

Size & shape dependence of the activity of metallic nanoparticles

Francesca Baletto, Physics Dept., King's College London, UK

CSC/WCPM Seminar at Warwick, 24 June 2019

Small is different, nano is amazing

"DAN" DESIGN AT THE NANOSCALE - BALETTOGROUP.ORG

Nano is amazing

"Nanoparticles are everywhere" L.D. Marks, L. Peng JPCM (2016)

The ugly, the good, the beautiful and the useful!

Nawaz, ACS Sust. Chem. Eng.(2018)

homotops with peculiar (non-scalable) properties different from their bulk/atomic counterparts. A state of matter and building blocks for nanostructures materials.

Different shape; chemical orderings
"There is plenty of room at the bottom" by R. Feymann

K. Rossi et al. PCCP(2017) –Hot paper

48 available isomers for Pt_{13 in the vacuum}

Environment effect

15 isomers can be inserted into a zeolite pore

Pavan, et al. EPJD(2013)

DiPaola, et al. Nanoscale(2017)

Different time-scales

Different shape; chemical orderings; environment effect

Different time scale (from 0D to 4D materials; out-of-equilibrium)

Long-lived excited state; vibrational properties; isomerization...

from fs to ns to ... years (for applications)

Different shape; chemical orderings; environment effect

Different time scale (from 0D to 4D materials; out-of-equilibrium)

Shape&size-dependent electronic structure

A 3D periodic table?

DiPaola, et al. Nanoscale(2017)

DiPaola, D'Agosta, FB Nano Lett. (2016)

Different shape; chemical orderings; environment effect

Different time scale (from 0D to 4D materials/out-of-the-equilibrium)

Shape&size-dependent electronic structure

Shape-dependent vibrational spectrum

Laia Delgado, preliminary results

DFT-PBE, ΔSCF FB and Ferrando, PCCP (2015)

Amazingly fluxional

Different shape; chemical orderings; environment effect

Different time scale (from 0D to 4D materials/out-of-equilibrium)

Different electronic structure

Different vibrational spectrum Different optical properties

Isomerization

R.E. Palmer's group

Nanoparticles-by-design

Coalescence Ag₁₄₇ Pt₂₀₁ and Ag₂₀₁Pt₂₀₁

Size
Materials (composition/ordering)
Structure-property relationship
Stability & Formation process

Baletto, JPCM (2019)

Kinetic effect on T_m/T_f

Ih	Dh	Cp
75	7	18
73	10	17
69	12	19
75	14	11
72	8	20
58	18	24
54	22	24
	75 73 69 75 72 58	75 7 73 10 69 12 75 14 72 8 58 18

itMD vs nested Sampling

An unique example of diversity

DFT-PBE [Grimme correction]

Characterisation, classification

Number of atoms/Mass Radius of gyration Deformation parameter = 561

= 2.612 nm

= 1.34/1.2/1.25

561 2.526 nm 1.13/1.24/1.30

Characterisation, classification

Characterisation, classification

1NN peak in good approximation at the same position

2NN peak appears when some structural order does (good for detecting phase changes)

K. Rossi in preparation

Nanogenomics

$$GCN_i = \sum_{j} \frac{CN_j}{CN_{max}}$$

Sautet&Calle-Vallejo Angew. Chem(2014)

K. Rossi, et al. PCCP (2019)

ORR on supported PtNi

From geometry to properties

$$j_{NP}(t,T,U) = \sum_{\alpha \in GCN} \mathcal{L} \frac{\Omega(\alpha)\alpha}{N_{NP}} e^{\beta(\Delta G(\alpha) - eU)}$$
Kulkarni et al., Chem F

Kulkarni et al., Chem Rev 2018 Ruck et al. JPCL (2018) Pt-NPs in HClO₄

ORR on Pt-NPs

ORR-activity of Pt samples

Isomer distribution as a new parameter to design nanocatalysts

From geometry to properties

$$j_{NP}(t,T,U) = \sum_{\alpha \in GCN} \mathcal{L} \frac{\Omega(\alpha)\alpha}{N_{NP}} e^{\beta(\Delta G(\alpha) - eU)}$$

