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Chapter 1

Phylogenetic Gaussian Processes for Bat Echolocation

J.P. Meagher∗, T. Damoulas†, K.E. Jones‡, and M. Girolami§
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The University of Warwick.
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The reconstruction of ancestral echolocation calls is an important part of
understanding the evolutionary history of bats. General techniques for
the ancestral reconstruction of function-valued traits have recently been
proposed. A full implementation of phylogenetic Gaussian processes for
the ancestral reconstruction of function-valued traits representing bat
echolocation calls is presented here. A phylogenetic signal was found
in the data and ancestral reconstruction performed. This promising
preliminary analysis paves the way for more realistic models for the
evolution of echolocation in bats.

1. Introduction

The emerging field of Data Science is driven by research which lies at the

nexus of Statistics and Computer Science. Bioacoustics is one such area gen-

erating vast quantities of data, often through citizen science initiatives [1].

Bioacoustic techniques for biodiversity monitoring [2] [3] have the poten-

tial to make real policy impacts, particularly with regard to sustainable

economic development and nature conservation.

Bats (order Chiroptera) have been identified as ideal bioindicators for

monitoring climate change and habitat quality [4], and are of particular in-

terest for monitoring biodiversity acoustically. Typically, a bat broadcasts

information about itself in an ultrasonic echolocation call [5]. The develop-
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ment of automatic acoustic monitoring algorithms [2] [6] means that large

scale, non-invasive monitoring of bats is becoming possible.

Monitoring bat populations provides useful information, but an under-

standing of the evolutionary history is required to identify the cause and

effect of any changes observed. The echolocation call structure, which re-

flects a bats diet and habitat [7], is a key aspect of this evolutionary history.

Reconstructing ancestral traits [8] relies on a statistical comparative anal-

ysis incorporating extant species and fossil records [9]. However, the fossil

record is of limited use in inferring ancestral echolocation calls in bats.

Therefore, statistical data science techniques may shed some light on this

topic.

Previous studies of bat echolocation calls for both classification [6] and

ancestral reconstruction [10] analysed features extracted from the call spec-

trogram. These call features relied upon domain knowledge to ensure they

were sensibly selected and applied. More recently, general techniques for

the classification of acoustic signals have been developed [11] [3]. General

techniques for the ancestral reconstruction of function-valued traits have

also been proposed [12]. Jones & Moriarty [13] extend Gaussian Process

Regression [14] to model the evolution of function-valued traits [15] over a

phylogeny, a method which was demonstrated for synthetic data by Haji-

pantelis et al. [16]. This current research investigates these techniques in

the context of the bat echolocation calls.

The structure of this paper is as follows, section 2 presents details on

representing echolocation call recordings as function-valued traits. Section

3 develops the model for evolution given by a phylogenetic Gaussian Pro-

cess. The results of the analysis of bat echolocation calls are then presented

and discussed in sections 4 and 5.

2. Echolocation Calls as Function-Valued Traits

A functional data object is generated when repeated measurements of some

process are taken along a continuous scale, such as time [17]. These mea-

surements can be thought of as representing points on a curve that varies

gradually and continuously. In the context of phylogenetics, these func-

tional data objects are function-valued traits [15].

Given a phylogenetic tree T, representing the evolutionary relationships

between the recorded bat species, we denote the mth call recording of the

lth individual bat of the species observed at point t ∈ T by {x̂tlm(n)}N
t
lm−1

n=0 .

Thus, {x̂tlm(n)} is a series of discrete measurements of the function xtlm(·),
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Fig. 1. A recording of a bat echolocation call (a) along with the log energy spectral

density of the call (b) and the smooth functional representation of that spectral density

restricted to the range [9− 212]kHz (c).

observed at the time points given by n
fS

, where fS is the sampling rate,

in samples per second (Hz), of the recording. Assume then that xtlm(·) =

xtl (·) + ztlm(·), where xtl (·) is the representative call function for the lth

individual and ztlm(·) is the noise process for the mth call. Further, assume

that xtl (·) = xt(·) + ztl (·) where xt(·) is the representative call function for

the bat species at t and ztl (·) is the noise process for the lth individual. It

is the phylogenetic relationship between the species level echolocation call

functions that we are interested in modelling.

