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Abstract Pharmacological fMRI (pharmafMRI) is a new highly innovative tech-
nique utilizing the power of functional Magnetic ResonanceImaging (fMRI) to
study drug induced modulations of brain activity. FMRI recordings are very infor-
mative surrogate measures for brain activity but still veryexpensive and therefore
pharmafMRI studies have typically small sample sizes. The high dimensionality
of fMRI data and the arising high complexity requires sensitive statistical analy-
sis in which often dimensionality reductions are crucial. We consider Region of
Interest (ROI) analysis and propose an adaptive two-stage testing procedure for re-
spectively formulating and testing the fundamental hypothesis as to whether the
drug modulates the control brain activity in selected ROI. The proposed tests are
proved to control the type I error rate and they are optimal interms of the predicted
chance of a true positive result at the end of the trial. Poweranalysis is performed
by re-expressing the high dimensional domain of power function into a lower di-
mensional easily interpretable space which still gives a complete description of the
power. Based on these results, we show under which circumstances our procedure
outperforms standard single-stage and sequential two-stage procedures focusing on
the small sample sizes typical in pharmafMRI. We also apply our methods to ROI
data of a pharmafMRI study.
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1 Introduction

Pharmacological fMRI (pharmafMRI) is an exciting new technique employing func-
tional Magnetic Resonance Imaging (fMRI) to study brain activity under drug ad-
ministration. The so-called Blood Oxygenation Level Dependent (BOLD) fMRI
contrast, often used in pharmafMRI studies, measures localblood flow changes
known to be associated with changes in brain activity. Whilebecoming more es-
tablished, pharmafMRI faces a number of challenges of whichsome are statistical.

FMRI datasets are extremely high dimensional with enormousspatial resolution
(≈ 3mm) and moderate temporal resolution (≈ 3s). The typical fMRI dataset pro-
duced by a single scanning session consists of BOLD recordings acquired during a
relatively short period of time (few hundreds time points) from around 105 voxels
(3-dimensional volume elements) throughout the brain. To handle such high dimen-
sional datasets it is often appropriate to formulate specific regional hypotheses for
the drug action and reduce accordingly the dimension of the data. The need for this
type of analysis, which can provide regional summary measures of drug effect, is
particularly acute in the typical pharmafMRI setting, in which due to the high cost
of fMRI scans only a small number of subjects can be recruited.

Region of Interest (ROI) analysis can reduce an fMRI datasets into a relatively
small number of ROI response summary measures expressing the local strength of
treatment effect across the selected brain regions. If boththe definition of ROI and
the computation of the ROI response measures are cautiouslyconducted, a statis-
tical analysis based on these ROI measures can potentially achieve high levels of
sensitivity. We wish to go along this path and apply a multivariate test assessing the
fundamental null hypothesis as to whether the new compound of interest changes
the underlying brain activity in the selected ROI.

In previous work [5], we showed that tests based on a univariate linear com-
bination of multivariate ROI responses can outperform fully multivariate methods,
especially for the typically small sample sizes of fMRI studies. The decisive ques-
tion for the former tests is the selection of the weights applied to ROI responses.
O’Brien [6] used equal weights and Läuter [3] extract the weights from the data
sums of products matrix while in Minas et al. [5] the weights are derived based on
prior information and pilot data.

Here, we develop an adaptive two-stage procedure where a weighting vector,
initially chosen based on prior information, is optimally adapted at a subsequent
interim analysis based on the collected first stage data. Thefirst and the second
weighting vector are applied to the first and second stage responses, respectively,
to produce the stage-wise linear combination test statistics. A combination function
combining the test statistics of the two studies is used to perform the final analysis.
Both weighting vectors are optimal in terms of the predictive power [7] of this two-
stage test which is analytically proved to control the type Ierror rate.

Finally, we wish to assess the performance of our testing procedure. First note
that the performance of a test with such a high dimensional design space can be hard
to interpret. We tackle this problem by proving that the highdimensional domain of
the power function can be re-expressed into a lower dimensional easily interpretable
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space which still gives a complete description of the power.Using these results, our
power analysis shows clearly those circumstances where ourprocedure outperforms
standard single stage and two-stage sequential procedures. We also apply our meth-
ods to ROI data of a pharmafMRI study in which our tests are shown to be far more
powerful than the latter methods.

2 Formulation

We start with a formal description of our problem.