ORR on mobile Pt nanoparticles

Fast & accurate MD

Accuracy

Fast & accurate MD: with ML

Learning set-up

- Infer a function that maps atomic coordinates and species to global energy
- Make a locality assumption for the energy:
- Learn the local energy function $\varepsilon_i(\mathbf{q}_i)$ and/or the force function $\mathbf{f}_i(\mathbf{q}_i)$
- Database $\mathcal D$ containing N-pairs $\{\mathbf q_i, \varepsilon(\mathbf q_i)\}$
- Input: 3M-6 dimensions, Output: 1 dimension (or 3 for forces)

$$E(\mathbf{R}_n)$$

$$E(\mathbf{R_n}) = \sum_{i \in \mathbf{R}_n} \varepsilon(\mathbf{q}_i)$$

Gaussian regression progress

- Easy to encode prior information
- ✓ Work with small datasets
- ✓ Simple to interpret
- X Require user knowledge
- X Computational scaling

Kernels and descriptors $\hat{\varepsilon}$ must encode physical properties:

$$\hat{\varepsilon}(\mathbf{q}) = \sum_{n=1}^{N_{tr}} k(\mathbf{q}, \mathbf{q}_n) \alpha_n$$

Permutational invariance k(A, B) = k(A, P B)

Translational Invariance k(A, B) = k(A, T B)

Rotational Invariance k(A, B) = k(A, R B)

Must be also differentiable and smooth,

so that forces can be calculated: $\mathbf{f}(\mathbf{q}_i)$

$$\mathbf{f}(\mathbf{q}_i) = -\frac{\partial E(\mathbf{R}_n)}{\partial \mathbf{r}_i}$$

Local Atomic Environment descriptors

Array \mathbf{q}_i that encodes all the relevant features of the local atomic environment ρ_i , e.g.:

List of distances from central atom $\mathbf{q}_i = \{r_{ij}\}_{j \in \rho_i}$

List of triplets of distances

$$\mathbf{q}_i = \{(r_{ij}, r_{ik}, r_{jk})\}_{j,k \in \rho_i}$$

Spherical harmonics power spectrum $\rho_i(\mathbf{r}) = \sum_{n=0}^{\infty} \sum_{l=0}^{\infty} \sum_{m=-l}^{l} c_{nlm}^i g_n(r) Y_{lm}(\hat{\mathbf{r}})$ of the smoothed atomic positions

A descriptor should be: fast to compute, invariant to physical symmetries, differentiable, informative.

C. Zeni et al. submitted

Interaction Order

Number of simultaneously interacting particles the potential can describe.

Examples:

Lennard-Jones potential 2-body

Tersoff potential 3-body

EAM/RGL potential many-body

Bulk Nickel: 2-body

0.3 Pulk 3-body 3-body 5-body 0.15 0.1 100 Number of training points

Nickel Nanoparticle: 3-body

A. Glielmo et al. PRB (2019)

Mapping-FF

Idea: take non-parametric GP force fields and tabulate them, similarly to classic potentials

Computational speedup of 10⁴ -10⁵ No accuracy loss

Can only be done for finite-body kernels (and practically for 2-, 3-, 4-body kernels)

MFF: a Python package

https://github.com/kcl-tscm/mff

DFT

• Run short MD ab-initio simulations to produce a database

Fast & accurate MD

Ni₁₉

C. Zeni et al. JCP (2018); CZ et al. submitted

Acknowledgement

Dr. GianGiacomo Asara (Wiley)

Dr. Vagner Rigo (@Univ. Parana)

Dr. Cono Di Paola (@KCL -Bonini)

Dr. Oliver Paz-Borbon (@UNAM)

Dr. Kevin Rossi (@EPFL)

Dr. Luca Pavan (@private sector)

Claudio Zeni

Laia Delgado

Wei Zei

Robert Jones

Collaborators:

A. De Vita, King's College London, UK

R.L. Johnston, Univ. Birmingham, UK

D. Wales, Univ. of Cambridge, UK

A. Logsdail, Univ. of Cardiff, UK

L. Bartok-Partay, Univ. of Reading, UK

R. Ferrando, Univ. of Genova, Italy

R. Novakovic, CNR, Genova, Italy

I. Atanasov, BAS, Sofia, Bulgaria

J.J. Carbo', URV, Tarragona, Spain

R. D'Agosta, UPV/EHU, Spain

C. Miranda, USP, Sao Paulo, Brasil

O. Lopez-Estrada, UNAM, Mexico

N. Gaston, Auckland, New Zealand

Nanoparticles-by-design: a today challenge

Size
Materials (composition/ordering)
Stability & formation process
Structure-property relationship

Thank you for your attention!!!

