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Abstract. The single-species reaction-diffusion process A+AQ is examined in the presence

of an uncorrelated, quenched random velocity field. Utilizing a field-theoretic approach, we find
that in two dimensions and below the density decay is altered from the case of purely diffusing
reactants. In two dimensions the density amplitude is reduced in the presence of weak disorder,
yielding the interesting result that Sinai disorder can cause reactions to occuriratreased

rate. This is in contrast to the case of long-range correlated disorder, where it was shown that
the reaction becomes sub-diffusion limited. However, when written in terms of the microscopic
diffusion constant it is seen that increasing the disorder has the effect of reducing the rate of the
reaction. Below two dimensions, the effect of Sinai disorder is much more severe and the reaction
is shown to become sub-diffusion limited. Although there is no universal amplitude for the time-
dependence of the density, itis universal when expressed in terms of the disorder-averaged diffusion
length. The appropriate amplitude is calculated to one-loop order.

1. Introduction

The dynamical, many-body problem of diffusing and reacting chemicals provides an ideal
testing ground for the many methods of non-equilibrium physics. Such reaction systems occur
in nature in a wide variety of guises, from conventional chemical reactions to more exotic
processes such as domain coarsening in magnetic systems [1, 2] and exciton annihilation in
crystals [3]. When an equilibrium has been reached in a reversible reaction, the methods of
statistical mechanics can be used to give the appropriate reactant-density ratios. However,
in the decay to equilibrium [4] and in irreversible processes no such unified approach yet
exists. Nevertheless, over the last few decades a great many studies have been made utilizing
numerical, exact and renormalization-group techniques, and the time dependence of reaction
systems has been found to be remarkably rich. It has been shown that the collective behaviour
ofthe reaction system is rather sensitive to the statistical properties of a single reactant’s motion,
with a basic example given by the case of the single-species diffusive reaction A>+3\

This is because the re-entrancy of random walks in two dimensions and below alters the density
decay from the simple mean-field prediction. In these lower dimensions, the density loses all
dependence on the microscopic reaction rate and becomes a universal function of only the
diffusion length: the reaction @iffusion limited In this paper we examine the behaviour of

the A+A — O reaction process in the presence of an uncorrelated, quenched random velocity
field. Before going on to describe our results and method, we review two cases: first, the
pure reaction-diffusion process and, second, some studies of the reaction precoessated
long-range potential disorder.
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The mutually annihilating random walk (MARW) A+A> O is a fundamental theoretical
model in the study of reaction systems. It describes the process whereby diffusing A particles
may react pairwise, at a raten contact. The MARW and coalescing random walk A+AA
are members of the same universality class [5], and therefore the results below are also valid
for the coalescence process (albeit with trivial changes in the prefactors). The basic starting
point in the analysis of such systems is the mean-field or rate equation. This corresponds to
writing a self-consistent equation for the average reactant demsitya function of, that
ignores all spatial correlations (and, more seriousmhyj-correlationy,

I _ pyz— 2xn? with the late-time result 7 ~ 1 (1)

ot 2\t

where we have introduced the diffusion constBnand the reaction rate ks Neglecting the

effect of correlations is equivalent to assuming that the reactants remain well mixed throughout

the reaction process. However, due to the statistics of random walks in two dimensions and

below, simple diffusion of particles itself is not sufficiently fast to maintain a well-mixed state.

For this reason, the mean-field result (1) loses its validity in two dimensions and below. In

these lower spatial dimensions the re-entrancy of random walks means that reactants come

into contact many times, each time providing an opportunity for a reaction to take place. This

implies that even a small reaction rateloes not limit the global rate of reaction. Therefore,

in two dimensions and below the reaction becomes diffusion limited with the density decays
n= Iog(_Dt) for d =2 no~ Aa

8r Dt (Dt)d/?

where A, is a universal amplitude, a function only of the dimensibnThis amplitude has

been calculated via anexpansion foe/ = 2 — ¢ dimensions [6] (also given in equation (8))

and the exact resull; = (87) /2 for one dimension can be found in [7].

