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Abstract

When applied to massive multiple testing problems, where the number of tests being
performed simultaneously can be in the thousands, classical hypothesis testing methods
produce too many false positives to alow meaningful inferences to be made.

This paper presents a review of methods for the control of the rate of false positives
in multiple testing problems. These are then applied in the context of a Functional
Connectivity study of data produced by a fMRI scan of an individuals brain in a resting
state.

As part of this analysis a theorem for the asymptotic distribution of sample cross
correlations, proved by Roch Roy, will be implemented to correct for temporal correlation.

This analysis establishes that there are strong positive dependency networks within the
brain which are observed even on an individual basis. These networks are also still
observable even after correcting for multiplicity and temporal correlation.
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Chapter 1

Introduction

1.1 Multiple Testing

Researchers regularly find themselves having to test a family ofN hypotheses simultaneously.
A family of hypotheses is defined as “any collection of inferences for which it is meaningful to
consider some combined measure of error[13]” and whether N = 10 or N = 10, 000 drawing
reasonable inference requires more nuanced techniques than the repeated application of
classical methods[7]. The fact is that, as the number of hypotheses tested simultaneously
increases, the likelihood of at least one of these hypotheses presenting as non-null purely
by chance also increases.

Consider an experiment investigating whether a single coin is fair or more likely to land
on heads. The null hypothesis (H0) and alternative hypothesis (H1) can be characterised
as

H0 : p = 0.5, H1 : p > 0.5.

When a fair coin is flipped 10 times, the probability that it lands on heads 9 or more times
is approximately 0.0107. Should this outcome occur in the experiment it is reasonable to
reject H0, concluding that the coin is not fair. Now consider an experiment investigating
whether any of 100 coins are fair or biased in favour of heads. In this case a family of 100
hypotheses, each of which, for i ∈ {1, . . . , 100}, can be expressed as

H0,i : p = 0.5, H1,i : p > 0.5.

When 100 fair coins are flipped 10 times each, the probability that at least one of them
will show heads 9 or more times is approximately 0.76. So finding that the ith coin came
up heads 9 or more times does not necessarily imply that it is biased in favour of heads,
although it may be of interest for future experiments.

This toy example illustrates the pitfalls of testing multiple hypotheses simultaneously. In
the era of “Big Data”, where data mining and biological datasets such as microarrays
mean that testing a family of N = 10, 000 hypotheses simultaneously is not uncommon,
an appreciation of the challenges associated with inference on this scale becomes ever
more important to analysts.

When presented with a problem involving the simultaneous testing of multiple hypotheses,
and analyst can employ a Simultaneous Testing Procedure (STP) to identify which of
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the null hypotheses in the family should be rejected. STP’s fall into two main categories,
those controlling the Familywise Error Rate (FWER), and those which control the False
Discovery Rate (FDR). FWER represents the probability that at least one true H0,i is
rejected by the testing procedure, while the FDR is the proportion of rejected hypotheses
(R) which are in fact null[7].

In this thesis the problem of multiple testing and how to adjust inferences accordingly
will be examined, taking a family of hypotheses investigating Functional Connectivity
in an individuals brain as an example. This dataset, recorded in a functional Magnetic
Resonance Imaging (fMRI) scan, represents the activity of an individuals brain in a resting
state over 394 seconds (6 min 34 seconds).

1.2 fMRI and the Resting State Brain

fMRI offers a non-invasive, indirect method for researchers to observe changes in neuronal
activity within the brain. It does this by producing a realisation for the Blood Oxygen
Level Dependent (BOLD) signal of the brain[9]. This can be observed while the brain is
in a “Resting State” The “Resting State”, also referred to as “Spontaneous Activity”[9],
or the “Default Mode” [11], describes the behaviour observed in the brain in the absence
of specific inputs or outputs. During the data acquisition stage of a “Resting State” study,
participants lie awake and still in a scanner, either with their eyes closed or fixated on a
crosshair, without thinking about anything in particular[9]. With this data, the Functional
Connectivity (FC) of the brain is examined.

FC can be describes as the statistical association, or dependency, between anatomically
distinct time series[23] produced by a fMRI scan, or the relationship between the activity
of different anatomical regions of the brain. Motivation for examining FC in the “Resting
State” stems from the fact that while it accounts for only 2% of the body’s mass, the
resting human brain is responsible for 20% of the body’s energy consumption. Only very
small changes in the brain’s energy requirements are attributable to task performance,
thus it follows that the “Resting State” is a major aspect of normal brain function[9].
Studies have linked disturbances in the FC of the “Resting State” to schizophrenia[15]
and normal ageing[6], among other things. This implies that the “Resting State” of the
brain may provide important diagnostic and prognostic information.

It has been hypothesised that the brain follows a structure of dynamic, anti-correlated
networks which represent a task-related dichotomy[10]. There is strong evidence to support
the existence of a “Resting State”, or “Default Mode”, network in the resting brain[11]
and regions of the brain which supposedly have opposing functionality have been found
to exhibit negative correlation in the “Resting State” [9]. This network, mapped out
into Intrinsic Connectivity Networks (ICN), demonstrate both spatial and test-retest
consistency across a number of studies and individuals[24].

There is no agreed upon standard metric for quantifying FC. Although this analysis
will focus solely on the sample cross-correlation, it is advisable to consider a variety of
measures as this offers a more complete overview of the underlying network structure.
Popular methods of FC quantification include cross-correlation, partial cross-correlation,
cross-coherence, and partial cross-coherence[8]. Correlation measures apply to the time
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domain, while coherence measures apply to the frequency domain.

When quantifying FC, isolating the signals of interest can improve estimates. It has been
repeatedly shown that these signals exist at low frequency (< 0.1 Hz) bands[23]. By
filtering the dataset nuisance signals can be removed. The global BOLD signal, the signal
obtained by averaging over the whole brain, is also considered to be a nuisance signal by
many researchers, and is often removed before quantifying FC. There are however some
question marks surrounding this preprocessing step. It introduces negative correlations
into the dataset which may not necessarily exist, as removing this average forces the sum
of the cross-correlation values between any particular series and every other series to be
negative[18]. However, recent results investigating whether or not to remove the global
signal are inconclusive[8]. Thus, as it is not the focus of this paper, the global signal has
been removed in this analysis.

It has also been suggested that failing to correct for autocorrelation in fMRI time series is
a source of “spurious” estimates of FC. This is based on results from Economics. It was
found that the effect of autocorrelation on hypothesis tests of group differences between
healthy controls and schizophrenia patients was weak[1]. Despite this, the impact of
accounting for the temporal autocorrelation and cross-correlation (temporal correlation)
of series when computing test statistics for an individuals “Resting State” FC may be
worth further examination. To this effect, implementing a formula for the asymptotic
variance of sample cross-correlations[22][17][16] may result in improved test statistics.
This is investigated as part of this analysis.

1.3 Thesis Outline

This thesis presents a FC study of an individual brain in a “Resting State”. The analysis
will attempt to reproduce well established results identifying a strong positive dependency
between the Posterior Cingulate cortex (PCC) and the Medial Prefrontal Cortex (MPF)[10].
Whether these results hold after accounting for temporal correlation and implementing
controls for multiplicity will be assessed.

Chapter 2 contains a summary of the materials used and methods employed in completing
this piece of research. This covers the collection of the dataset, preprocessing, calculation
of test statistics, and implementation of controls for multiplicity.

A simulation study, presented in chapter 3, provides insight into the possible impact of
accounting for temporal correlation in the calculation of test statistics.

Chapter 4 presents the results of the analysis.

The thesis concludes in Chapter 5 with a discussion of the results.
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Chapter 2

Materials and Methods

2.1 Participant

A resting state fMRI dataset for a single scan of a single individual which is publicly
available at NITRC (http://www.nitrc.org/projects/trt) was used for this analysis. The
individual was chosen at random from a full dataset of 25 participants (mean age 29.44±
8.64, 10 males) which has previously been analysed in a test-retest evalution of functional
connectivity[8], the stability of cross-correlations[24], ICA and dual regression[30], low-frequency
oscillations[29], and graph-theoretic network properties[26].

