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Abstract Pharmacological fMRI (pharmafMRI) is a new highly innovatitech-
nique utilizing the power of functional Magnetic Resonameeging (fMRI) to
study drug induced modulations of brain activity. FMRI redings are very infor-
mative surrogate measures for brain activity but still vexpensive and therefore
pharmafMRI studies have typically small sample sizes. Tigh klimensionality
of fMRI data and the arising high complexity requires sewsistatistical analy-
sis in which often dimensionality reductions are cruciak @bnsider Region of
Interest (ROI) analysis and propose an adaptive two-stgjmt) procedure for re-
spectively formulating and testing the fundamental hypsth as to whether the
drug modulates the control brain activity in selected RQie proposed tests are
proved to control the type | error rate and they are optimétims of the predicted
chance of a true positive result at the end of the trial. Pamalysis is performed
by re-expressing the high dimensional domain of power fondnto a lower di-
mensional easily interpretable space which still givesrafdete description of the
power. Based on these results, we show under which circaeesteour procedure
outperforms standard single-stage and sequential tvge giacedures focusing on
the small sample sizes typical in pharmafMRI. We also applyrmethods to ROI
data of a pharmafMRI study.
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1 Introduction

Pharmacological fMRI (pharmafMRI) is an exciting new teichue employing func-
tional Magnetic Resonance Imaging (fMRI) to study brainvétyt under drug ad-
ministration. The so-called Blood Oxygenation Level Degeamt (BOLD) fMRI
contrast, often used in pharmafMRI studies, measures looald flow changes
known to be associated with changes in brain activity. Whdeoming more es-
tablished, pharmafMRI faces a number of challenges of wikiche are statistical.

FMRI datasets are extremely high dimensional with enornspasial resolution
(=~ 3mm) and moderate temporal resolution 8s). The typical fMRI dataset pro-
duced by a single scanning session consists of BOLD reags@inquired during a
relatively short period of time (few hundreds time pointsnfi around 18 voxels
(3-dimensional volume elements) throughout the brain.dardhe such high dimen-
sional datasets it is often appropriate to formulate spefjional hypotheses for
the drug action and reduce accordingly the dimension of ét@. d’he need for this
type of analysis, which can provide regional summary messsaf drug effect, is
particularly acute in the typical pharmafMRI setting, inialindue to the high cost
of fMRI scans only a small number of subjects can be recruited

Region of Interest (ROI) analysis can reduce an fMRI dasaisgd a relatively
small number of ROI response summary measures expressingcdl strength of
treatment effect across the selected brain regions. If thetllefinition of ROl and
the computation of the ROI response measures are cautioostjucted, a statis-
tical analysis based on these ROI measures can potentddligwe high levels of
sensitivity. We wish to go along this path and apply a muitat® test assessing the
fundamental null hypothesis as to whether the new compotiimdarest changes
the underlying brain activity in the selected ROIL.

In previous work [5], we showed that tests based on a uniealiaear com-
bination of multivariate ROI responses can outperfornyfallultivariate methods,
especially for the typically small sample sizes of fMRI sasd The decisive ques-
tion for the former tests is the selection of the weights &gpto ROI responses.
O’Brien [6] used equal weights and Lauter [3] extract thdéghies from the data
sums of products matrix while in Minas et al. [5] the weights derived based on
prior information and pilot data.

Here, we develop an adaptive two-stage procedure where ghtireg vector,
initially chosen based on prior information, is optimallgtagted at a subsequent
interim analysis based on the collected first stage data.fif$teand the second
weighting vector are applied to the first and second stageorees, respectively,
to produce the stage-wise linear combination test stegisfi combination function
combining the test statistics of the two studies is used tiopa the final analysis.
Both weighting vectors are optimal in terms of the predefower [7] of this two-
stage test which is analytically proved to control the typeror rate.

Finally, we wish to assess the performance of our testingguore. First note
that the performance of a test with such a high dimensiorsgildespace can be hard
to interpret. We tackle this problem by proving that the higinensional domain of
the power function can be re-expressed into a lower dimeasaasily interpretable
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space which still gives a complete description of the powsing these results, our
power analysis shows clearly those circumstances whengrooedure outperforms
standard single stage and two-stage sequential procedlVeesso apply our meth-
ods to ROI data of a pharmafMRI study in which our tests arevsthto be far more
powerful than the latter methods.