Extraction of ROI measures: There are a number of different methods for ex-
tracting ROI summary measures from fMRI data. In all methodsraw data prepro-
cessing precedes modeling the series of fMRI 3-dim images typically using mass
univariate General Linear Models (GLMs) at voxel-by-voxelresolution. Then, es-
timates of the treatment effect in each voxel of each subjectare extracted from the
GLM and averaged across the predefined, based on either brainanatomy or func-
tion, ROI. The coordinates of the produced multivariate outcome correspond to a
representative measure of the treatment effect within eachROI of each subject.

Assumptions: We assume that the ROI responses of then j subjects participating
in stagej of the study are independent multivariate Normal random variables

Yji ∼ NK (µ ,Σ) , i = 1,2, ...,n j , j = 1,2, (1)

with meanµ and covariance matrixΣ . Normality is typically an acceptable assump-
tion for modeling ROI linear measures in fMRI [2].

Linear combinations: The ROI responses are summarized by scalar linear com-
binations

L ji =
K

∑
k=1

wjkYjik , (2)

Fig. 1 Typical steps of fMRI data analysis producing a multivariate ROI outcome. The prepro-
cessed series of fMRI images are modeled at voxel-by-voxel resolution using mass univariate
GLMs. Suitable estimates of parameter values (β ) expressing the treatment effect in each voxel
are first extracted from the GLM and then averaged across the predefined ROI.



4 Giorgos Minas, John A.D. Aston, Thomas E. Nichols and NigelStallard

wherewjk is the non-zero weight applied to thek-th ROI response,k = 1, ...,K, of
stagej.

Hypotheses: We wish to test the global null hypothesis of no treatment ef-
fect across all ROIH0 : µ = 0 ( =(0,0, ...,0)T) against the two-sided alternative
H1 : µ 6= 0.

Stage-wise statistics: The stage-wise linear combinationz andt statistics for
testingH0 againstH1 whenΣ is either known or unknown are respectively

Z j =
L j

σ j/n1/2
j

, Tj =
L j

sj/n1/2
j

. (3)

Here,σ2
j , L j , s2

j are the variance, sample mean and sample variance of the linear
combinationL j , respectively. The two-sidedp values,p j , j = 1,2, may be obtained
from thez or t statistics in(3).

Two-stage design: The two-stage design instructs the investigators to:

1. stop the trial (after the first stage) and rejectH0 if p1 <α1 or stop the trial without
rejection if p1 > α0

2. continue to the second stage ifα1 ≤ p1 ≤ α0 and rejectH0 if p1p2 < c.

Here, the Fisher’s product combination function [1],p1p2, is used for the final anal-
ysis. We also consider alternative functions including theInverse Normal combina-
tion function [4].

Under this design, thetype I error rate is controlled at the nominalα level if
the rejection probability of the two-stagez or t test,

pr (p1 < α1)+

∫ α0

α1

pr (p1p2 < c | p1)g(p1)dp1, g(·) density ofp1, (4)

is under the null hypothesisH0 equal toα.

Target: We wish to maximise thepower of the above two-stage tests, i.e. the
rejection probability in(4) underH1, with respect to the weighting vectorsw1,w2,
while controlling the type I error rate. In other words, we wish to find the optimal
direction in which the projection of the treatment effect vector produces optimal
power.

3 Methods

Here, we develop the proposed adaptive two-stage testing procedure. We start by
providing the optimal weighting vector for the two-stagez andt tests described
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above.

Theorem 1. Under the assumption in(1), the power of the above two stage tests,
i.e. the rejection probability in(4) under H1, is maximized with respect to w1 and
w2 if and only if the latter are both proportional toω = Σ−1µ .

The optimal vectorω is unknown and therefore we use the available information at
the planning stage (prior) and at the interim stage (posterior) to selectw1,w2.

Prior: Prior informationD0 elicited from previous studies and experts clinical
opinion is used to inform the following Normal and Inverse-Wishart priors forµ
andΣ , respectively,

(µ | Σ ,D0)∼ NK (m0,Σ/n0) , (Σ | D0)∼ IWK×K
(

ν0,S
−1
0

)

. (5)

Here,m0 represents a prior estimate forµ , n0 the number of observationsm0 is
based on; andν0, S0 respectively represent the degrees of freedom and scale matrix
of the inverse-Wishart prior.

Posterior: Under this Bayesian model, the posterior distributions, given the prior
informationD0 and the first stage datay1, have the same form as the prior distribu-
tions

(µ | Σ ,D0,y1)∼NK (m1,Σ/(n0+n1)) , (Σ | D0,y1)∼ IWK×K
(

ν0+n1,S
−1
1

)

. (6)

where the posterior estimates

m1 =
n0m0+n1ȳ1

n0+n1
, S1 = S0+(n1−1)Sy1 +

n0n1

n0+n1
(ȳ1−m0)(ȳ1−m0)

T (7)

can be thought as “weighted averages” of the prior and first stage estimates ofµ and
Σ , respectively.