2.2 Data Acquisition

A Siemens Allegra 3.0-Tesla scanner was used to obtain a resting-state scan for the
participant. The scan consisted of T=197 contiguous EPI functional volumes with a time
repetition (TR) = 2000ms; time echo (TE) = 25ms; flip angle (FA) = 90◦; number of
slices = 39, matrix = 64× 64; field of view (FOV) =192mm; voxel size = 3× 3× 3mm3.
During the scan, the participant was asked to relax and remain still with eyes open
during the scan. For spatial normalisation and localisation, a highresolution T1-weighted
magnetization prepared gradient echo sequence was obtained (MPRAGE, TR = 2500ms,
TE = 4.35ms; inversion time = 900ms; FA = 8, number of slices = 176; FOV = 256mm).

2.3 Preprocessing

A preprocessed dataset in it’s “native space” was provided for this analysis. This
preprocessing was performed using FSL (version 4.1, http:/www.fmrib.ox.ac.uk). The
dataset was motion corrected using FSL’s mcflirt (rigid body transform; cost function
normalised correlation; reference volume the middle volume). Using FSL’s fslmaths, the
volumes were spatially smoothed using a Gaussian kernel with FWHM = 6mm. This was
the dataset, along with a masking array, provided to the analyst in the form of a Nifti
file. The purpose of the masking array is to separate the voxels relating to the individuals
brain from the rest.
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Further preprocessing was performed in R (version 3.1, http://www.R-project.org/)[21]
requiring the installation of the oro.nifti[28] and signal[25] packages. The mask was applied
to the dataset and the global signal then removed. The dataset was then filtered through
a 4-th order Butterworth filter with passband [0.01,0.10] Hertz. Finally the dataset was
standardised to mean 0 and variance 1.

2.4 Quantifying Functional Connectivity

The sample cross-correlation at lag 0 is used to quantify FC. It is a popular metric for FC
analysis as its statistical properties are well studied and it is straightforward to compute.
The sample cross-correlation provides a measure of the linear dependence between series
Xi and Xj, where X1, . . . , XT is a realisation of a multivariate series of length T . The
sample covariance at lag k (cij(k)) is defined as

cij(k) = T−1
T−k∑
t=1

(xi,t − x̄i)(xj,t − x̄j), (2.1)

where xi,t is the realisation of Xi at time t and x̄i = T−1
∑T

t=1 xi,t.

The sample cross-correlation at lag k is then defined as

rij(k) = cij(k){cii(0)cjj(0)}−
1
2 . (2.2)

As this study has set out to reproduce the dependency between the Posterior Cingulate
Cortex (PCC) and the Medial Prefrontal Cortex (MPF), a region of interest approximating
the PCC is chosen as a seed (s). The seed for this analysis is the 3× 3× 3 voxel cube
centred on the (33,19,23) co-ordinate of the Nifti file representing the brain in it’s “native
space”. The sample cross-correlation between the seed and each voxel (v) in the brain is
computed to quantify FC for the individuals brain.

2.5 The Distribution of the Functional Connectivity

Metric

An accurate expression for the distribution of the cross-correlation between the seed and
each voxel underpins the calculation of a family of test statistics.

Roy[22] presents a proof of the asymptotic joint normality of any finite set of sample
correlations and derives a formula for the asymptotic covariance between two serial
correlations. These are stated here without proof.

Note that A′ represents the transpose of the matrix A. Let {Xt : t ∈ Z} be a multivariate
weakly stationary stochastic process of dimension r : X ′t = (X1t, . . . , Xrt). Without loss of
generality, assume that E[Xt] = 0 and let E[XtX

′
t+k] = Γ(k) = (γij(k)) be the covariance

matrix at lag k, k ∈ Z. The correlation matrix at lag k is denoted by ρ(k) = (ρij(k))

where ρij(k) = γij(k){γii(0)γjj(0)}− 1
2 .
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To simplify notation define, for k ∈ Z,

∆k(i, j, l,m) =
∞∑

u=−∞

ρij(u)ρlm(u+ k). (2.3)

Then write
sij(k) = T

1
2 (rij(k)− ρij(k)), (2.4)

it can be shown that

lim
T→∞

cov{sab(k), sde(h)} =
1

2
ρab(k)ρde(h){∆0(a, d, a, d) + ∆0(a, e, a, e) (2.5)

+ ∆0(b, d, b, d) + ∆0(b, e, b, e)}
− ρab(k){∆h(a, d, a, e) + ∆h(b, d, b, e)}
− ρde(h){∆k(b, d, a, d) + ∆k(b, e, a, e)}
+ ∆h−k(a, d, b, e) + ∆h+k(b, d, a, e)

The results of the paper are summarised as

Theorem 2.5.1 Let {Xt} be a multivariate second-order stationary process satisfying
the assumptions of the central limit theorem of Hannan[12]. Further, suppose that all
cumulants of fourth order are zero and that the spectral density of each component of {Xt}
is square integrable. Let sij(k) be defined by (2.4), then any finite set of the sij(k)′s are
jointly asymptotically normal with mean zero and covariance structure given by (2.5).

The assumptions made by Hannan[12] are that Xt is ergodic, is a causal linear process,
generated according to

Xt =
∞∑
j=0

ψjZt−j

∞∑
j=0

||ψj||2<∞

E[ZjZ
′
j] = δijΣ

E[Zt] = 0

where δij is Kroneker’s Delta, Σ is an r × r matrix, ||·|| is a norm for r × r matrices, and
Zt are the prediction errors. Hannan also assumes that the first four moments of Zt are
constant.

2.6 Calculation of Test Statistics

In order to test a family of N hypotheses a family of N test statistics t must first be
constructed. Theorem 2.5.1, Roy’s Theorem, provides an expression for the asymptotic
covariance of the sample cross-correlations. Note that

Γ(k) = Γ(−k), ρ(k) = ρ(−k)′. (2.6)
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It is now possible to construct two families of test statistics. The first reflects the current
standard practice in the FC literature [8][24] and requires the additional assumption that
realisations of Xt are independent and identically distributed (IID), that is that each Xt

is not temporally correlated. For the IID case (2.5) reduces to

lim
T→∞

V ar(sij(0)) = (1− ρ2ij(0))2.

Thus by Roy’s Theorem

T
1
2 (rij(0)− ρij(0))

·∼ N (0, (1− ρ2ij(0))2)

where (
·∼) indicates an asymptotic distribution. A Fisher’s z transform[4] is applied to

the data. This stabilises the asymptotic variance of the cross-correlation meaning that it
is not dependent on the population cross-correlation (ρsv(0)). Fisher’s Z transform applies
the function g(·) to the data where

g(x) = tanh−1(x).

By this transformation
T

1
2 g(rsv(0)− ρsv(0))

·∼ N (0, 1). (2.7)

Thus the first family of test statistics tf can be computed where for each voxel v ∈
{1, . . . , 49441}

tfsv = T
1
2 g(rsv(0)− ρ̂sv,0(0)), (2.8)

where ρ̂sv,0(0) is ρsv(0) under the null hypothesis. Where the null hypothesis is true tfsv
follows an asymptotically N (0, 1) distribution. This is the standard test statistic used in
FC literature.

The second test statistic calculated does not require the additional assumption of
independent and identically distributed realisations of Xt. Again, note (2.6), reducing
(2.5) to

lim
T→∞

V ar(sij(0)) =
1

2
ρ2sv(0){∆0(i, i, i, i) + 2∆0(i, j, i, j) + ∆0(j, j, j, j)} (2.9)

− 2ρij(0){∆0(i, i, i, j) + ∆0(j, i, j, j)}
+ ∆0(i, i, j, j) + ∆0(j, i, i, j).

