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Presentation Summary

Why are we here?
(Some) comms engineers interested in reaction-diffusion systems

What have we done?

* Applied comms engineering to chemical signalling in fluids
¢ Developed a reaction-diffusion simulator for comms analysis

Where are we going?
Understand and control communication in “small” natural systems
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What is Communications Engineering?

Desighing communication systems and measuring their performance

ENVIRONMENT DESTINATION
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What are Communication Networks?

From conventional networks to molecular communication
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What are Communication Networks?

From conventional networks to molecular communication
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Examples of Molecular Communication

Neuromuscular Junction

Postsynaptic
Cleft
(Muscle)

(Neuron)

Y Y Y Y'YV Y Y Y Y

Neurons control muscle contraction
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Examples of Molecular Communication

Neuromuscular Junction

Quorum Sensing

Bacteria

Neurons control muscle contraction
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How Does Engineering Integrate?

Biological : Communications and
Signalling Signal Processing

Long-Term Question

How to design small systems with living and synthetic devices where
we can predict and control behaviour?
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Future Applications of Molecular Communication
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Future Applications of Molecular Communication

Vo

Drug delivery
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Future Applications of Molecular Communication

In vivo Diagnostics

Drug delivery
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Future Applications of Molecular Communication

L3NS

, In vivo Diagnostics
Drug delivery Lab-on-a-chip
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Future Applications of Molecular Communication

L3NS

In vivo Di tics
Drug delivery n vivo Diagnosti

Lab-on-a-chip
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Chemical reactors
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Future Applications of Molecular Communication

L3NS

In vivo Di tics
Drug delivery n vivo Diagnosti

Lab-on-a-chip

L'

Pollution monitoring
Chemical reactors
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Molecular Communication Channels are Different

Nodes may be simple, molecules must be physically sent
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Molecular Communication Channels are Different

Nodes may be simple, molecules must be physically sent
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Molecular Communication Experiments

Tabletop Signalling'

Transmitter

!Farsad, Guo, Eckford, Proc. IEEE INFOCOM Workshops, Apr. 2014
2Krishnaswamy etal., Proc. IEEE ICC, Jun. 2013
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Molecular Communication Experiments

Tabletop Signalling'

Using Bacteria as Transceivers?

Channel Flow Direction—» C6-HSL

Sender . . DI ./ *
B «* " | Outlet
== ,4 . 0 .
A |—Bacteria—._
Bits To C6-HSL Bacteria Fluorescence
Concentration Chamber Detector

!Farsad, Guo, Eckford, Proc. IEEE INFOCOM Workshops, Apr. 2014
2Krishnaswamy et al., Proc. IEEE ICC, Jun. 2013
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Our Contributions to Channel Modelling

“Enhanced” Diffusion

Molecule Degradation'
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Noel, Cheung, Schober, IEEE Trans. NanoBiosci., Mar. 2014
2Noel, Cheung, Schober, IEEE Trans. NanoBiosci., Sept. 2014
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Our Contributions to Channel Modelling

“Enhanced” Diffusion

Molecule Degradation'
Bulk Fluid Flow?
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Noel, Cheung, Schober, IEEE Trans. NanoBiosci., Mar. 2014
2Noel, Cheung, Schober, IEEE Trans. NanoBiosci., Sept. 2014
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Our Contributions to Channel Modeling

Point-to-Point Model Accuracy

Noel, Cheung, Schober, Proc. IEEE ICC MoNaCom, Jun. 2013
Noel, Makrakis, Hafid, Proc. CSIT BSC, Jun. 2016
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Our Contributions to Channel Modeling

Point-to-Point Model Accuracy
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Noel, Cheung, Schober, Proc. IEEE ICC MoNaCom, Jun. 2013
Noel, Makrakis, Hafid, Proc. CSIT BSC, Jun. 2016

Simulation of Reaction-Diffusion Systems



® The AcCoRD Simulator
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Why Simulate Mol Comm Systems?

Generic reasons for simulation:
¢ Test assumptions

* Verify expected behaviour

® E.g., Channel response, bit
error rate
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Why Simulate Mol Comm Systems?

Generic reasons for simulation:

e Test assumptions
* Verify expected behaviour
® E.g., Channel response, bit
error rate

Specifically for Mol Comm:
e Channels can be very
complex
® Physical space
* Many phenomena
¢ Understand unfamiliar
environments
* We can control/design the
channel
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Why Simulate Mol Comm Systems?

