Reconstructing an Ancestral Bat Echolocation Call

J.P Meagher

15 June 2016

Acknowledgements

Prof. Mark Girolami University of Warwick

Prof. Kate Jones University College London

Acknowledgements

Prof. Mark Girolami University of Warwick

Prof. Kate Jones University College London EPSRC

"to provide scientists and non-ICT specialists with unprecedented access to cutting-edge Machine Learning algorithms, transforming science across a range of data-intensive disciplines"

"to provide scientists and non-ICT specialists with unprecedented access to cutting-edge Machine Learning algorithms, transforming science across a range of data-intensive disciplines"

Alanna Maltby. *The evolution of echolocation in bats: a comparative approach*. PhD thesis, Institute of Zoology, University College London, 2012.

Alanna Maltby. *The evolution of echolocation in bats: a comparative approach*. PhD thesis, Institute of Zoology, University College London, 2012.

Davide Pigoli, Pantelis Z Hadjipantelis, John S Coleman, and John AD Aston. The analysis of acoustic phonetic data: exploring differences in the spoken romance languages. *arXiv preprint arXiv:1507.07587*, 2015.

Davide Pigoli, Pantelis Z Hadjipantelis, John S Coleman, and John AD Aston. The analysis of acoustic phonetic data: exploring differences in the spoken romance languages. *arXiv preprint arXiv:1507.07587*, 2015.

Nathaniel Shiers, John AD Aston, Jim Q Smith, and John S Coleman. Gaussian tree constraints applied to acoustic linguistic functional data. *arXiv preprint arXiv:1410.0813*, 2014.

Davide Pigoli, Pantelis Z Hadjipantelis, John S Coleman, and John AD Aston. The analysis of acoustic phonetic data: exploring differences in the spoken romance languages. *arXiv preprint arXiv:1507.07587*, 2015.

Nathaniel Shiers, John AD Aston, Jim Q Smith, and John S Coleman. Gaussian tree constraints applied to acoustic linguistic functional data. *arXiv preprint arXiv:1410.0813*, 2014.

Nick S Jones and John Moriarty. **Evolutionary inference for function valued traits: Gaussian process regression on phylogenies.** *Journal of The Royal Society Interface*, 10(78):20120616, 2013.

Get Call Recordings

Sample of Bat Echolocation Calls

Time-Frequency Representation

A Time-Frequency Representation - Spectrogram

"Functional Data Analysis is a branch of Statistics providing information about curves, surfaces, or anything else varying over a continuum" - Wikipedia

"Functional Data Analysis is a branch of Statistics providing information about curves, surfaces, or anything else varying over a continuum" - Wikipedia

$$\mathfrak{S}_{lm}^S(t_j,\omega_k) = G_{lm}^S(t_j,\omega_k) + \epsilon_{lm}^S(t_j,\omega_k)$$

Spectrogram = Underlying Surface + Noise

"Functional Data Analysis is a branch of Statistics providing information about curves, surfaces, or anything else varying over a continuum" - Wikipedia

$$\mathfrak{S}_{lm}^S(t_j,\omega_k) = G_{lm}^S(t_j,\omega_k) + \epsilon_{lm}^S(t_j,\omega_k)$$

Spectrogram = Underlying Surface + Noise

$$\mathfrak{S}_{lm}^S(t_j,\omega_k) = \mathcal{S}_{lm}^S(h^{-1}(t_j),\omega_k) + \epsilon_{lm}^S(t_j,\omega_k)$$

Spectrogram = Surface mapped from absolute to individual time scale + Noise

"Functional Data Analysis is a branch of Statistics providing information about curves, surfaces, or anything else varying over a continuum" - Wikipedia

$$\mathfrak{S}_{lm}^S(t_j,\omega_k) = G_{lm}^S(t_j,\omega_k) + \epsilon_{lm}^S(t_j,\omega_k)$$

Spectrogram = Underlying Surface + Noise

$$\mathfrak{S}_{lm}^S(t_j,\omega_k) = \mathcal{S}_{lm}^S(h^{-1}(t_j),\omega_k) + \epsilon_{lm}^S(t_j,\omega_k)$$