Denote lim
T→∞

V ar(sij(0)) as σ2
ij. By Roy’s Theorem

T
1
2 (rij(0)− ρij(0))

·∼ N (0, σ2
ij). (2.10)

Suppose now that there is an estimate for σ2
ij, denoted σ̂2

ij. The second family of test
statistics tr can be calculated for v ∈ {1, . . . , 49441} as

trsv =
T

1
2 (rsv(0)− ρ̂sv,0(0))

σ̂sv
. (2.11)

with ρ̂sv,0(0) is ρsv(0) under the null hypothesis and trsv is asymptotically N (0, 1) when
the null hypothesis is true.
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2.7 Estimation of the Asymptotic Variance

In order to calculate the family of test statistics tr (2.9) an estimate for σ2
ij (2.11) must be

computed. Mélard & Roy[17] set out and justify an algorithm for computing confidence
intervals and test statistics for the autocorrelations of a univariate time series. This
algorithm has been adapted here for the multivariate case. The algorithm relies on the
use of a window function to ensure that the estimator σ̂2

ij is non-negative definite and
converges to σ2

ij. The window function ensures that estimates of ρij(k) for large k, which
are based on small samples, do not have a disproportionate effect on the estimator σ̂2

ij.

Recall the definitions for the sample covariance (2.1) and sample correlation (2.2) and
choose a window wu = w(u/bT,H), subject to |u|≤ T − 1, where bT,H = H

√
T . A Modified

Bartlett window setting H = 1 throughout is used in this analysis, defined as

w(x) =

{
1− |x|, if |x|≤ 1,

0, if |x|> 0.

An estimate for ∆k(i, j, l,m) (2.3) can now be computed

∆̂k(i, j, l,m) =
T−i−1∑
u=−T+1

wuwu+krij(u)rlm(u+ k).

An estimate for σ2
ij (2.9) is calculated as

σ̂2
sv =

1

2
r2sv(0){∆̂0(s, s, s, s) + 2∆̂0(s, v, s, v) + ∆̂0(v, v, v, v)} (2.12)

− 2rsv(0){∆̂0(s, s, s, v) + ∆̂0(v, s, v, v)}
+ ∆̂0(s, s, v, v) + ∆̂0(v, s, s, v).

It can be shown that σ̂2
ij converges to σ2

ij in probability[17].

2.8 Hypothesis Testing

Inference in neuroimaging is typically focused on hypothesis testing rather than developing
point estimates of actual correlation value[1], and this analysis retains this focus.

Borrowing heavily from Casella & Berger[5], a hypothesis is defined as a statement about
the underlying parameter. The two complementary hypotheses in the hypothesis testing
problem are the null hypothesis H0, and the alternative hypothesis H1. In this context, a
family of hypotheses is being tested where, for each v ∈ {1, . . . , 49441}, the hypotheses
can be expressed as

H0,v : ρsv(0) = 0, H1,v : ρsv(0) 6= 0. (2.13)

The hypothesis test is a decision rule D which specifies for which sample values the
decision is made to accept H0 as the truth, and for which sample values H0 is rejected as
false in favour of H1. The critical region R is the subset of the sample space for which D
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rejects H0. D depends on a test statistic t1. Knowledge of the distribution of t under H0

(when H0 is true), allows for the definition of R. The families of test statistics, tf (2.8)
and tr (2.11), have been defined. Both are asymptotically distributed as N (0, 1) and so
R can be defined for each tsv.

When testing a single hypothesis, a test may make one of two types of error, either Type
I or Type II error.

Decision/Truth H0 True H0 False
Reject H0 Type I Error Correct Decision

Fail to Reject H0 Correct Decision Type II Error

Table 2.1: Possible outcomes of a hypothesis testing procedure for a
single hypothesis

Type I error occurs when t is within R and H0 is true. Type II errors occur when t is
outside R and H1 is true. The power function β(t) of a hypothesis test can be defined as

β(t) = P[t ∈ Rcrit]

where

P[t ∈ Rcrit] =

{
P[Type I Error|H0 True]

P[Type II Error|H1 True]
(2.14)

2.8.1 Näıve Hypothesis Testing

A first attempt at inference for the dataset is provided by näıvely performing a classical
hypothesis test controlling the probability of a Type I error for each member of the family
of hypotheses.

A critical value α is chosen. This represents the acceptable probability of a Type I error.
Thus

α = P[Reject H0|H0 True]

The critical region for the test Rα is constructed, such that

P[t ∈ Rα|H0 True] = α

Thus, by rejecting H0,v when t ∈ Rα for v ∈ {1, . . . , 49441}, the probability of a Type I
error occurring at test v is set to α.

The results of the hypothesis tests can be reported simply by stating the critical value
and whether or not each null hypothesis has been rejected. Alternatively the p-value for
the test can be reported.

Definition 2.8.1 A p-value p(t) is a test statistic satisfying 0 ≤ p(t) ≤ 1 for every
possible value of t. Small values of pv provide evidence that H0 should be rejected. A
p-value is valid if

P[p(t) ≤ α|H0 True] ≤ α

1t is used interchangably to represent either a general test statistic or situations that apply to both
families of test statistics tf and tr
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H0 is rejected when for some critical p-value, p(t) ≤ pcrit. In the case of classical
hypothesis testing pcrit = α, therefore when the p-value is less than the critical value, the
null hypothesis is rejected.

The family of hypothesis tests described in this case (2.13) is a union-intersection test, or
two-tailed hypothesis test. Thus, the critical region is the union of two sets. By (2.7) and
(2.10)

(tsv|H0,v True)
·∼ N (0, 1)

and so asymptotically Rα in each case is

Rα = (−∞, zα
2
) ∪ (z1−α

2
,∞)

when P[Z > zα] = α with Z ∼ N (0, 1). Z is also referred to as a Gaussian distribution.
Therefore, reject H0,v when

|tsv|> z1−α
2
.

The p-value for each hypothesis is also calculated and reported according to Definition
2.8.1, where

pv = 2 · P(Z > |tF,v|, |tR,v|). (2.15)

The null hypothesis is rejected when

pv < α.

In this analysis reported p-values are transformed by the −log10(·) function. This is simply
to aid the interpretation of very small values of pv.

Hypothesis testing in this manner is referred to as näıve as this testing of cross-correlations
between 49,441 individual voxels and a seed simultaneously, ensuring a large number of
“false positive” results. Suppose H0,v is in fact true for every voxel and all the assumptions
underlying the calculation of a test statistic hold. Under these conditions and setting
α = 0.05, the expected number of rejected null hypotheses in the family is 2,472. These
are “false positives” results make it more likely that spurious relationships will be found.
Some control for multiplicity is required before meaningful inferences can be drawn from
the data.

2.9 Controls for Multiplicity

Controls for multiplicity are methods for controlling the rate at which false positives occur
when conducting multiple hypotheses tests simultaneously. These are called Simultaneous
Testing Procedures (STP) and involve adjusting either the relevant test statistics or critical
value. Two classes of STP are considered here, those based on Familywise Error Rate
(FWER) control and those which control the False Discovery Rate (FDR).

2.9.1 Familywise Error Rate Control

FWER is the probability of rejecting at least one true H0 in a family of hypothesis testing
problems[7]. In this case

FWER = P[Reject any true H0,v]. (2.16)
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The standard methodology for a FWER control STP takes a family of p-values and
indicates which hypotheses are to be rejected while controlling the FWER. This can be
done by computing adjusted p-values p̃i for which, by rejecting H0,i only when p̃i ≤ α,
the analyst ensures

FWER ≤ α.

A STP can control FWER in either a weak sense or a strong sense. Weak FWER control
relies on the assumption that all the null hypotheses are in fact true. This is known as
the complete null hypothesis. Strong FWER control however, holds even when only some
subcollection of the null hypotheses are true. This is the partial null hypothesis[27].

Two methods of FWER control are considered in this analysis. The first is a Holm’s
step-down STP[14]. The second is Westfall & Young’s resampling STP[27].

Holm’s step-down STP

In order to implement a step-down STP first arrange family of p-values in order, such
that,

p(1) ≤ p(2) ≤ . . . ≤ p(N), (2.17)

where N is the number of hypotheses being tested simultaneously. A testing algorithm
is then applied to the ordered p-values such that if H0,(i) is rejected then all H0,(j) for
j ∈ 1, . . . , i− 1 must also be rejected.