The call recordings themselves are functional data objects, however

modelling the phylogenetic relationships between {xtlm(t)} and {xt′l′m′(t)}
directly implies that the processes are comparable at time t. This is not

the case for acoustic signals, a phenomenon which is often addressed by

dynamic time warping [18]. Another approach to this issue is to consider

an alternative functional representation of the signal.

The Fourier transform of xtlm(·) is given by

Xt
lm(f) =

∫ ∞
−∞

xtlm(t)e−i2πftdt.

The energy spectral density of xtlm(·) is the squared magnitude of the

Fourier transform and the log energy spectral density is given by

Etlm(·) = 10 log10

(
|Xt

lm(·)|2
)
.

Similarly to the call functions, Etlm(·) is the log energy spectral density

of the mth call of the lth individual from the species at t where Etlm(·) =

Etl (·) + Zt
lm(·) and Etl (·) = Et(·) + Zt

l (·) where Zt
lm(·) and Zt

l (·) are noise

processes, each with an expected value of zero. The log energy spectral

density is a periodic function of frequency which describes the energy of a

signal at each frequency on the interval F = [0, fS2 ]. [19]
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The discrete Fourier Transform [19] of {x̂tlm(n)} provides an estimate

for the log energy spectral density, the positive frequencies of which are

denoted {Etlm(k) : k = 0, . . . ,
Nt

lm

2 + 1}. Smoothing splines [20] are applied

to this series to obtain Êtlm(·), a smooth function estimating Etlm(·).
We now have a functional representation of each bats echolocation call

where the pairs of observations {f, Êtlm(f)} and {f, Êt′l′m′(f)} are directly

comparable. These function-valued traits can now be modelled for evolu-

tionary inference.

3. Phylogenetic Gaussian Processes

A Gaussian process places a prior distribution over functions, f(x) ∼
GP(m(x), k(x, x′)), where x ∈ RP is some input variable, the mean function

m(x) = E[f(x)], and the covariance function k(x, x′) = cov(f(x), f(x′)).

Given observations y at locations {xn}Nn=1, Gaussian noise, and kernel hy-

perparameters θ, a posterior predictive distribution over functions can be

inferred analytically. See Rasmussen & Williams [14] for an in depth treat-

ment.

Jones & Moriarty [13] extend GPs for the inference of function-valued

traits over a phylogeny. Consider Et(·), a functional representation of the

echolocation call of the species observed at the point t on the phylogenetic

tree T with respect to frequency. Modelling this as GP function, where

Et(f) corresponds to a point (f, t) on the frequency-phylogeny F ×T, re-

quires that a suitable phylogenetic covariance function, ΣT ((f, t), (f ′, t′)),

is defined.

Arja
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Fig. 2. A sub tree from the full phylogeny T (a) and a simulated univariate phylogenetic

OU GP over that sub tree (b).
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Deriving a tractable form of the phylogenetic covariance function re-

quires some simplifying assumptions. Firstly, it is assumed that conditional

on their common ancestors in the phylogenetic tree T, any two traits are

statistically independent.

The second assumption is that the statistical relationship between a trait

and any of it’s descendants in T is independent of the topology of T. That is

to say that the underlying process driving evolutionary changes is identical

along all individual branches of the tree. We call this underlying process

along each branch the marginal process. The marginal process depends on

the date of t, the distance between t and the root of T, denoted t.

Finally, it is assumed that the covariance function of the marginal pro-

cess is separable over evolutionary time and the function-valued trait space.

Thus, by defining the frequency only covariance function K(f, f ′) and the

time only covariance function k(t, t′) the covariance function of the marginal

process is Σ ((f, t), (f ′, t′)) = K(f, f ′)k(t, t′).