Over the last few years there has been an increased interest in the behaviour of reaction
systems with reactants that perform motion different from pure diffusion. As well as ballistic
gas-phase reactions [8-10], studies have appeared with reactants that perform diffusion in
the presence of turbulence [11, 12] and also in quenched random velocity fields. Some basic
categories for the statistical properties of these random velocity fields have been identified:
see, for example, [13, 14]. In particular, a distinction can be made between uncor&teaed
disorder and the long-range correlated potential disorder, with the momentum-space correlator
y/k?. Studies have been made of the behaviour of the reaction front in the segregated two-
species A + B— O reaction with various forms of Sinai disorder [15-17] and correlated
potential disorder [18, 19]. A comprehensive study has been made of the A+R\scheme
with correlated potential disorder [19, 20] in two spatial dimensions and solutions also exist
for this single-species reaction with random barriers and random traps [21]. Furthermore,
the specific case of single-species reactions in Sinai disorder was recently examined in one
dimension in the context of aging phenomena, with the persistence exponent derived [22]. In
the two-dimensional case of A + A> O in potential disorder, it was found that the reaction
process becomesib-diffusiodimited: the reaction rate is lower than the MARW. The form for
the density with this potential disorder, which should be compared with the two-dimensional
MARW in equation (2), was found to be

for d <2 (2)

1 . gr 1! . 2
wherep?y measures the disorder strendhiis a non-universal exponent, ahtlis an effective
reaction constant. The interpretation was that the long-range disorder produces potential traps
on all length scales which, after some time, will contain at most one reactant. Reactions can
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then only occur when the trapped reactants move between traps. However, at the same time,
as the reactants explore the landscape, they get caught by increasingly deep traps, leading to
sub-diffusive motion.

In this paper, we present results from a study of the single-species A+ @ reaction
process in the presence of an uncorrelated, quenched random velocity field in dimension two
and below. Despite the lack of long-range correlations the kinetic behaviour of diffusing
particles is changed, as can be seen in the behaviour of the diffusion-length sgédardd
two dimensions, it is known from a renormalization-group (RG) treatment that this length is
altered by the presence of a logarithm [23]. Below two dimensi@ns,2 — ¢, the RG gives
the two-loop result for the dynamic exponentzof= 2 + 262 + O(e) and hence the motion
is sub-diffusive. The time-dependencedn= 1 is also known [24], giving the following
behaviour for(r?) as a function of dimension

(r?y o [log(D)]* for d=1
(r?) o (D1)?* for d <2

+0 (Lﬂ for d = 2in weak disorder
log(r) log?(¢)
where, for comparison, the result for pure diffusionri$ = 2d Dt, andDy in equation (4) is
the effective, measured diffusion constant in the late-time limit.

We will show that below two dimensions, a universal form similar to the pure-diffusion
d < 2resultin (2) withn a function of the time cannot be found. This is due to the changed
dynamic exponent which requires a dimensionful amplitude that must be a function of the
disorder strength or the reaction rate. Although it is reasonable to study the density as a
function of time, or more specifically as a function of the lenfith it is not the appropriate
length scale for the reaction-diffusion problem in the presence of disorder. The natural length
to use is the disorder-averaged diffusion length. By rewriting the density decay as a function
of the scalgr?) a fully universal relation, similar to (2), can again be found:

By 1, 2log(128r) — 11

~ 24 \ith By=|-—
" d [3ne 127

<r2>d/2

The effect of Sinai disorder in two dimensions is not strong, and the alteration to the
diffusion length (4) is not of leading order. Nevertheless, we find the interesting result that
a reaction process occurring in this disorder has a decay rate with a diffeagliig-order
amplitude from the MARW:

log(r)
"7 24n Dyt
In fact, for weak disorder the reactions oc€asterthan in the MARW, contrary to the effects
seen in the case of long-range potential disorder. Nevertheless, when written in terms of the
diffusion constant of the underlying lattice model (to be described below) it will be shown
that the disorder strength increases the density’s amplitude. These effects come from two
competing terms: the disorder-renormalization of the reaction term that increases the rate of
reaction and the disorder-renormalization of the propagator that decreases the rate of reaction.
In the rest of this paper we describe how these results were derived in more detail. In
section 2 we introduce the model and describe some of the steps taken in the field-theoretic
analysis of the model. In particular, the relation to existing theories, of diffusion in Sinai
disorder [23] and reaction with pure diffusion [5, 6] are discussed. The fixed-point structure
of the renormalized parameters is found and a perturbation expansion for the density, valid at
early times, is obtained faf < 2. In section 3 we obtain a Callan—Symazik (CS) equation
for the density as a function of time and show that no universal functional form can be found