In order to define Holm’s step-down STP first consider the STP based on Bonferroni’s
bound. Bonferroni’s STP constitutes a classic and conservative FWER control method.
Bonferroni’s STP is a single step STP, where the STP performs the equivalent multiplicity
control for all tests, regardless of ordering. When implementing Bonferroni’s STP reject
all H0,i for which

pi ≤
α

N
in terms of adjusted p-values this can be expressed

p̃i = min{Npi, 1}

and H0,i is rejected when p̃i ≤ α

To show that implementing these adjusted p-values controls FWER recall Booles inequality

P[∪Ai] ≤
∑

P[Ai]

Now let I0 index the true null hypotheses, having N0 members. This implies

FWER = P
[⋃
I0

(
pi ≤

α

N

)]
≤
∑
I0

P
[
pi ≤

α

N

]
= N0

α

N
≤ α

Thus Bonferroni’s bound STP controls the FWER in the strong sense, regardless of the
dependence structure of the data.

Holm’s step-down STP involves ordering p-values as in (2.17) and rejecting H0,(i), the
hypothesis with p-value p(i) if

p(j) ≤
α

N − j + 1
, for j = 1, 2, . . . , i.
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Holm[14] proved that this testing algorithm provided strong FWER control and was a
general improvement on Bonferroni’s STP.

In order to implement this STP the adjusted p-values expressed as

p̃(i) = min
{

max
j≤i
{(N − j + 1)p(v)}, 1

}
(2.18)

and H0,(v) rejected when p̃v ≤ α. This exercises a strong control on FWER such that
FWER ≤ α.

Holm’s step-down STP benefits from being computationally straightforward, however,
as it relies on probability inequalities, avoiding dependency structures within the data,
it can be excessively conservative. This is especially the case when N is large and the
hypotheses being tested are correlated, such as in fMRI data. Other methods of FWER
control are offered by random field theory and resampling from the data. These methods
take into account the dependency structure of the data and can offer a less conservative
alternative to methods based on Bonferroni’s bound. Of these approaches, this analysis
considers only resampling methods.

Westfall & Young’s Resampling STP

Westfall & Young[27] presented a method for computing adjusted p-values for multiple
testing problems by resampling under the null distribution, and outlined the conditions
under which this method provided a strong control of the FWER.

There are two general approaches to resampling, bootstrap and permutation methods,
which are performed under the null hypothesis. A bootstrap involves repeated resampling
from the original dataset with replacement, while permutations resample from the dataset
without replacement[19]. These methods construct a null dataset, against which the
sample is compared.

Resampling allows the analyst to construct an approximation Ĝ for the unknown distribution
G which generated the data X. The major benefit of resampling over parametric methods
is that the distribution Ĝ implicitly captures the dependency structures and distributional
characteristics of G. Accounting for these dependency structures usually reduces the
adjusted p-values, as compared to Holm’s STP. This improves the power of the test.

A resampling STP requires methods for testing individual hypotheses, a predefined
collection of hypotheses to be tested, and a probabilistic model for the data generating
process. With this in place, resampling should be done in a way which reflects H0.
Provided the condition of subset pivotality holds for the statistic t being resampled, this
STP controls FWER in the strong sense.

Definition 2.9.1 The distribution of t meets the subset pivotality condition if the joint
distribution of the subvector {ti; i ∈ K} is identical under the restrictions ∩i∈KH0,i and
HC

0 , for all subsets K = {i1, . . . , ij} of true null hypotheses.[27]

Here HC
0 is the complementary set to the true null hypotheses.

Given these conditions hold, a single step resampling method for computing adjusted
p-values can be implemented.

To gain an intuition for how such a STP controls the FWER, consider the data X generated
according to the distribution G. Some family of test statistics t is then computed for
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X. Given an appropriate resampling scheme, X∗ is resampled from X under some null
hypothesis, such that an estimate for G, Ĝ is computed. A family of test statistics t∗ is
also calculated for X∗. Each family of t∗ will take on a set of values, which represents a
set of values which can occur purely by chance when the null hypothesis is true. Thus
any t which fall outside the range of t∗ are unlikely to come from the null distribution.
By counting how often this occurs, adjusted p-values can be computed. Developing this
intuition allows it to be shown that a resampling STP subject to some conditions controls
the FWER in a strong sense.

In the case of a FC study employing the metric cross-correlation, subset pivotality does not
hold. This is illustrated by Example 2.2 of Westfall & Young. Despite this a resampling
STP is implemented for comparison with Holm’s STP.

Computation of adjusted p-values requires an appropriate resampling method. The
Stationary Bootstrap[20] was employed in this analysis in order to resample from the
fMRI time series. This is done by sampling blocks of a geometrically distributed size, of
expected length 1/p, with replacement. Resampling in this manner creates a pseudo time
series of length T retains the stationary properties of the original series, in contrast with
block resampling.

Algorithm 1 The Stationary Bootstrap

procedure Resampling Stationary pseudo time series X∗

Set T , length of pseudo time series required
Select X∗1 = Xt1 uniformly at random from X1, . . . , XT

for i in 2 to T do
Generate u from U ∼ U [0, 1]
if u < p then

Select X∗i = Xti uniformly at random from X1, . . . , XT

else if u > p then
Set X∗i = X(ti mod T )+1

end if
end for

end procedure

Having established the stationary bootstrap resampling scheme a version of the Westfall
& Young max T STP is implemented for the construction of adjusted p-values for a one
tailed hypothesis test. Algorithm 2 outlines the implementation of this STP

The adjusted p-values here are calculated under the null hypothesis (2.13), that is, the
series for each voxel has a correlation of 0 with the seed series. Thus the family of test
statistics t∗ is calculated for the original seed s and X∗. In order to obtain adjusted
p-values for a two tailed test Algorithm 2 is run for the data. The adjusted p-values are
then

p̃v = min
{

2 ·min{p̃upper,v, p̃lower,v}, 1
}

(2.19)

Westfall & Young also outlined a resampling method for evaluating the a resampling STP.

This algorithm estimates the true critical value of the test α0. If α̂i >> α this indicates
that H0,v is rejected too often, while α̂i << α indicates that H0,v is rejected too rarely.
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Algorithm 2 Two-tailed Single Step Resampling Method

1: procedure Calculating adjusted p-values
2: Set NBoot, the number of samples to be taken
3: Initialise Count Variables, (COUNTU, COUNTL)
4: for 1 to NBoot do
5: Resample data X∗ from X using the Stationary Bootstrap (Algorithm 1)
6: Calculate test statistics, t∗ for X∗

7: Find t∗max = max{t∗sv}
8: Find t∗min = min{t∗sv}
9: if t∗max > tsv then

10: COUNTU ← COUNTU + 1
11: end if
12: if t∗min < tsv then
13: COUNTL ← COUNTL + 1
14: end if
15: end for
16: p̃upper = COUNTU

NBoot
, p̃lower = COUNTL

NBoot

17: p̃ = min
{

2 ·min{p̃upper, p̃lower}, 1
}

18:

19: end procedure

Algorithm 3 Evaluation of Resampling-Based p-values

1: procedure Approximate α0

2: Set NBOOT , the number of bootstrap samples
3: Set NSIM , the number of simulations
4: Initialise simulation counter:COUNTS
5: Initialise bootstrap counter: COUNTB
6: for 1 to NSim do
7: Run Algorithm for adjusting p-values (Algorithm 2), setting NBoot to NBOOT
8: if p∗ ≤ α then
9: COUNTS ← COUNTS + 1

10: end if
11: end for
12: α̂ = COUNTS

NSIM

13: end procedure
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Both cases indicate that the family of null hypotheses and test statistics do not describe
the data. Algorithm 3 outlines the procedure required to perform this evaluation.

Algorithm 3 is very computationally demanding and as such was not included in the final
analysis, despite the insight it would have provided.