Under these conditions the phylogenetic covariance function is also sep-

arable and so

ΣT ((f, t), (f ′, t′)) = K(f, f ′)kT(t, t′). (1)

For a phylogenetic Gaussian Process Y with covariance function given

by (1), when K is a degenerate Mercer kernel, there exists a set of n deter-

ministic basis functions φi : F → R and univariate GPs Xi for i = 1, . . . , n

such that

g(f, t) =

n∑
i=1

φi(f)Xi(t)

has the same distribution as Y . The full phylogenetic covariance function

of this phylogenetic GP is

ΣT((f, t), (f ′, t′)) =

n∑
i=1

kiT(t, t′)φi(f)φi(f
′),

where
∫
φi(f)φj(f)df = δij , δ being the Kronecker delta, and so the phy-

logenetic covariance function depends only on t, t′ ∈ T.

Thus, given function-valued traits observed at f × t on the frequency-

phylogeny, where f = [f1, . . . , fq]
T and t = [t1, . . . , tQ]T, an appropri-

ate set of basis functions φF = [φF1 (f), . . . , φFn (f)] for the traits E =

[Et(f), . . . , Et′(f)], and Gaussian Processes, XT = [XT
1 (t), . . . XT

n (t)], the

set of observations of the echolocation function-valued trait are then

E = XTφ
T
F . (2)
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The problem of obtaining estimators φ̂F and X̂T is dealt with by Haji-

pantelis et al. [16]. φ̂F is obtained by Independent Components Analysis,

as described by Blaschke & Wiscott [21] after using a resampling procedure

to obtain stable principal components for the observed traits. Given φ̂F ,

the estimated matrix of mixing coefficients is X̂T = E(φ̂T
F )−1.
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Fig. 3. Set of independently evolving basis functions identified for bat echolocation
calls.

Each column of XT is an independent, univariate, phylogenetic GP,

XT
i (t), modelled here with phylogenetic Ornstein-Uhlenbeck (OU) process

kernel.

The phylogenetic OU process is defined by the kernel

kiT(t, t′) = (σip)
2 exp

(
−dT(t, t′)

`i

)
+ (σin)2δt,t′ (3)

where δ is the Kronecker delta, dT(t, t′) is the distance along T between

t and t′ ∈ T, and θi = [σip, `
i, σin]T is the vector of hyperparameters for

XT
i (·). The phylogenetic covariance matrix for XT

i (t) is denoted ΣiT(t,t)

and the marginal likelihood of the observed data given θ is

log(p(E|θ)) ∝ −1

2

n∑
i=1

(
Xi(t)TΣiT(t,t)−1Xi(t) + log |ΣiT(t,t)|

)
(4)
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and so θ can be estimated by type II maximum likelihood estimation.

Ancestral Reconstruction of the function valued trait for the species

at t∗ then amounts to inferring the posterior predictive distribution

p(Et∗(·)|E) ∼ N (A,B) where

A =

n∑
i=1

(
ΣiT(t∗,t)

(
ΣiT(t,t)

)−1
XEi (t)φi(·)

)
(5)

B =

n∑
i=1

(
ΣiT(t∗, t∗)− ΣiT(t∗,t)

(
ΣiT(t,t)

)−1
ΣiT(t∗,t)T

)
φi(·) (6)

We note that the elements of θ each have intuitive interpretations. The

total variation of observed points is σp + σn, where σp is the phylogenetic

noise, and σn is the non-phylogenetic noise. σp is the variation depending on

the evolutionary time between any t, t′ ∈ T, while σn accounts for variation

that does not depend on the phylogeny. The length-scale parameter, `,

indicates the strength of the correlation between points on T, where large

values of ` indicate a correlation that decays slowly as dT(t, t′) increases.

4. Results

4.1. Data Description

Post processed echolocation call data accompanying Stathopoulos et al. [2]

was used in this analysis. Live bats were caught, identified, and recorded at

a sampling frequency of 500 kHz. In total the dataset consists of 22 species

from five families, 449 individual bats and 1816 individual echolocation

call recordings. The distribution of these call recordings across species is

summarised in Table 1.