(4)

(r?)y >~ 4Dyt [1 +

+O(e)] for d=2-—e.

+0(™ Y.
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for d < 2. However, by re-expressing the density in terms of the disorder-averaged diffusion

length a universal form is obtained and the amplitude calculated to one-loop order. The
behaviour at the upper-critical dimensign= 2 is then examined and the density as function

of the disorder strength analysed. Finally, we close in section 4 with a discussion of the results
obtained.

2. The model and method

In this section, we introduce the model to be studied and also describe some of the steps taken
to achieve its representation in field-theoretic form. The method used is standard and we only
dwell on details that are different from systems previously studied. After the model has been
defined it is written in the language of second quantisation, which in turn allows a mapping to
a path-integral formulation. An average over all possible realizations of the random velocity
field can be taken at this point, to produce a weighting function (an action) that gives disorder-
averaged correlation functions. This bare action is then regularized and finally used to calculate
a perturbation expansion for the early-time, disorder-averaged reactant density.

The model is defined on an infinitedimensional hypercubic lattice with a lattice spacing
of unity. Each site of this lattice contains; particles whera; can take the values @, 2... ..

The quenched disorder in the diffusion rates is modeled by particles hopping independently
from a lattice site to a neighbouring site at a fixed ratep; ... The rateqp} are random

and contain no long-range correlations. Reactions can occur if there are two or more particles,
n; > 2, on a lattice site. This happens at a rate(n; — 1), wherea is the on-site reaction

rate, reducing the number of particles on that site by 2.

The field-theoretic description is obtained by writinghaster equatiotthat describes the
time-dependent flow of probability between microstates. It is convenient to write this equation
in the language of bosonic operators. Given that the set of occupation nufmfetsfines a
microstate of the system, the probability that the system is in such a microstate will be written
P({n;}). The master equation &|y (¢+)) = —H|¥ (¢)), where the probability state vector
|¥(¢)) and evolution operator are

@) =Y Pnh [J@h10)
{ni} J

‘ (5)
H=>)" [D Y (pieala; — pe—ialar) — 11— (@] )Z)a,?‘]

This algebraic description can now be converted to a field theory by using the coherent-state
formalism. Observables, like the expected dengity(z, {p})) at sitej at timer for a given
realization of the disordgip} can be written as a path integration with respect to an actjon

st (o) = [ [Ti08:00]16; 005,
The integration is over the complex fields¢ and the actior, derived from equation (5) is

Sp=) [ — i) + /0 dr («p,-* B+ 9! ) (Piceti = Pemidhe)
—r(1— (¢ )2>¢,-2> — nog (0)].

Itis convenient to shift the field" by its classical valug' = ¢+1 and take the continuum limit
in space. The actiofi(V) thus obtained is naturally splitinto four padig +Sj +Sg+S,,: the
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diffusive, disorder, reaction and initial conditions. For the moment let us examine the diffusive
and disorder parts

Sp = / dr / d'x (B0 — FVAD(X)$)
0

Sy = —/ dt/ddx5v.(\7(x)¢).
0

The disorder appears in both the diffusion constant and in a random velocity vectar-field
However, as can be checked under the RG, the disordered, spatially varying component of
D(x) is irrelevant in the technical sense, and therefore we consider just the case of a uniform
diffusion field D(x) = D. Furthermore, though we have used a lattice model in the derivation
of the continuum field theory, it is not necessary that some of the restrictions of the lattice
formulation are passed to the continuum theory. In particular, for a walker on a lattice with
a biasV there is a minimum dispersiof = V/2. In the continuum, there is no reason to
impose such a restriction, and therefore we treat the magnitude of the diffusion constant and
V (x) as fully independent quantities.