2.9.2 False Discovery Rate Control

FDR control represents a shift in philosophy away from FWER control, offering an
alternative, less stringent, STP for assessing multiple testing problems[7].

Consider the situation where N hypotheses are being tested simultaneously and the
decision rule D either rejects, or fails to reject H0. For N0 of the N hypotheses H0 is true,
while for N1, H1 is in fact true. The hypothetical performance of D is outlined in Table
2.2.

Decision/Truth H0 True H0 False Total
Reject H0 aD bD RD

Fail to Reject H0 N0 − aD N1 − bD N −RD
Total N0 N1 N

Table 2.2: D rejects RD out of N null hypothesis. aD of the hypotheses
rejected were incorrect decisions or “false discoveries”,
whereas bD represents the number of “true discoveries.” The
false discovery proportion (Fdp) is a/RD.

Recalling the definition of FWER, thus according to Table 2.2, FWER = P[a > 0]. FDR
control STP as proposed by Benjamini & Hochberg[2] (BHSTP) controls E[a/R].

The BHSTP first orders the p-values as in (2.17). Then, for a fixed value of q in (0,1), let
imax be the largest index for which

p(i) ≤
i

N
q (2.20)

and reject H0,(i) if
i ≤ imax.

The BHSTP returns the adjusted p-values

p̃(v) = min
{N
v
p(v), 1} (2.21)

where H0,(v) is rejected when p̃(v) ≥ q.

The theorem proved by Benjamini & Hochberg[2] states

Theorem 2.9.1 For independent test statistics and under a partial null hypothesis, the
BHSTP controls the expected false discovery proportion (Fdp) at q.

E[FdpBHSTP (q)] =
N0

N
q ≤ q

18



Note that the theorem assumes that the test statistics are independent under the null
hypothesis. Although this assumption can be weakened to positive regression dependence
on each one from a subset I0

2, neither assumption holds in the case of a FC study of fMRI
data. For cases in which the test statistics have a general dependence structure Benjamini
& Yekuteili[3] proved

Theorem 2.9.2 When the BHSTP is performed with q/(
∑N

i=1
1
i
) replacing q in 2.20, the

procedure always controls the expected Fdp at level less than or equal to N0

N
q

Implementing this theorem returns the adjusted p-values

p̃(v) = min
{

(
N∑
j=1

1

j
)
N

v
p(v), 1} (2.22)

This represents a severe penalty but does preserve FDR control for families of hypotheses
with general dependency structures, as is the case for this analysis. Thus, this is the FDR
control STP implemented for this analysis.

2.10 Simulation Study

A simulation study is conducted, investigating the impact of considering temporal
correlation when performing hypothesis tests. Simulations of moving average (MA)
and vector autoregressive (VAR) bivariate time series are tested and the performance of
the test statistics tfij (2.8) and trij (2.11) assessed.

2.10.1 Bivariate Time Series

First, define the bivariate white noise process Zt where

Zt ∼ N (0,Σ). (2.23)

Note that Σ is symmetric, that is

Σ =

(
σ1,1 σ1,2
σ2,1 σ2,2

)
where σ1,2 = σ2,1.

Now consider the bivariate time series

Xt =

(
X1,t

X2,t

)
.

Xt is defined as a MA(1) process when

Xt = ΘZt−1 + IZt
2For any increasing set D and for each i ∈ I0,P(X ∈ D|Xi = x) is non-decreasing in x[3]
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where

Θ =

(
θ1,1 θ1,2
θ2,1 θ2,2

)
, I =

(
1 0
0 1

)
.

Similarly, Xt is defined as a VAR(1) process when

Xt = ΦXt−1 + IZt, (2.24)

where

Φ =

(
φ1,1 φ1,2

φ2,1 φ2,2

)
Note that in both instances Xt is a linear process, and can be represented in the form

Xt =
∑
j∈Z

CjZt−j

which implies that the covariance matrix function of Xt is

Γ(h) =
∑
j∈Z

Cj+hΣC
′
j. (2.25)

2.10.2 Mean Squared Error

The Mean Squared Error (MSE) is a useful statistic for comparing estimators in simulation
studies. Casella & Berger [5] define MSE as

E[W − λ]2 (2.26)

where W is an estimator for the parameter λ. It can be shown that

E[W − λ]2 = V ar(W ) + (Bias(W ))2 (2.27)

where Bias(W ) = E|W − λ|.

2.11 Simulation Algorithms

Having outlined the theory required for the simulation study, two simulation algorithms
are specified. The first calculates σ̂X1X2 2.12 and rX1X2(0) 2.2 for N simulated bivariate
time series of length T . The second algorithm simulates N bivariate time series of length
T and for each series computes tF , and tR.

With these algorithms in place, a simulation study investigating the impact of accounting
for temporal correlation on the power of a hypothesis test can be performed.
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Algorithm 4 Calculation of σ̂X1X2 & rX1X2(0) for series Xt

1: procedure Simulation Procedure
2: Specify the number of series to be generated - N
3: Specify the length of each series to be generated - T
4: for 1 to N do
5: Simulate specified time series of length T.
6: Calculate estimate σ̂X1X2

7: Calculate rX1X2(0)
8: end for
9: end procedure

Algorithm 5 Calculation of tF and tR for series Xt

1: procedure Simulation Procedure
2: Specify the number of series to be generated - N
3: Specify the length of each series to be generated - T
4: for 1 to N do
5: Simulate specified time series of length T.
6: Calculate tF for Xt.
7: Calculate tR for Xt.
8: end for
9: end procedure
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Chapter 3

Simulation Study

This simulation study comprises of three experiments, each investigating a different aspect
of the implementation of Roy’s Theorem. The first experiment assesses the accuracy of
the estimate σ̂ij (2.12) of σij (2.9) and investigates the estimate asymptotic properties.
The second and third experiments compare the power functions (2.14) of hypothesis tests
implementing tF (2.8) and tR (2.11), under various conditions, where the hypothesis being
tested is H0 : ρX1X2(0) = 0 and H1 : ρX1X2(0) 6= 0

3.1 Experiment I

The first experiment simulates N = 1000 bivariate MA(1) time series for series lengths
T = 200, T = 400, T = 800. The MA(1) series (2.24) is specified by

Θ =

(
0.9 0
0 0.9

)
,Σ =

(
1 0.9

0.9 1

)
(3.1)

From the expression for the covariance function of a linear process (2.26), it is found
analytically that in this case

σX1X2 = 0.05155

Simulations were performed according to Algorithm 4, the results of which are presented
in Table 3.1 and Figure 3.1. Mean Squared Error of σ̂X1X2 and an estimate of the variance
if IID realisations of Xt ((1− r2X1X2

(0))2) could be compared.

T Mean Variance Min Median Max MSE(σ̂X1X2) MSE((1− r2)2)
200 0.0519 2.66×10−4 0.0176 0.0504 0.1263 2.66×10−4 3.43×10−4

400 0.0527 1.33×10−4 0.0242 0.0515 0.1047 1.34×10−4 2.82×10−4

800 0.0527 6.79×10−5 0.0326 0.0519 0.0885 6.93×10−5 2.65×10−4

Table 3.1: Summary statistics of σ̂X1X2 for N = 1000 simulations of a
bivariate MA(1) time series specified by (3.1) of length T
and comparison of MSE under IID assumption and under
temporal correlation.
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Distribution of σ̂ij

Figure 3.1: Histograms of σ̂X1X2
and (1 − r2(0))2 for N = 1000

simulations of a bivariate MA(1) time series specified by
(3.1) of length T . The green line represents the analytic
solution given by Roy’s Theorem.

This experiment shows that, in the case of a bivariate MA(1) series at least, σ̂ij is a good
estimator for σij, correcting the bias introduced by the IID assumption and showing a
lower MSE, as predicted by Roy’s Theorem. Focussing on MSE(σ̂ij), it is close to the
sample variance of σ̂ij for each T , suggesting that it is not a biased estimator. It is also
decreasing as T increases, suggesting that σ̂ij does in fact converge to σij as T →∞.