2 Formulation

We start with a formal description of our problem.

Extraction of ROl measures: There are a number of different methods for ex-
tracting ROl summary measures from fMRI data. In all metheale data prepro-
cessing precedes modeling the series of fMRI 3-dim imageisally using mass
univariate General Linear Models (GLMs) at voxel-by-vosedolution. Then, es-
timates of the treatment effect in each voxel of each sulgjecextracted from the
GLM and averaged across the predefined, based on eitheréwaiomy or func-
tion, ROI. The coordinates of the produced multivariatecoate correspond to a
representative measure of the treatment effect within Bauhof each subject.

Assumptions: We assume that the ROI responses ofrthsubjects participating
in stagej of the study are independent multivariate Normal randorabées

inNNK(IJ,Z), i:1727'--anj7 j:1727 (1)

with meanu and covariance matriX. Normality is typically an acceptable assump-
tion for modeling ROI linear measures in fMRI [2].

Linear combinations: The ROI responses are summarized by scalar linear com-
binations

K
Lii = > WikYjik (2)
=]

ROI definition Mass Univariate GLM Voxel-by-voxel fi-effect estimates ROI g-effect estimates

Fig. 1 Typical steps of fMRI data analysis producing a multivai&0O| outcome. The prepro-
cessed series of fMRI images are modeled at voxel-by-veesblution using mass univariate
GLMs. Suitable estimates of parameter valugy €xpressing the treatment effect in each voxel
are first extracted from the GLM and then averaged acrossréuzfined ROI.
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wherewjy is the non-zero weight applied to theth ROl responsek = 1, ..., K, of
stage;j.

Hypotheses. We wish to test the global null hypothesis of no treatment ef-
fect across all ROHg : u =0 ( =(0,0,...,0)T) against the two-sided alternative

Hi:p#0.

Stage-wise statistics: The stage-wise linear combinatianandt statistics for
testingHp againstH; whenZ is either known or unknown are respectively

L L
T = .
Sj/ njl/ 2

Zj = )
2 )
aj/njl/
Here,ojz, Lj, sf are the variance, sample mean and sample variance of tla line
combinatiorlj, respectively. The two-sideglvalues,p;j, j = 1,2, may be obtained
fromthez ort statistics in(3).

Two-stage design: The two-stage design instructs the investigators to:

1. stop the trial (after the first stage) and rejegif p; < a, or stop the trial without
rejection ifp; > ay
2. continue to the second stagerif < p, < a, and rejecHg if p;p, < c.

Here, the Fisher’s product combination function [ip,, is used for the final anal-
ysis. We also consider alternative functions includingltiverse Normal combina-
tion function [4].

Under this design, theype | error rateis controlled at the nominat level if
the rejection probability of the two-stageort test,

C{o .
pr(ps<ag)+ /a pr(pipz < c|p1)g(p1)dp:, 9(-) density ofp;,  (4)
1

is under the null hypothestdy equal toa.

Target: We wish to maximise th@ower of the above two-stage tests, i.e. the
rejection probability in(4) underH;, with respect to the weighting vectong, ws,
while controlling the type | error rate. In other words, westvito find the optimal
direction in which the projection of the treatment effecttog produces optimal
power.

3 Methods

Here, we develop the proposed adaptive two-stage testmgpgure. We start by
providing the optimal weighting vector for the two-stageandt tests described
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above.

Theorem 1. Under the assumption ifil), the power of the above two stage tests,
i.e. the rejection probability if4) under H, is maximized with respect to wand
w, if and only if the latter are both proportional t@ = >~ p.

The optimal vectow is unknown and therefore we use the available information at
the planning stage (prior) and at the interim stage (pasfeio selectvy, wo.

Prior: Prior informationDg elicited from previous studies and experts clinical
opinion is used to inform the following Normal and InversésWart priors foru
andZ, respectively,

(M| Z,Do) ~ Nk (Mo, Z/Mo), (| Do) ~ Wk (Vo,S?)- (5)

Here,my represents a prior estimate far, ng the number of observationg is
based on; andy, S respectively represent the degrees of freedom and scatixmat
of the inverse-Wishart prior.