The velocity vector-field/ (x) is taken to be a Gaussian random variable with the correlator
(Ve(x)VE(y)) = Ay p8(x — ), i.e. there are no long-range correlations. An average can
be performed on the componesy with respect to this field, to produce an action that gives
disorder-averaged correlation functions,

N 1 a2 2
exp(—Sp) = /Dv[exp( - ﬂ/d x (V(x)) )exp(—S;,)}.

This integral can be performed to give the disorder-averaged bare 86015, +SA +Sg+S,,,,
which when suitably regularized, can be used for calculations. The various components of this
action are

1

Sp = f / dx (0, — DoV

/dd (/ dt¢v¢> </[dt¢V$)
0 (6)
Sk :2)»0/ dtfddx¢¢ +A0/ dt/ddxazqsz
0 0
Sno = —nO/ddx/ dr ¢8(1)
0

where we have writteiDg, Ag andig with subscripts to stress that they are bare quantities,
butng represents the initial density at= 0. It is seen that the action is a combination of that
found in [23] for diffusion in Sinai disorder (though with a trivial change of field variables)
and that of the purely diffusive reaction process [6]. Following the notation in previous papers,
the diagrams for the vertices are given in figure 1. The two reaction vertices (figa))e 1(
renormalize identically and hence we do not introduce a separate reaction parameter for each
vertex. It should also be noted that the disorder vertex (figui¥),2{vhen considered in
momentum space, is proportional to the scalar product of the momentum flowing through the
two outgoingg fields. Finally, as with both the pure reaction and pure disordered-diffusion
theories individually, the upper-critical dimension for the hybridized theody is 2.

Because taking the continuum limit in space introduces unphysical divergences, the theory
must be rendered finite before calculations can proceed. This was achieved by dimensional
regularization ind = 2 — ¢ dimensions in the absence of tg term. In this theory there
is no field renormalization; in fact, only the diffusion constant, disorder strength and reaction
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(d) tree-level density o
(a) reaction vertices  (b) disorder vertex o
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(e) tree-level propagator

* * @
* * @
= + —* A+
(c¢) renormalisation of a reaction vertex
1) (f) density calculation to one loop

0
n()
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Figure 1. The various quantities expressed as combinations of the veraemnd @). The
requirement that the sur)(is finite gives the one-loop contribution to the renormalization constant
Z,. Diagram () is the mean-field density given in equation (7). Diagragnig the propagator
dressed by the tree-level reaction interaction and is used in the one-loop contribution to the density
calculation shown in diagranfi).

) O\ + a
n, “ony vttong

rate are renormalized. The following renormalized diffusion constaand dimensionless
interaction parametegsandh are now introduced:

ZpD = Dy ZogDpt = Zgh = ho ZyhD?us = ZjA = Ao.

It can be shown that the disorder vertex and propagator are not renormalized by the reaction
vertices, and therefore we can use the results found previously [23,fat the one-loop

level andZp, at the two-loop level. In fact, the only new diagrams that need be considered are
the dressings of the the reaction strength by the disorder. As can be checked, only one such
diagram, see figure 1, divergesdn= 2. This contribution is combined with the previously
known result for the reaction-reaction renormalization to give the following sEtfattors:

+ B + z o =1+8=M Zy=14 4
—— . = W= 4.
(4mr)%e 2me 4me

The flow function for the diffusion constant and the beta functions can now be evaluated:

_dlog(D)  2n? 3
©= FlogG ~ @me T o)

__ 98 _ & 3 2 2
By = 3100 ~ 21 (g —h—2me)+0O(g”, g°h, gh*)

oh h

_ _ _ 3
= Slog() ~ 4n (h — 4mwe) + O(h”).