3.2 Experiment II

The second experiment is designed to compare the power function (2.14) of tests using
tfij and trij when H0 is in fact true. This is the Type I error rate and ideally should be
approximately equal to the critical value α.

The analysis will be performed on N = 1000 series of length T = 500. The series to be
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analysed are MA(1) (2.24) specified by

Θ =

(
θ 0
0 θ

)
, for θ ∈ {0.1, 0.25, 0.5, 0.75, 0.9}, (3.2)

and VAR(1) (2.25) specified by

Φ =

(
φ 0
0 φ

)
, for φ ∈ {0.1, 0.25, 0.5, 0.75, 0.9}. (3.3)

For all series

Σ =

(
1 0
0 1

)
,

thus ρX1X2(0) = 0 and H0 is true.

In each case simulations are run according to Algorithm 5. The critical region Rα for
each test is constructed by setting α = 0.05

Power Function when H0 True

Figure 3.2: Plots of the power of hypothesis tests when H0 true (Type I
error rate) for values of θ in bivariate MA(1) series and for
values of φ in bivariate VAR(1) series. For construction of
Rα α = 0.05, thus a test is performing well when it’s power
is approximately 0.05. The solid black line represents this
α = 0.05

Figure 3.2 demonstrates that testing hypothesis using trX1X2
results in a reduced Type I

error rate in all instances. This is to be expected as temporal correlation is now being
accounted for in the test statistics. It is important to note that while both test statistics
have elevated Type I error rates when φ is large for a VAR(1) series, trX1X2

far outperforms

tfX1X2
, which offers very little insight into the underlying correlation between series. It is
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also worth noting that in situations where temporal correlation over many time lags is
suspected to be a feature of the data the window function in the σ̂ij can be adjusted to
account for this.

3.3 Experiment III

The third and final simulation experiment investigates the power function (2.14) of the
test statistics when H1 is true, and ρX1X2(0) 6= 0. In this case the power is (1-Type II
Error Rate) and ideally should be close to 1.

As in Experiment II, the analysis simulated N = 1000 series of length T = 500 for all
MA(1) and VAR(1) series specified by (3.2), (3.3), but in this case

Σ =

(
1 ρ
ρ 1

)
, for ρ ∈ {0.5, 0.075, 0.1, 0.125, 0.15}

thus ρX1X2(0) 6= 0 and H1 is true in each case. Figure 3.3 illustrates the results of the
experiment run fo MA(1) series with Figure 3.4 illustrates the same for VAR(1) series.

In most cases hypothesis testing with tfX1X2
is slightly more powerful than using trX1X2

,
indicating that it rejects more false null hypotheses. Major discrepancies occur in VAR(1)
series with large values for φ, where tfX1X2

is far more powerful than trX1X2
. However it

is worth noting that the slope of the power function for these values (φ ∈ {0.75, 0.9}) is
relatively low, indicating that it is not very responsive to changes in the underlying value
of ρ.

3.4 Simulation Study Conclusions

The simulation study found that hypothesis tests using tfX1X2
to approximate the null

distribution were always more powerful than those using trX1X2
, however this does not

necessarily indicate that tfX1X2
is the most appropriate test statistic. In fact, the situations

where there was a major, desirable difference in power, arose only because tfX1X2
utterly

failed to describe the null distribution, as illustrated by Figure 3.5.

Figure 3.5 demonstrates the intuition that the variance of a series with high serial
autocorrelation will be severely underestimated when the assumption of IID realisations
of the series is made. Thus, it is to be expected that the family of test statistics tr provide
a far more accurate representation of the truth. In cases such as this increasing the width
of the window function, i.e. adjusting H so the window takes more lags into account, will
improve the representation of the truth further.

It is fair to conclude that trX1X2
offers a better alternative to tfX1X2

for hypothesis testing,
especially in the context of strongly autocorrelated series. Precisely what this implies for
FC studies of FMRI data, remains to be seen.
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Power Function when H1 True for MA(1) Series

Figure 3.3: Plots of the power of hypothesis tests when H1 true (1 - Type
II error rate) for values of θ & ρ in bivariate MA(1) series.
For construction of Rα, α = 0.05. The test is performing
well when the power is close to 1

Power Function when H1 True for VAR(1) Series

Figure 3.4: Plots of the power of hypothesis tests when H1 true (1 - Type
II error rate) for values of φ & ρ in bivariate VAR(1) series.
For construction of R, α = 0.05. The test is performing well
when the power is close to 1
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Distributions of tr & tf when φ = 0.9 and H0 True

Figure 3.5: Histograms comparing the distributions of test statistics tf

& tr to the theoretic asymptotic null distribution when H0

is in fact true.
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Chapter 4

Results of Functional Connectivity
Analysis of fMRI Data

The methods detailed in Chapter 2 were applied to the analysis of a fMRI dataset of an
individuals brain. Functional Connectivity, as quantified by the sample cross-correlation
between the seed cube centred on voxel (33,19,23) of the native space and every other
voxel in the brain is examined. Presented in this chapter is nothing more than the results
of implementing the methods for the dataset.

The first look at the data involves the calculation and comparison of the families of test
statistics tf (2.8) and tr (2.11). Having done this the families of hypotheses can be tested.
Firstly, the naive hypothesis testing outlined in section 2.8.1 is performed. Secondly,
controls of the Familywise Error Rate (FWER) are implemented, as per section 2.9.1.
Finally, the False Discovery Rate (FDR) control detailed in section 2.9.2 is applied to the
test statistics.

4.1 Analysis of Test Statistics

Two families of test statistics, as presented in sections 2.4-2.7, are calculated for the fMRI
dataset. These are the metrics for analysing FC.

A first look at the dataset is provided by mapping the test statistic for each voxel onto an
orthographic presentation of the brain, centred on the seed. This provides an insight into
the distribution of FC networks throughout the brain.

In these maps, test statistics were limited to the interval [-5,5]. In cases where tsv < −5, tsv
is set to -5, and in cases where tsv > 5, tsv is set to 5. The maps are presented in Figure
4.1.

Both test statistics follow a similar spatial distribution within the brain. Both show
strong positive dependencies between the PCC and MPF, reproducing the work of Fox
[10]. However trsv appears to have more values close to 0 and fewer extreme values. This
warrants a closer investigation of the distribution of the test statistics themselves.

Figure 4.2 presents the distribution of each family of FC test statistics. Some members
of each family were greater than 10, however these were not presented as most of these
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Orthographic Map of Test Statistics

(a) Orthographic Map of tF

(b) Orthographic Map of tR

Figure 4.1: Map of test statistics limited to [-5, 5], centred on the central
seed voxel (33,19,23)
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Histogram of Test Statistics

Figure 4.2: Histogram illustrating the distributions tf and tr over the
interval [-10,10]

values related to the voxels making up the seed cube and skewed the distribution. The
histogram of test statistics for the interval [10,50] and the orthographic map presenting
the spatial distribution of the differences ( tr − tf) are included as appendix B. Figure
4.2 demonstrates clearly that neither family of test statistics are distributed according to
the null hypothesis. However, the histogram presents an effect of correcting for temporal
correlation similar to that seen in Figure 3.5 of the simulation study.

4.2 Näıve Hypothesis Testing

The näıve hypothesis testing procedure was outlined in section 2.8.1. This procedure is
now applied to the fMRI dataset through the families of test statistics tf and tr testing
the hypotheses 2.13 for the critical value α = 0.05.

H0 rejected with t < 0 Failed to reject H0 H0 rejected with t > 0
tf 10,914 27,744 10,783
tr 6,196 36,088 7,157

Table 4.1: Summary of results for näıve hypothesis testing on each
family of test statistics.