The predictive power of our test, which we are interested in maximizing with
respect to the weighting vectorsw1,w2, is introduced next.
Predictive power: Predictive power expresses “the chance, given the data so far,
that the planned test rejects H0 when the trial is completed”. Given D0, the pre-
dictive powerBz,1 andBt,1 for the two-stagez andt tests, respectively, are equal
to

pr ( p1 < α1 | D0)+ pr (p1 ∈ [α1,α0], p1p2 < c | D0) (8)

and if we continue to the second stage, the predictive powerBz,2 andBt,2 given the
prior informationD0 and the first stage datay1 are equal to

pr (p1p2 < c | D0,y1) , (9)

for p j corresponding to either thez or t statistics in(3), respectively.
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Theorem 2. Under the assumptions(1) and(6), the first and second stage predic-
tive power of the z test, Bz,1 and Bz,2 are maximized with respect to w1, w2, respec-
tively, if the latter are proportional to wz,1 = Σ−1m0 and wz,2 = Σ−1m1, respectively.

Further, for largeν0, i.e. ν0 → ∞, the weighting vectorswt,1 = S−1
0 m0 andwt,2 =

S−1
1 m1 maximise the predictive power functionsBt,0 andBt,1.

Adaptive two-stage z and t tests: The proposed tests follow the two-stage
design described earlier with the first and second stage weighting vectors of the
stage-wisez and t statistics being equal towz,1,wz,2 and wt,1,wt,2, respectively.
These tests are power optimal based on the collected information. We can also prove
that they control the type I error rate.

4 Power analysis

The design variables that need to be considered for the analysis of the power func-
tion of the abovez andt tests are: (i) the stopping boundariesα0, α1 andc, (ii) the
sample sizesn0, n1 andn2 (andν0), (iii) the parametersµ andΣ and (iv) the prior
estimate(s)m0 (andS0). While the variables in (i) and (ii) are scalar, those in (iii)
and (iv) are high dimensional (RK ×R

K ×R
K×K (×R

K×K)). Without any reduction,
it would be challenging to get a full picture and explain the power performance of
our tests. However, we prove that for thez test, (iii) and (iv) can be replaced by:
(a) the Mahalanobis distance(µΣ−1µ)1/2 of the null NK(0,Σ) to the alternative
NK(µ ,Σ) distribution expressing the strength of the treatment effect and (b) the an-
gleθ between the selected and the optimal direction. The same stands for thet test
although the angular distance in (b) is replaced by one expressed in terms of easily
interpretable vectors in[0,π/2]K × [0,π/2]K ×R

K . In figure 1, we illustrate how
these results can be used to compare our procedure to standard testing procedures.
For each set values of the parameters in (i)-(ii), there is a fixed value of the angleθ
for which smaller values ofθ result in higher power for thez andt tests compared
to the classical multivariate tests and vice versa.

4.1 Application to a pharmafMRI study:

We use the sample mean and sample covariance matrix (see table 1) of ROI data
extracted from a GlaxoSmithKline pharmafMRI study (K = 11, nT = 13) to per-
form power comparisons. Even for such small sample sizes andthe fairly poor prior
estimates in table 1, the adaptivet test might be considered as sufficiently powered
(βt = 0.82). This is in contrast to standard single stage tests, suchas Hotelling’sT2

and OLS tests [6] (β
T2 = 0.30,βOLS= 0.13) as well as their corresponding sequen-

tial two-stage versions (sequential Hotelling’sT2 test not applicable fornT = 13,
β s

OLS= 0.10).
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Fig. 2 Simulation-based approximation of the power,βt , of the single-stage (green−−) and adap-
tive (blue−) linear combinationt test as well as the Hotelling’sT2 test (red··) plotted against the
total sample sizenT . The angleθ between the optimal weighting vector and the selected weighting
vector either of the single-staget test or the adaptivet test is taken to be equal to 0◦ (∗), 15◦ (◦),
30◦ (�), 45◦ (▽), 60◦ (×), 75◦ (+) and 90◦ (⋆). For small sample sizes, the power of the single-
staget test is larger (smaller) than the power of the adaptivet test if the angle between the optimal
and the selected weighting vector is small (large). For relatively large sample sizes, in contrast to
the single stage test, the adaptivet test reaches high power levels even for first stage weighting
vector orthogonal (90◦) to the optimal. For increasingnT and all other design variables remaining
fixed, the angleθ=, for which the power of theT2 test (applicable only fornT > K) is equal to the
power of thet test, is decreasing. Hereα0 = 1, α1 = 0.01,c= 0.0087 (α = 0.05),n0 = 5, ν0 = 4,
f = n1/nT = 0.5, D1 = Σ−1/2S0Σ−1/2 = I , K = 15.