IB h

The fixed-point structure for is, of course, unchanged by the presence of the reaction vertex,
with h* = 4re + O(e?) and the dynamic exponent remains= 2 + o* = 2 + 22 + O(e3).
However, the fixed point of the renormalized reaction strength is now shifted to the larger
value ofg* = 6me + O(e?) in the presence of Sinai disorder (the value with no disorder is
g* = 2me + O(e?)).
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2.1. The perturbative density

With the theory now regularized, observables such as the reactant deisity an early time
t can be calculated perturbatively:

n(t) = /[D¢>D$]¢ exp(=S — Su)

where the bare action has been rewritten in terms of the renormalized action and the appropriate
counter-term actiolsy = S +S,;. The initial conditions are included and the renormalized
actionis equivalentin formto the bare action written above, but with the replacemgnrts D,
Ag — hD?uf andig — gDpuc. The early-time density calculation is performed as a loop
expansion of equation (2) taken to the appropriate order of the small paramet@ — d.
An expansion is also made in inverse powers of the initial demsgityith only the leading-
order,no-independent term retained (the reason for this limit of large initial density is given in
section 3).
The tree-level or mean-field result shown in figurd)li§ unchanged from the case of the

MARW, equation (1)
. @)

guc Dt
However, at the one-loop level a new diagram appears, representing two particles interacting
with the same disordered region at different times, and eventually annihilating. This addition,
the third shown in figure 1{, is equal to

L _ 1 h [i+ 2log(n)—3}
b= (Dt)l2 g | 4ne 167 '

To produce the full, regularized one-loop contribution, this resultis combined with the reaction-

reaction contributiomé”, which is also common to [6], and the appropriate counter-h{ﬁn

8 (D1)4/2 | Arre 167 7 Aweguc Dt
The full result can be expanded to finite ordekito produce the full one-loop perturbative
result

n©® —

1 h
w__ = . h ~
n =7 & (D)2 [2 log(87) — 5 g(z log() 3)} +O(e). (9)

3. The reactant density

In this section, the late-time behaviour of the reactant density will be examined. The
perturbative density, has already been derived and is given by the sum of equations (7) and (9).
Now a CS equation will be used to relate this perturbative density to the required late-time,
non-perturbative density. First, the differential CS equation will be obtained and solved as a
function of timer and the case of dimensions less than two will then be examined. It will
be shown that no universal relation giving the density as a function of time can be obtained.
However, by trading the time dependence in the CS equation for dependence on the disorder-
averaged diffusion length, a fully universal relation between this length scale and the reaction
decay rate will be obtained. The behaviour at the upper-critical dimension is then examined.
It will be shown that the reactant density in two dimensions, written in terms of the measured,
late-time diffusion constant, decays ataster rate than the case of pure diffusion-reaction.
However, written in terms of the diffusion constant of the underlying lattice model, it is shown
that as the disorder strength increases the reaction rate decreases.
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3.1. A CS equation for the density

All physical quantities must be independent from the arbitrattyat was introduced in section 2
in the definition of the dimensionless interaction strengtland/. Using this fact, and also
dimensional analysis, the following differential equation can be written for the density

0 d 0 d
[(2+Q)alog<m>+ﬂg£+ﬁ”ﬁ_dalog<no>+d}"=0 (10)

where the interaction-dependent flow functieng, andg, were given in section 2. This can

now be solved in the standard way by writing equation (10) as a complete differential with
respect to a scaling variabtethus

d -
[dlog@) ”’]” =0

whereri = n(s) is the value of the density at some scale. Following the notation used in [6]
we denote early-time quantitigs(s) (at a scales) as X and late-time quantities (at a scale

s = 1) simply asX (1) = X. The flow equations for the system parameters as a function of
the scale are

dlog(Dr) o5 0g

m = Q m =Py 1)
oh < d log(p)
alog(s) P alog(s) —d
and the equation relating the density at these two different scate$ ands is
n(Dt, g, h,no, ) = si(Di, g, h, ”o, ). 12)

The procedure will now be to insert the perturbative results, (7) and (9), suitably rewritten with
g — g etc, into the RHS of equation (12) and replace all arguments with thel values

using the solutions of equations (11). Before proceeding it should be noted that the solution
of the flow equation for the initial density impliés = no/s?. As we are interested in the
late-time regima — 0, this justifies the Ang expansion in the perturbative calculation in the
previous section.