The family of test statistics tr rejects far fewer hypotheses than tf . The spatial distribution
of the family of p-values on the −log10(·) is illustrated in Figure 4.3.
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Naive Hypothesis Testing Results

(a) Voxels exhibiting non-zero
cross-correlation according to
tf

(b) Voxels exhibiting non-zero
cross-correlation according to
tr

Figure 4.3: Voxels exhibiting non-zero cross-correlation with the seed
region when naively testing each hypothesis for a critical
value α = 0.05. All p-values plotted on a −log10(·) scale
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The least likely null hypotheses occur in the PCC and MPF regions of the brain.

4.3 Familywise Error Rate Controls

Two FWER control STP’s were implemented for the calculation of adjusted p-values,
Holm’s STP and a Westfall-Young single-step resampling STP, as discussed in section
2.9.1. Each STP was constructed to ensure that FWER ≤ α for α = 0.5, rejecting H0,v

when p̃v ≤ α. Thus pcrit = max{pi such that p̃i ≤ α}.

The first of these implemented is Holm’s procedure, the results of which are summarised
in Table 4.2 with the spatial distribution of adjusted p-values for rejected hypotheses
presented in Figure 4.4.

H0 rejected with t < 0 Failed to reject H0 H0 rejected with t > 0
tf 555 46,523 2,363
tr 69 48,184 1,188

Table 4.2: Summary of results for implementation of Holm’s STP on
each family of test statistics.

As expected, most of those hypotheses which were naively rejected are no longer deemed
to be of interest, although positive test statistics are more robust.

The second method of controlling FWER employed a Westfall-Young single-step Resampling
STP, using a stationary bootstrap resampling scheme for 500 bootstrap samples. Only
500 bootstrap samples were obtained due to the computational expense of the Algorithm.
The results of this are summarised in Table 4.3 with the spatial distribution of adjusted
p-values for rejected hypotheses presented in Figure 4.6.

H0 rejected with t < 0 Failed to reject H0 H0 rejected with t > 0
tf 0 49,210 231
tr 1 48998 442

Table 4.3: Summary of results for implementation of Westfall & Young’s
STP on each family of test statistics.

Somewat surprisingly the Westfall & Young resampling STP is less powerful than Holm’s
STP and the test tr is more powerful than tf . Despite this dependency between the PCC
and MPF are still observed to a degree.

It is worth including a histogram examining the test statistics for one resampled pseudo
series illustrated in Figure 4.5. Note that neither family of test statistics follow the
theoretical null distribution, both having a lower peak and fatter tails.

4.4 False Discovery Rate Control

FDR control was carried out for each family of test statistics. As detailed in section
2.9.2 the families of p-values did not satisfy the assumptions underpinning Benjamini &
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Holm’s STP Results

(a) Voxels exhibiting non-zero
cross-correlation according to
tf

(b) Voxels exhibiting non-zero
cross-correlation according to
tr

Figure 4.4: Voxels exhibiting non-zero cross-correlation with the seed
region when controlling the FWER ≤ α using Holms
Procedure. All adjusted p-values plotted on a −log10(p)
scale
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Histogram of pseudo Test Statistics

Figure 4.5: Histogram illustrating the distributions tf∗ and tr∗ over the
interval [-10,10]
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Westfall & Young’s STP Results

(a) Voxels exhibiting non-zero
cross-correlation according to
tf

(b) Voxels exhibiting non-zero
cross-correlation according to
tr

Figure 4.6: Voxels exhibiting non-zero cross-correlation with the seed
region when implementing Westfall & Young’s resampling
STP. All adjusted p-values plotted on a −log10(·) scale
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Hochberg’s STP and so Benjamini & Yekuteili’s STP was implemented. This controls the
E[False discovery proportion] ≤ q, in this case q = 0.05, by rejecting H0,v when p̃v ≤ q.
Thus pcrit = max{pi such that p̃i ≤ q}.

The results of the implementation of Benjamini & Yekuteili’s FDR control STP are
summarised in Table 4.4 and the spatial distribution of the p-values for rejected hypotheses
presented in Figure 4.7.

H0 rejected with t < 0 Failed to reject H0 H0 rejected with t > 0
tf 3,771 40,285 5,385
tr 608 46,340 2,487

Table 4.4: Summary of results for implementation of Benjmini &
Yekuteili’s FDR STP on each family of test statistics.

This STP is far mor powerful than FWER controls, though still less powerful than naive
methods. In this case the difference between the tests tf and tr is striking.
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Benjamini & Yekuteili’s FDR STP Results

(a) Voxels exhibiting non-zero
cross-correlation according to
tf

(b) Voxels exhibiting non-zero
cross-correlation according to
tr

Figure 4.7: Voxels exhibiting non-zero cross-correlation with the seed
region when implementing Benjamini & Yekuteili’s FDR
control STP. All adjusted p-values plotted on a −log10(·)
scale
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Chapter 5

Discussion and Conclusions

5.1 Functional Connectivity in the “Resting State

Brain”

This study of Functional Connectivity in the “Resting State” human brain concludes that
there is an Intrinsic Connectivity Network (ICN) in the resting brain. This manifests
itself as a high degree of linear dependency, as quantifed by the sample cross-correlation,
between the Posterior Cingulate Cortex (PCC) and the Medial Prefrontal Cortex (MPF).
These results demonstrate that this ICN is observable in an individual brain. This is still
the case even after correcting test statistics for temporal correlation and applying very
strict controls for multiplicity to these test statistics. This is demonstrated by figures
4.4,4.6, and 4.7. In each case positive dependencies were more robust, suggesting a greater
reliability associated with areas of positive dependency, as per previously established
results [24].

5.2 Controls for Multiplicity

This analysis considered two classes of controls for multiplicity. Familywise Error Rate
(FWER) control offers a stringent set of criteria for identifying result which deviate from
the null hypotheses. False Discovery Rate (FDR) control on the other hand represents a
far more liberal alternative. Each Simultaneous Testing Procedure offers it’s own set of
benefits and drawbacks.

Considering first each of the STP’s implemented in a general sense. Holm’s STP offers
a benchmark Familywise Error Rate (FWER) control STP. It is not computationally
demanding, controls the FWER in the strong sense, and requires very few assumptions.
It offers a good first look at any multiple testing problem. However, adhering strictly
to Holm’s procedure results in a test with very low power. It ignores the dependency
structure of the data which can result in an overly conservative test.

The alternative method for FWER control implementes here is offered by Westfall &
Young’s resampling STP. This takes into account the dependency structure of the data by
estimating the distribution from which the data is generated under the null hypothesis. If
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the test statistic then satisfies the subset pivotality condition, this also provides FWER
control in the strong sense, often with lower adjusted p-values than Holm’s STP. Thus it
can provide an improved testing procedure when compared with Holm’s STP. However
this method of FWER control can be extremely computationally demanding, especially if
the analyst wishes to assess the true significance level of the testing procedure. Also, it
may not be possible for the test statistic to meet subset pivotality, as was the case in this
analysis.

FDR control for families of test statistics with a general dependence structure is provided
by the Benjamini & Yekuteili STP. Even under this STP, which is far more conservative
than Benjamini & Hochberg’s FDR control, FDR control provides a far more powerful,
easy to compute alternative to FWER control. However as it only controls the expectation
of the false discovery proportion, rather than a probability, any relationships identified in
by this STP must be qualified as such. It is often more useful to consider FDR control as a
method for identifying an “interesting” sub-collection of the hypotheses in any particular
family. This sub-collection may then be ear-marked for further examination.

In the context of this particular FC study, it would appear that FDR control provides
the most useful insight into the data. When the number of hypotheses being tested
simultaneously is in the thousands, producing some false positives does not necessarily
undermine a study. Thus it is difficult to justify a strict adherence to FWER control
here, as it may give rise to a case of “throwing the baby out with the bathwater”. This is
especially the case when the analysis is simply identifying cases for which the underlying
dependency is different from zero.

Holm’s STP is ultra conservative, rejecting only 2.5% of the family of hypotheses from tr.
The performance of Westfall & Young’s resampling STP was particularly disappointing,
as it produced a STP with even lower power than Holm’s procedure.