Collen’s [10] Bat super-tree provided the phylogenetic tree of the

recorded bat species, T.

4.2. Hyperparameter Estimation and Ancestral Trait Recon-

struction with Phylogenetic Gaussian Processes

We are interested in modelling the evolution of Et(·), the function valued

trait representing xtlm(·), with a phylogenetic GP. However, only 22 species

of bat are represented in T. The relatively small size of this dataset presents

challenges for the estimation of the kernel hyperparameters in (3). A short

simulation study was performed to investigate the the accuracy of estimated

hyperparameters for a phylogenetic GP over T.
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Table 1. Echolocation Call Dataset

Species Key Individuals Calls

Family: Emballonuridae

1 Balantiopteryx plicata Bapl 16 100

Family: Molossidae

2 Nyctinomops femorosaccus Nyfe 16 100
3 Tadarida brasiliensis Tabr 49 100

Family: Vespertilionidae

4 Antrozous pallidus Anpa 58 100

5 Eptesicus fuscus Epfu 74 100
6 Idionycteris phyllotis Idph 6 100

7 Lasiurus blossevillii Labl 10 90
8 Lasiurus cinereus Laci 5 42

9 Lasiurus xanthinus Laxa 8 100

10 Myotis volans Myvo 8 100
11 Myotis yumanensis Myyu 5 89

12 Pipistrellus hesperus Pihe 85 100

Family: Mormoopidae

13 Mormoops megalophylla Mome 10 100
14 Pteronotus davyi Ptda 8 100

15 Pteronotus parnellii Ptpa 23 100

16 Pteronotus personatus Ptpe 7 51

Family: Phyllostomidae
17 Artibeus jamaicensis Arja 11 82

18 Desmodus rotundus Dero 6 38
19 Leptonycteris yerbabuenae Leye 26 100

20 Macrotus californicus Maca 6 53

21 Sturnira ludovici Stlu 8 51
22 Sturnira lilium Stli 4 20

We are not limited to a single observation at any given t. By repeatedly

sampling at each observed t, larger samples can be obtained, improving the

quality of the estimators θ̂. With this in mind, 1000 independent, univariate

phylogenetic GPs were simulated for each of n = {1, 2, 4, 8} according to the

kernel (3) with θ = [1, 50, 1]T, where n is the number of samples generated

at each leaf node. The likelihood of each of these samples (4) is then

maximised to give a type II maximum likelihood estimator θ̂ and the results

summarised in Table 2. This simulation study indicates that at least n = 4

observations are needed at each leaf node to provide stable estimators θ̂.

Given the modelling assumptions made in Section 2 an unbiased esti-
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Table 2. Summary of θ̂ for 1000 simulations of
independent OU processes with θ = [1, 50, 1]T

reporting: sample mean (standard error)

n σ̂p ˆ̀ σ̂n

1 1.09 (0.47) 1014 (1015) 0.57 (0.54)
2 0.97 (0.29) 1013 (1014) 0.99 (0.15)

4 0.97 (0.25) 63.66 (136.96) 1.00 (0.09)

8 0.99 (0.24) 56.21 ( 48.24) 1.00 (0.06)

mator for Et(·) is the sample mean given by

Êt (·) =
1

lt

lt∑
l=1

1

ml

ml∑
m=1

Êtlm(·) (7)

where ml is the total number of recordings for the lth individual and lt is

the number of individuals recorded from the species at t ∈ T. However,

Table 2 indicates that 22 samples is not enough to obtain a stable θ̂ by type

II maximum likelihood estimation. We implement a resampling procedure

to leverage multiple estimates for each Et(·) from the dataset. This will

produce a stable estimator, θ̂.