Spectrogram = Surface mapped from absolute to individual time scale + Noise

 $\mathcal{S}_i(t,\omega) = \mu_i(t,\omega) + \delta Z_i(t,\omega)$

Sample surface = Group Mean Surface + Noise Process

Given a set of Surfaces $\overline{Y}_1, \ldots, \overline{Y}_N$

Given a set of Surfaces $\overline{Y}_1, \ldots, \overline{Y}_N$

$$\frac{Mean Surface Estimator}{\bar{\mu}(t,\omega) = \frac{1}{N} \sum_{i=1}^{N} Y_i(t,\omega)}$$

Given a set of Surfaces $\overline{Y}_1, \ldots, \overline{Y}_N$

 $\frac{Covariance \ Operator \ Estimator}{\bar{C}(t,t',\omega,\omega') = \frac{1}{N-1} \sum_{i=1}^{N} \{ Y_i(t,\omega) - \bar{\mu}(t,\omega) \} \{ Y_i(t',\omega') - \bar{\mu}(t',\omega') \} }$

Given a set of Surfaces $\overline{Y}_1, \dots, \overline{Y}_N$

 $\frac{Covariance \ Operator \ Estimator}{\bar{C}(t,t',\omega,\omega') = \frac{1}{N-1} \sum_{i=1}^{N} \{ Y_i(t,\omega) - \bar{\mu}(t,\omega) \} \{ Y_i(t',\omega') - \bar{\mu}(t',\omega') \} }$

Require a Simplifying Assumption – Separable Covariance Operators

$$\mathcal{C}(\boldsymbol{t},\boldsymbol{t}',\boldsymbol{\omega},\boldsymbol{\omega}')=\mathcal{C}(\boldsymbol{t},\boldsymbol{t}')\mathcal{C}(\boldsymbol{\omega},\boldsymbol{\omega}')$$

Given a set of Surfaces $\overline{Y}_1, \ldots, \overline{Y}_N$

 $\frac{Covariance \ Operator \ Estimator}{\bar{C}(t,t',\omega,\omega') = \frac{1}{N-1} \sum_{i=1}^{N} \{ Y_i(t,\omega) - \bar{\mu}(t,\omega) \} \{ Y_i(t',\omega') - \bar{\mu}(t',\omega') \} }$

Require a Simplifying Assumption – Separable Covariance Operators

$$C(t, t', \omega, \omega') = C(t, t')C(\omega, \omega')$$
$$\widetilde{C}_{t}(t, t') = \frac{1}{N-1}\sum_{i=1}^{N}\int_{0}^{F} \{Y_{i}(t, \omega) - \overline{\mu}(t, \omega)\} \{Y_{i}(t', \omega) - \overline{\mu}(t', \omega)\} d\omega$$
$$\widetilde{C}_{\omega}(\omega, \omega') = \frac{1}{N-1}\sum_{i=1}^{N}\int_{0}^{T} \{Y_{i}(t, \omega) - \overline{\mu}(t, \omega)\} \{Y_{i}(t, \omega') - \overline{\mu}(t, \omega')\} dt$$

Time expansion of an Actual Echolocation Call

Time expansion of an Approximation for the Mean Echolocation Call 1

Time expansion of an Approximation for the Mean Echolocation Call 2

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Canonical Function Analysis

Given a set of Surfaces from G groups, $\{Y_{ij}: i = 1, ..., N_i; j = 1, ..., G\}$

Canonical Function Analysis

Given a set of Surfaces from G groups, $\{Y_{ij}: i = 1, ..., N_i; j = 1, ..., G\}$

find orthogonal basis functions which maximise the ratio of between group variation to within group variation

 $(B - \lambda_k W)f_k = 0$

Canonical Function Analysis

Given a set of Surfaces from G groups, $\{Y_{ij}: i = 1, ..., N_i; j = 1, ..., G\}$

find orthogonal basis functions which maximise the ratio of between group variation to within group variation

 $(B - \lambda_k W)f_k = 0$

First Three Canonical Functions for Frequency