Generic reasons for simulation:

e Test assumptions
* Verify expected behaviour
® E.g., Channel response, bit
error rate

Cell Type A
Specifically for Mol Comm:

e Channels can be very Cell Type B
complex Q

* Physical space - (____»
®* Many phenomena N o---

e Understand unfamiliar ' Cell Type C
environments

* We can control/design the
channel

__@®
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Scales of Molecular Simulations
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Scales of Molecular Simulations
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Scales of Molecular Simulations
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Scales of Molecular Simulations

(a) Continuum|— ' ] (b) Mesoscopic|® | © ©
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Generic Simulators

Generic Simulators — Existing platforms from physical chemistry
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Generic Simulators — Existing platforms from physical chemistry

Advantages:
e Advanced “sandbox” tools
* Open source and commercial platforms
e Options for all physical scales
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Generic Simulators

Generic Simulators — Existing platforms from physical chemistry

Advantages:
e Advanced “sandbox” tools
* Open source and commercial platforms
e Options for all physical scales
e Many are maturely developed

Disadvantages (for molecular communication):
e Not designed for data transmission
¢ Not designed for channel statistics
e Not always spatially tunable
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Popular Generic Simulators

Sample Commercial Platforms

COMSOL Multiphysics
(Continuum)’ ANSYS (Continuum)?

Images: ! https://uk.comsol.com/multiphysics/what-is-mass-transfer
2https://www.a\nsys.com/products/fluids
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Popular Generic Simulators

Sample Open Source Platforms

(Microscopic)?

URDME (Mesoscopic)' LAMMPS (Mol.
Dynamics)?

Images: ! https://doi.org/10.1186/1752-0509-6-76, https://doi.org/10.1371/journal.pcbi. 1000705,
3https:/lammps.sandia.gov/prepost.html
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Molecular Communication Simulators

Mol Comm Simulators — Developed within MC research community
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Mol Comm Simulators — Developed within MC research community

Advantages:
e Designed for data transmission
¢ Designed for channel statistics
* Free if available
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Molecular Communication Simulators

Mol Comm Simulators — Developed within MC research community

Advantages:
e Designed for data transmission
¢ Designed for channel statistics
* Free if available

Disadvantages:
® Most are not generic solvers
* Implement specific environments
* No options for all scales
® Development focused on microscopic; some mesoscopic
* Not as maturely developed
* Not all readily accessible
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Reaction-Diffusion Sandbox for Communications

https://www.youtube.com/watch?v=xOGKkKG8PsCE

Noel, Cheung, Schober, Makrakis, Hafid, Nano Commun. Networks, Mar. 2017
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https://www.youtube.com/watch?v=xOGkKG8PsCE

AcCoRD Simulator

Membrane Surface
(Left to Right Only)

Normal Box Regions
(Allow Free Diffusion;
Reflective Boundaries)

Absorbing Surface

Source Surface

AcCoRD (Actor-based Communication via Reaction-Diffusion)
¢ Flexible environmental design (“sandbox’)
e Generate many independent realizations
¢ Release molecules based on modulated data
¢ Track number or locations of molecules

Noel, Cheung, Schober, Makrakis, Hafid, Nano Commun. Networks, Mar. 2017.
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Sandbox Environment Design with AcCoRD

AcCoRD: Actor-Based Communication via Reaction-Diffusion

https://www.youtube.com/watch?v=7Q0cN6eGrC4w

Noel, Cheung, Schober, Makrakis, Hafid, Nano Commun. Networks, Mar. 2017
Github page: https://github.com/adamjgnoel/AcCoRD
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https://www.youtube.com/watch?v=7QcN6eGrC4w
https://github.com/adamjgnoel/AcCoRD

Sample AcCoRD Results

Molecule Observation
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© Recent Feature Development
Absorbing Surfaces
Mesoscopic Flow
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@ Conclusions
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Absorbing Surfaces

Diffusing
Molecule
o

Absorbing

Sphere

* Receivers commonly modelled as absorbing surfaces

Wang, Noel, Yang, submitted to /[EEE Trans. NanoBiosci., Aug. 2018
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Absorbing Surfaces

Absorbing
Sphere

e Microscopic simulation - displacements are straight lines
¢ “Simplistic Monte Carlo” (SMC; Arifler and Arifler, 2017)
¢ Final point within absorbing object is obvious

Wang, Noel, Yang, submitted to /[EEE Trans. NanoBiosci., Aug. 2018
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Absorbing Surfaces

Absorbing
Sphere

Wang, Noel, Yang, submitted to /[EEE Trans. NanoBiosci., Aug. 2018
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Absorbing Surfaces

Absorbing
Sphere

Possible

* Need small time steps Ar to model path
¢ Absorption takes LONG time to simulate accurately

Wang, Noel, Yang, submitted to /[EEE Trans. NanoBiosci., Aug. 2018
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Absorbing Surfaces

Absorbing
Sphere

“Refined Monte Carlo” (RMC; Arifler and Arifler, 2017)
e Assume sphere is flat infinite plane and check absorption

probability
Pr =€ — lilr
RMC Xp DA?