A resampled estimator Êtr (·) is obtained by sampling at random one call

from nr individuals of the species at t and calculating the arithmetic mean

of the sample, similarly to (7). This can be repeated to create an arbitrary

number of estimates for Et. Resampling across all the species in the dataset

we create a resampled dataset Êr = [Êt1r,1(f), Êt1r,2(f), . . . , Êt2r,1(f), . . . ], where

f is the vector of frequencies over which Êt2r (·) is sampled. The methods

outlined in Section 3 can then be applied to each resampled Êr
Our analysis set nr = 4 and included 4 samples of Êtr (f) in each Êr for

r = 1, . . . , 1000. This reflected the structure of the dataset, for which the

minimum number of individuals per species was 4, and the results of the

simulations study which showed that 4 observations per species provided

reasonably stable estimates for θ. Note also that f = [9, 10, . . . , 212]T, which

reflects the spectrum of frequencies over which bats emit echolocation calls.

φ̂F was obtained by identifying the first six principal components, which

accounted for approximately 85% of the variation, in each Êr. By averaging

over each sample, a single set of six stable, approximately orthogonal, basis

functions were identified. These basis functions were then passed through

Blaschke & Wiscott’s [21] algorithm to produce a set of six independent ba-

sis functions for Et(·). Thus X̂r, the matrix of mixing coefficients described
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by (2), the columns of which are modelled a phylogenetic OU processes,

is obtained for each Êr. θ̂r is then the type II maximum likelihood esti-

mator of (4) given Êr. Table 3 presents the results of the hyperparameter

estimation procedure.

Table 3. Summary of θ̂r over 1000 Êr samples re-

porting: sample mean (standard error)

Basis σ̂p ˆ̀ σ̂n

1 2.30 (0.11) 12.27 ( 4.18) 1.18 (0.11)
2 3.17 (0.11) 27.63 ( 3.70) 1.26 (0.13)

3 4.05 (0.32) 70.50 (20.31) 1.19 (0.12)
4 3.32 (0.17) 22.86 ( 8.95) 1.96 (0.19)

5 3.00 (0.13) 26.93 ( 2.85) 1.21 (0.11)

6 3.70 (0.14) 12.82 ( 4.52) 1.28 (0.15)

Ancestral reconstruction by a phylogenetic GP involves obtaining the

posterior predictive distribution of the trait at the ancestral node t∗ ∈ T

given by (5) and (6).

To perform ancestral trait reconstruction for Et∗(·) the species level

traits are estimated by (7) and and the model hyperparameters are set to

be the mean values of θr reported in Table 3.

Fig. 4. Ancestral Reconstruction of the function valued trait representing the echoloca-
tion calls of the bat species included in the sub tree shown in Figure 2 (a). Grey shaded

region represents one standard deviation of variation around Êt(·).
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5. Conclusions and Further Work

This preliminary analysis has developed a model for the evolution of echolo-

cation in bats and identified a phylogenetic signal which allows the con-

struction of a posterior predictive distribution for ancestral traits. The log

energy spectral density has been identified as a trait representative of the

echolocation call in bats. This trait, representing the energy intensity of the

call across the frequency spectrum, is modelled as a series of independent

components, combinations of energy intensities across the spectrum, each

of which evolves according to a phylogenetic Ornstein-Uhlenbeck process.

Estimating the hyperparameters governing these Ornstein-Uhlenbeck pro-

cesses from observed traits provides an insight into the evolution of these

traits. Each of the hyperparameters has an intuitive interpretation where
σp

σp+σn
indicates the proportion of variation in the sample accounted for

by the phylogenetic distance between species, while ` provides a measure

of how quickly correlation along the phylogeny decays. We are working

towards understanding what the results of this analysis could mean with

respect to the evolution of echolocation in bats.

One particular limitation of the model is the representation of the

echolocation call by a log energy spectral density. Echolocation calls have

complex spectral and temporal structures, much of which is lost in the

log energy spectral density representation. An alternative time-frequency

representation, which preserves more of this structure, is the spectrogram.

Modelling the evolution of bat echolocation calls with spectrograms, and

implementing this model for a larger dataset of bat echolocation calls, is to

be the subject of future research.

The interested reader can access the datasets and code used to produce

these results through the R package ’sdsBAT’ which is still under develop-

ment and can be found at https://github.com/jpmeagher/sdsBAT.
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