The reason for this is illustrated bt Figure 4.5. Both tf∗ and tr∗ have fatter tails than a
gaussian distribution. Therefore controllong the FWER with these distributions leads to a
less powerful test than one assuming test statistics do in fact follow a gaussian distribution
under the null hypothesis. Figure 4.5 also explains why tr is a more powerful family of
test statistics only for the resampling STP.

Even when applying the more stringent, general FDR control of Benjamini & Yekuteili,
which has been shown in many cases to be unnecessary [3], FDR control allows the
identification of far more cases of interest than FWER control. It should be noted however
that q and α are not comparable. α represents the probability of any Type I error, while
q is the expected false discovery proportion. Decisions on exactly what value is used for
each are at the analysts discretion.

In general, when faced with a multiple testing problem an analyst should consider the
cost of a false positive result, the acceptable level of computational resources to allocate
to a solution, and the dependency structure of the data. This analysis suggests that,
at least in cases where N is large, FDR control offers a better approach to controlling
for multiplicity than FWER control. Perhaps when N is smaller FWER control is more
appropriate, for what size of N this shift may occur however, has not been examined.

One insight provided by Figure 4.5 is that, when implementing a resampling STP,
comparing the distribution of one resampled realisation to the theoretical null indicates
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how the STP will perform as compared to an inequality based STP such as Holm’s STP.
For the resampling STP to offer a more powerful alternative, the maximum and minimum
values of t∗ must be within the tails of the null distribution.

5.3 Roy’s Asymptotic Variance Estimate

The simulation study in chapter 3 demonstrated that test statistics based on Roy’s
theorem for the asymptotic covariance of cross-correlations provided a better insight
to the underlying characteristics cross-correlation than those making the assumption of
independent and identically distributed realisations of Xt.

Figure 4.5 offers an interesting insight into the behaviour of each test statistic. When
resampled under the null hypothesis tr∗ is much closer to the null distribution, with
lighter tails, than tf∗. This indicates that tests using tr will have much lower rate of
false positives. While tr∗ does still have heavier tails than a gaussian distribution, it is
worth noting that no efforts have been made in this analysis to optimise the window
function used, which may offer some improvement in the estimat σ̂ij. These observations,
along with Figures 4.2 and 3.5, imply that test statistics based implementing a Fisher’s z
transform underestimate the variance of the autocorrelations and making the tests power
less responsive to the truth.

Although the calculation of σ̂ij does create additional computational demands, there does
not appear to be any reason why this method should not be considered as the standard
practise for computing test statistics, at least in the case of an individual level brain study.

Figure 4.2 demonstrates that neither set of test statistics follows the theoretical null
distribution. The most likely explanation for this is that the empirical distribution is
produced by some voxels which follow the null distribution and others which follow
alternative distributions. Another explanation, that there is some other major source of
variance, does not seem credible, although this analysis did not include any spatial analysis
of variance. Further investigation could include the use of an Expectation-Maximisation
algorithm to identify possible alternative distributions.

The most obvious area for further study following from the implementation of Roy’s
Theorem would involve optimising the window functions used. In this analysis a Bartlett
window with H = 1 was arbitrarily chosen. How to optimise these windows remains an
open question.

Estimating the variance of series by σ̂ij could also prove useful in the construction of
confidence intervals for point estimates. This may provide an avenue for further study.

5.4 Limitations

This project was subject to the time constraints, as is the nature of any MSc. dissertation.
The most time consuming aspects of the analysis wer the writing of code to implement
Roy’s Theorem and the development of the Westfall & Young resampling STP.
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While correcting test statistics for temporal correlation proved to be a worthwhile exercise,
the time invested in the resampling STP remains a frustration. This is especially the
case when Figure 4.5 intuitively demonstrates that the resampling STP was unlikely to
offer any improvement in power over Holm’s STP, and that the data did not satisfy the
condition of subset pivotality in any case. The time involved in these aspects of the
analysis meant that other method of FWER control, such as Random Field Theory, were
not explored.

When implementing each control for multiplicity the most stringent criteria was applied
for identifying the cases for which H0 was rejected. Further work could be done to identify
methods for increasing the power of the tests while still being able to make a definite
statement about the control that was applied.

This analysis did not address explicitly any sort of spatial relationship between voxels.
Implementation of such a model may offer further insight into sources of variance, further
improving the test statistics used.

Finally, the major limitation of this study is that it took place on a single subject for a
single scan. In order to reach any meaningful general conclusions the study would have
to be expanded to include more participants. Some work on the impact of correcting for
temporal correlation in this case may have provided useful insights.
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Appendix A

R Code Implementing Roy’s
Theorem

######################################################

## FUNCTIONS FOR IMPLEMENTATION OF ROY ’S THEOREM ##

######################################################

######################################################

## Functions required to run Roy

######################################################

## Auto and cross correlations

A <- function(x, l=20){

z <- acf(x,lag.max=l,plot=F)

z$acf

}

## returns an estimate of the autocorrelation for

## l = 20

## lags , length 21

C <- function(x,y, l=20){

z <- ccf(x,y,lag.max=l,plot = F)

z$acf

}

## returns an estimate of the crosscorrelation for

## l = 20

## lags , length 41

## window functions

## Bartlett - w.b()

w.b <- function(x){

if(abs(x)<=1){

1-abs(x)

}else{

0

}

}

## Adjustment for x

w <- function(x, N, H){

x/(H*sqrt(N))

}
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######################################################

## Function to calculate Variance

## according to Roy ’s Theorem

## using Bartlett window

######################################################

Roy.Var.b <- function(seed , voxel , H = 1){

N <- length(seed)

# set number of observations

M <- ceiling(sqrt(H*N))

# make loops/correlations as small as possible to

## be efficient

s.a <- A(seed , l=M)

v.a <- A(voxel , l=M)

c.sv <- C(seed , voxel , l=M)

c.vs <- C(voxel , seed , l=M)

# Auto and Cross Correlation vectors

d.s <- 0; d.v <- 0; d.vs <- 0; d.sv <- 0

d.sssv <- 0; d.vsvv <- 0

d.vsss <- 0; d.vvsv <- 0

d.ssvv <- 0; d.vssv <- 0

# set each sum to initial value of 0

for(u in -M:M){

d.s <- d.s + ((w.b(w(u, N, H)))^2)*

((s.a[(abs(u)+1)])^2)

d.v <- d.v + ((w.b(w(u, N, H)))^2)*

((v.a[(abs(u)+1)])^2)

d.sv <- d.sv + (w.b(w(u, N, H))^2)*

((c.sv[u+M+1])^2)

d.vs <- d.vs + (w.b(w(u, N, H))^2)*

((c.vs[u+M+1])^2)

d.sssv <- d.sssv + ((w.b(w(u, N, H))^2)*

((s.a[abs(u)+1])*(c.sv[u+M+1])))

d.vsvv <- d.vsvv + ((w.b(w(u, N, H))^2)*

((c.vs[u+M+1])*(v.a[abs(u)+1])))

d.vsss <- d.vsss + ((w.b(w(u, N, H))^2)*

((c.vs[u+M+1])*(s.a[abs(u)+1])))

d.vvsv <- d.vvsv + ((w.b(w(u, N, H))^2)*

((v.a[abs(u)+1])*(c.sv[u+M+1])))

d.ssvv <- d.ssvv + ((w.b(w(u, N, H))^2)*

((s.a[abs(u)+1])*(v.a[abs(u)+1])))

d.vssv <- d.vssv + ((w.b(w(u, N, H))^2)*

((c.vs[u+M+1])*((c.sv[u+M+1]))))

}

# Estimate for each infinite sum

c <- c.sv[M+1]

# cross cor at lag 0

V <- (((1/2)*(c^2)*(d.s+d.sv+d.vs+d.v)) -

c*(d.sssv + d.vsvv) - c*(d.vsss + d.vvsv) +

d.ssvv + d.vssv)

V

}

######################################################
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Appendix B

Test statistic Graphics

(a) Distrbution of tf & tr for
values greater than 10

(b) Spatial distribution of
differences tr − tf

Figure B.1: Further information on distributions of the families of thet
statistics tf & tr.
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