xj=
Pd

i¼1xi with coefficients being again generators of

one-dimensional Lévy processes.
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