Posterior: Under this Bayesian model, the posterior distributiongggithe prior
informationDg and the first stage data, have the same form as the prior distribu-
tions

(M| Z,Do,y1) ~ Nk (Mg, Z/(No+ny)), (Z|Do,y1) ~IWikxk (Vo+n1,S %) . (6)
where the posterior estimates

_ NoMo+M1yy
No+ Ny

NoNny

— — T
—— (Y1—mo)(y1—mo) (7)

m S =+ (Mm-1)S, +
can be thought as “weighted averages” of the prior and fiagfesestimates qf and
2, respectively.

The predictive power of our test, which we are interested aximizing with
respect to the weighting vectong, w, is introduced next.
Predictive power: Predictive power expressethé chance, given the data so far,
that the planned test rejectsghivhen the trial is completédGiven Dy, the pre-
dictive powerB, 1 andB ; for the two-stage andt tests, respectively, are equal
to
pr( py < ay| Do)+ pr(py € [a1,a0], P1P2 < | Do) (8)

and if we continue to the second stage, the predictive p8ygandB; > given the
prior informationDg and the first stage daya are equal to

pr(p1p2< C| D07Y1)7 (9)

for pj corresponding to either treort statistics in(3), respectively.
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Theorem 2. Under the assumptiond) and (6), the first and second stage predic-
tive power of the z test,,B and B,, are maximized with respect toyw», respec-
tively, if the latter are proportional tow = > mgand Wo = >1my, respectively.

Further, for largevy, i.e. vo — o, the weighting vectors ; = %lmo andw » =
Sjlml maximise the predictive power functioBgo andB; 1.

Adaptive two-stage z and t tests: The proposed tests follow the two-stage
design described earlier with the first and second stagehtegyvectors of the
stage-wisez andt statistics being equal tev; 1, w,> andw 1,W 2, respectively.
These tests are power optimal based on the collected infamm&\Ve can also prove
that they control the type | error rate.

4 Power analysis

The design variables that need to be considered for the sisalf/the power func-
tion of the above andt tests are: (i) the stopping boundaras a1 andc, (ii) the
sample sizesg, n; andn, (andvyp), (iii) the parametergt and> and (iv) the prior
estimate(s)ng (and ). While the variables in (i) and (ii) are scalar, those i) (ii
and (iv) are high dimensionaRl x RK x RK*K (xRK*K)), Without any reduction,
it would be challenging to get a full picture and explain tlwsver performance of
our tests. However, we prove that for thetest, (iii) and (iv) can be replaced by:
(a) the Mahalanobis distand@ =)/ of the nullNk (0, %) to the alternative
Nk (U, X) distribution expressing the strength of the treatmentetiad (b) the an-
gle 6 between the selected and the optimal direction. The samdssfar thet test
although the angular distance in (b) is replaced by one egprkin terms of easily
interpretable vectors if0, 11/2]¥ x [0, 71/2]K x RK. In figure 1, we illustrate how
these results can be used to compare our procedure to slagrdting procedures.
For each set values of the parameters in (i)-(ii), there igseafivalue of the anglé
for which smaller values o result in higher power for the andt tests compared
to the classical multivariate tests and vice versa.

4.1 Application to a pharmafMRI study:

We use the sample mean and sample covariance matrix (seeljabf ROI data
extracted from a GlaxoSmithKline pharmafMRI stud¢ € 11, ny = 13) to per-
form power comparisons. Even for such small sample sizesrenf@irly poor prior
estimates in table 1, the adaptivéest might be considered as sufficiently powered
(B = 0.82). This is in contrast to standard single stage tests, asittotelling’sT?
and OLS tests [6]R&;, = 0.30, BoLs = 0.13) as well as their corresponding sequen-

tial two-stage versions (sequential Hotellind’$ test not applicable font = 13,
B3.s=0.10).