3.2. Below two dimensions

The behaviour of the reactant density tb< 2 is now considered. From the flow equation
(11)ind = 2 — € itis seen that as — 0 the quantitieg, # andg approach their fixed-point
values 6re, 4re and 22, respectively. Thus, time varies with the scalass® = 7/r where

7 = 2+ 2¢2 at the two-loop level [23]. Using these results, the following form for the reactant
density below two dimensions is found:

C
n(t) ~ i (13)

This form appears similar to the < 2 case in equation (2) but actually lacks all the important
universal features of that relation. By dimensional analysis, the prefattoust carry

(2 — z)d/z units of length and must therefore be a function ph or both. No such universal
amplitude likeA,; can be found that relates density to time for the case of reactions in a Sinai
velocity field. Moreover, given that the dynamic exponenrt 2 + 22 + O(e®) is itself an
approximate guantity, there is little point attempting to derive the non-universal preactor
However, we will now show that, though there is no universality in arelation between the density
and the length scalPr in the presence of disorder, a fully universal relation nevertheless exists
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in terms of the reaction density and a different length scale: the disorder-averaged diffusion
length (~2)1/? which is the typical distance a single reactant explores. This quantity can be
shown to vary agr?) o %%, also with a non-universal amplitude. We now rewrite the CS
equation (10) for the density, exchanging the dependence in time for a dependeérfoe in

[ZL +ﬁgi +ﬁhi _dL +

dlog(r2) og oh d log(no)

This is solved as above with the scaliffg= (r2)/(r?). The perturbative density up to the one-
loop Ievelrzf) + 1Y given in equations (7) and (9) can also be rewritten with the substitution
2dDt = (r2) which is correct at this order. Combining these results gives the following
late-time density expressed as a functiorif:

d]n:O.

—l et * ok~
= 2yaplir?) n((r?). " b o, o]
L[« Zowtzen -

= 3re 127

(14)
(r2)ir2 +qg}

Both# and(r?) are non-universal functions ofin as much as the disorder strengttenters
explicitly. However, we have found a universal relation between them, independalit of
system parameters except the dimension of space. Though the amplitude calculated at this
order in are expansion is unlikely to give a good result for one dimension, the scaling relation

n o 1/(r?)%/? is exact at all orders in perturbation theory. Therefore, in one dimension it is
expected that the produetr)(r2(r))Y/? approaches a universal, constant value independent

of the disorder strength, reaction rate, and initial density. This is in agreement with the result
found in[21] for the A+ A— O with infinite reaction rate. Given the validity of a factorization
assumption made in [21] for Sinai disorder, the expected exact result for one dimension would
have given an amplitude/4r—equivalent to the MARW.

3.3. Two dimensions

We now consider the case of the reactant density in two dimensioas2. To obtain the
asymptotic behaviour itis only necessary to use the tree-level perturbative deigigyvritten

in terms of the diffusion lengthr2). The relevant equations to be inserted into the scaling
relation are

o _ 2 §:_6_” U
2(r?) log(s) (r?)
Combining these results yields the following forms for the reactant density in two dimensions:
_log(r?) log(r)

+0((r3)™ n(t) = +0(™h (15)

0= G 247 Dyt
where, in the second expression, the density has been rewritten in terms of time by using the
result (4). At this point comparison can be made with the MARW. The result (2) and (15) are
of the same form, but differ from each other by the amplitude: the disorder renormalization of
the reaction term has decreased it frop@4 to 1/24x. This implies that reactions occur at
an increased rate in the presence of Sinai disorder.

It is interesting at this point to consider the behaviour of different lattice models with
fixed diffusion constanD. By writing a CS equation for the diffusion length the following
relation between the effective diffusion constant measured at late@Mmend the lattice-
model parameteb can be obtained:

Dg=D <1 — + O(A2)> ) (16)

2 D?
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The above relation is valid for weak disorder (sm&jland implies that the effective diffusion
constant is reduced from the lattice-model valuby the disorder strength. Hence, if written
in terms of the long time and length scale behaviour of a lattice model with paranietsrd
A, the reactant density becomes

_ log()
M”‘z&un<l+zuﬂ

In terms of the lattice parametd) it is seen that the reaction rate is still faster than the
MARW. However, as the disorder strength is increased the reaction rate starts to decrease.
Unfortunately, the result is valid only for weak disorder and it is not possible to determine
from (17) if a point is reached where there is a cross-over and the reaction rate becomes less
than the MARW.