5 Discussion

The formulation of specific regional hypotheses for drug action and the associated
dimensionality reductions are crucial for further establishment of pharmafMRI. As
we illustrate in our methods, ROI analysis combined with multivariate methods can
be used to answer the fundamental question as to whether the drug modulates the
brain activity over the regions of greatest interest for thestudy. We show that re-
ducing the ROI responses into a univariate linear combination can be advantageous
in terms of sensitivity compared to fully multivariate methods on ROI responses,
without any cost in terms of specificity. For the latter dimensionality reduction, we
propose deriving the weights of the linear combination by exploiting the available
prior information and allowing for data dependent adaptation at an interim analysis.
These weights are optimal in terms of predictive power give the available infor-
mation at each selection time. Further, we show how the high dimensional power
function domain space is reduced substantially to a lower dimensional easily in-
terpretable space which allows us to show clearly under which circumstances the
improvement over single stage and sequential designs is achieved. We finally show
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Table 1 Means (line 1), variances (line 3) and correlations (upper triangle of matrix in lines 5−15)
and the corresponding prior estimates (lines 2, 4 and lower triangle of matrix in lines 5−15) of
ROI data of the sample (nT = 13) of a GSK pharmafMRI study. The ROI are:Anterior Cingulate
(AC), Atlas Amygdala (A), Caudate (C), Dorsolateral Prefrontal Cortex (DLPFC), Globus Pallidus
(GP),Insula (I), Orbitofrontal cortex (OFC), Putamen (P),Substantia Nigra (SA), Thalamus (T),
Ventral Striatum (VS). Effect sizes differ across ROI and generally high correlations are observed.
Despite the fairly large distance (angle 67◦) between the optimal weighting vector and the first
stage weighting vector (for the prior estimates in the tablebelow) the adaptivet test forα0 = 1,
α1 = 0.01, c = 0.0087 (α = 0.05), n0 = 3, n1 = 6, n2 = 7 might be considered as sufficiently
powered (βt = 0.82).

ROI AC A C DLPFC GP I OFC P SA T VS
1 µk −0.01 0.06 −0.08 −0.08 −0.14 −0.02 −0.08 −0.06 −0.10 −0.10 −0.13
2 m0,k 0 0.10 −0.10 −0.10 −0.15 0 −0.15 0 −0.10 −0.10 −0.15
3 σk 0.11 0.11 0.03 0.05 0.11 0.08 0.13 0.15 0.10 0.11 0.10
4 s0,k 0.15 0.10 0.02 0.10 0.10 0.10 0.15 0.15 0.10 0.10 0.10
5 AC 1 0.70 0.87 0.88 0.73 0.89 0.66 0.81 0.26 0.95 0.70
6 A 0.70 1 0.54 0.61 0.72 0.77 0.65 0.68 0.59 0.68 0.66
7 C 0.70 0.50 1 0.89 0.72 0.87 0.47 0.80 0.27 0.90 0.74
8 DLFPC 0.70 0.70 0.70 1 0.71 0.76 0.73 0.77 0.27 0.87 0.62
9 GP 0.70 0.70 0.70 0.70 1 0.86 0.51 0.90 0.54 0.70 0.90
10 I 0.70 0.70 0.70 0.70 0.70 1 0.45 0.85 0.46 0.86 0.84
11 OFC 0.50 0.50 0.50 0.70 0.50 0.50 1 0.44 0.09 0.65 0.30
12 P 0.70 0.70 0.70 0.70 0.70 0.70 0.50 1 0.49 0.82 0.89
13 SA 0.50 0.70 0.30 0.50 0.50 0.50 0.50 0.30 1 0.30 0.55
14 T 0.70 0.70 0.70 0.70 0.70 0.70 0.50 0.70 0.50 1 0.74
15 VS 0.70 0.50 0.70 0.70 0.70 0.70 0.50 0.70 0.50 0.70 1

that our methods can outperform standard single stage and sequential two-stage
multivariate tests in a pharmafMRI study.
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