Adaptive global testing for fMRI ROI data 7

Fig. 2 Simulation-based approximation of the pow@t,of the single-stage (green—) and adap-
tive (blue—) linear combinatiort test as well as the Hotelling®? test (red--) plotted against the
total sample sizer. The angled between the optimal weighting vector and the selected vtieigh
vector either of the single-stagetest or the adaptive test is taken to be equal t6 @), 15° (o),

30° (O), 45° (v), 60° (x), 75 (+) and 90 (). For small sample sizes, the power of the single-
staget testis larger (smaller) than the power of the adagtiest if the angle between the optimal
and the selected weighting vector is small (large). Fottikally large sample sizes, in contrast to
the single stage test, the adaptiveéest reaches high power levels even for first stage weighting
vector orthogonal (99 to the optimal. For increasingr and all other design variables remaining
fixed, the angleéd=, for which the power of th@? test (applicable only font > K) is equal to the
power of thet test, is decreasing. Heogy = 1, a; = 0.01,c = 0.0087 (@ = 0.05),ng =5, vo = 4,
f=ny/nr =05,D; =3Y25512=|,K=15.

5 Discussion

The formulation of specific regional hypotheses for drugoacand the associated
dimensionality reductions are crucial for further eststtninent of pharmafMRI. As
we illustrate in our methods, ROI analysis combined withtivatiate methods can
be used to answer the fundamental question as to whetherugambdulates the
brain activity over the regions of greatest interest for $hely. We show that re-
ducing the ROI responses into a univariate linear comtonatan be advantageous
in terms of sensitivity compared to fully multivariate metts on ROI responses,
without any cost in terms of specificity. For the latter dirs@mality reduction, we
propose deriving the weights of the linear combination bpleiting the available
prior information and allowing for data dependent adaptaéit an interim analysis.
These weights are optimal in terms of predictive power ghe available infor-
mation at each selection time. Further, we show how the higiersional power
function domain space is reduced substantially to a loweredsional easily in-
terpretable space which allows us to show clearly under lwbicumstances the
improvement over single stage and sequential designs iswech We finally show
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Tablel Means (line 1), variances (line 3) and correlations (uppangle of matrix in lines 5- 15)
and the corresponding prior estimates (lines 2, 4 and lorargle of matrix in lines 5- 15) of
ROI data of the samplenf = 13) of a GSK pharmafMRI study. The ROI ar&nterior Cingulate
(AC), Atlas Amygdala (A), Caudate (C), Dorsolateral Pretal Cortex (DLPFC), Globus Pallidus
(GP),Insula (1), Orbitofrontal cortex (OFC), Putamen (Fubstantia Nigra (SA), Thalamus (T),
Ventral Striatum (VS)Effect sizes differ across ROI and generally high correfet are observed.
Despite the fairly large distance (angle°$between the optimal weighting vector and the first
stage weighting vector (for the prior estimates in the téelew) the adaptivé test forap =1,

a1 = 0.01, c=0.0087 @@ = 0.05), np = 3, ny = 6, n, = 7 might be considered as sufficiently
powered B = 0.82).

ROI [ AC A C DLPFC GP I OFC P SA T VS
M |—0.01 006 —0.08 —0.08 —0.14 —0.02 —0.08 —0.06 —0.10 —0.10 —0.13
Mo k 0 010-010 -010 -015 0 -0415 0 —0.10-0.10-0.15
g, |011 011 003 005 011 Q008 Q13 015 Q10 Q11 Q10
Sk | 015 010 002 010 010 Q10 Q15 015 Q10 Q10 Q10
AC 1 070 087 088 073 089 066 081 026 095 070
A 070 1 054 061 072 077 065 068 059 068 066
C 0.70 050 1 089 072 087 047 080 027 090 074
DLFPC| 0.70 Q70 Q70 1 Q71 076 Q73 077 027 087 062
GP [ 070 070 070 070 1 08 051 090 054 070 090
10 | 0.70 070 070 070 070 1 Q045 085 046 086 084
11) OFC | 0.50 050 050 070 050 050 1 Q44 009 065 030
120 P 0.70 070 070 070 070 070 050 1 049 082 089
13} SA | 050 070 030 050 050 050 050 030 1 Q30 055
4 T 0.70 070 070 070 070 070 050 070 050 1 Q74
15 vsS | 070 050 070 070 070 070 050 070 050 070 1

© 00 ~NO U BWNF

that our methods can outperform standard single stage anpdesgal two-stage
multivariate tests in a pharmafMRI study.
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