)+q;5+om%. (17)

4. Discussion

We have examined the late-time density of reactants in the single-species process>AG A

in the presence of an uncorrelated, quenched random velocity field: so-called Sinai disorder.
In contrast to many existing works on reactions in disorder, the statistics chosen for this
velocity field were such that there wen® long-range correlations Despite the lack of
correlations, it was shown that in two dimensions and below disorder changes the density
decay on all timescales. The model, introduced in section 2, was analysed in the language of
field theory and the renormalization group was used to obtain the late-time reactant density. It
was shown that the appropriate action that generates the disorder-averaged correlation functions
is a combination of terms seen in the field-theoretic analyses of diffusion in Sinai disorder [23]
and the A + A— O reaction in the absence of disorder [6]. The new interaction diagrams that
appear in this hybridized theory were identified up to the one-loop level, and the perturbative
density was calculated. It was shown that at this level a new term appears corresponding to an
annihilation of two particles that both interacted with the same region of the random field at
earlier times. In section 3 the late-time forms for the reactant density were derived from the
perturbative results, by the use of the appropriate CS equation (10).

Below two dimensions the effects of trapping in Sinai disorder are severe and it was found
that the reaction process beconsib-diffusion limited equation (13). It was shown that
because of the changed dynamic exponent, the relation between the reactant density and time
must be non-universal, i.e. dependent on the reaction rate or disorder strength. By writing
the density as a function of time, the pure diffusion lenfthis the implicit length scale.
However, in the presence of disorder this is an inappropriate scale. Rather, the density should
be written as a function of the disorder-averaged diffusion-length sqeiiedBy exchanging
the dependence infor (r2) at the level of the CS equation a universal relation between these
two non-universal quantities was obtained that is independent of the reaction rate, disorder
strength and initial density.

At the upper-critical dimensiod, = 2 the asymptotically-exact form of the density was
obtained as a function of time, equation (15). The random velocity field has the effect of
reducing the amplitude of the density decay which implies that for weak disorder the rate
of reaction isfasterthan for purely diffusing reactants: an effect coming from the disorder
renormalization of the reaction term given in figure)1(Physically, it represents the process
whereby two reactants are pushed into the same region of space by the disorder and therefore
brought closer together than if they were simply diffusing without a bias. Taking the viewpoint
ofthe lattice model, itis appropriate to express the density decay in terms of the model parameter
D rather than the measured, late-time effective diffusion congdantin this case, it is seen
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that as the disorder strength is increased the reaction rate begiasreaseequation (17).
This occurs because the rate at which the particles explore space is reduced due to the diffusion-
constant renormalization, an effect coming from the dressing of the propagator by the disorder
vertex. The result obtained here is an expansion in the disorder stitragtth is therefore only
valid only for weak disorder. It would be interesting to obtain results for the strong disorder
case, perhaps from a numerical approach, to see if increasing the disorder further produces a
density decaglowerthan the MARW.

Finally, we briefly compare the effects of the disorder examined in this paper and the case
of long-rangepotentialdisorder [19, 20]. The effect of potential disorder in two dimensions
is more drastic because the exponent of the decay is changed, whereas for Sinai disorder the
amplitude is altered. The relative severity can be understood by the nature of the disordered
landscape. In a study of diffusion in various forms of disordered landscapes [13], it was noted
that potential disorder produces a landscape with deep trapping wells where, to escape from a
trap, any path a particle might take involves movement in an unfavourable direction. However,
this is not the case for Sinai disorder where the landscape (in two dimensions) does not have the
morphology of potential wells and any pseudo-traps that might exist will tend to have velocity
drifts nearby that allow for escape.
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