Wang, Noel, Yang, submitted to /[EEE Trans. NanoBiosci., Aug. 2018
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Absorbing Surfaces

Absorbing
Sphere

“A priori Monte Carlo” (APMC)
e Check for absorption BEFORE diffusing

Pr " erfe |
— — eric
T VA4DA:

e More accurate for large time steps and when far from receiver

Wang, Noel, Yang, submitted to /[EEE Trans. NanoBiosci., Aug. 2018

Simulation of Reaction-Diffusion Systems A. Noel



Absorbing Surfaces

Performance
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Time [s]

e Distance ro = 50 um, receiver radius r, = 0.5 um

Wang, Noel, Yang, submitted to /[EEE Trans. NanoBiosci., Aug. 2018
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Absorbing Surfaces

Performance with Different Ar
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¢ Distance ro = 50 um, receiver radius r, = 5 um
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Absorbing Surfaces

Performance with Different Ar
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Absorbing Surfaces

Performance with Different Ar
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Absorbing Surfaces

Performance with Different Ar
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Absorbing Surfaces

Performance with Different Ar
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Absorbing Surfaces

Performance with Different Ar
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Absorbing Surfaces

Performance with Multiple Receivers (Limited Analytical Results)
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Mesoscopic Model

Divide fluid environment into virtual subvolumes (containers)
e Track number of molecules of each type in each subvolume
e Reaction and diffusion events change molecule counts
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Mesoscopic Model
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Mesoscopic Model
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Divide fluid environment into virtual subvolumes (containers)
e Track number of molecules of each type in each subvolume
e Reaction and diffusion events change molecule counts
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Mesoscopic Model

O 0| 1107|0710

0 110100710

Divide fluid environment into virtual subvolumes (containers)
e Track number of molecules of each type in each subvolume
e Reaction and diffusion events change molecule counts
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Mesoscopic Model
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Divide fluid environment into virtual subvolumes (containers)
e Track number of molecules of each type in each subvolume
e Reaction and diffusion events change molecule counts
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Mesoscopic Model
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Mesoscopic Model

O] 01 0]0]O0]O0

0 110101070

Divide fluid environment into virtual subvolumes (containers)
e Track number of molecules of each type in each subvolume
e Reaction and diffusion events change molecule counts
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Mesoscopic Simulation (Gillespie Method)

Mesoscopic simulations need rates to predict when events occur
e Every event has a propensity «
® « depends on the rate k, i.e., a = f(k)
e For transitions between subvolumes, propensity is a = kU
® U — number of molecules of same type within subvolume

Gillespie, Phys. Chem., Dec. 1977; Bernstein, Physical Review E, Apr. 2005
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Mesoscopic Simulation (Gillespie Method)

Mesoscopic simulations need rates to predict when events occur
e Every event has a propensity «
® o depends ontherate k, i.e., a = f(k)
e For transitions between subvolumes, propensity is a = kU
® U — number of molecules of same type within subvolume

Next event time is then
logu

Tnext = — a

where u is a uniform RV « € (0, 1]
e Different ways to deal with large number of potential events

Gillespie, Phys. Chem., Dec. 1977; Bernstein, Physical Review E, Apr. 2005
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Mesoscopic Rates with Flow

v — flow speed perpendicular to subvolume face (assume positive)

D — diffusion coefficient
kv — transition rate in direction of flow
k, — transition rate against direction of flow

Diffusion Only (v = 0)

D
ka:szﬁ

Noel, Makrakis, IEEE Trans. NanoBiosci., Oct. 2018
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Mesoscopic Rates with Flow

v — flow speed perpendicular to subvolume face (assume positive)
D — diffusion coefficient

ky, — transition rate in direction of flow

k, — transition rate against direction of flow

“Naive” Flow Model
Diffusion Only (v = 0)

k_D+v

. D YR h
ka_kw_ﬁ k—D
Yy =—
h2

Noel, Makrakis, IEEE Trans. NanoBiosci., Oct. 2018
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Mesoscopic Rates with Flow

v — flow speed perpendicular to subvolume face (assume positive)
D — diffusion coefficient

ky, — transition rate in direction of flow

k, — transition rate against direction of flow

“Naive” Flow Model Proposed Flow Model
Diffusion Only (v = 0) . D L o b
k_k—D VT R2 h W—ﬁ‘Fﬂ
a — Kw = ﬁ r _2 K _D v
Lo T

Noel, Makrakis, IEEE Trans. NanoBiosci., Oct. 2018
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Mesoscopic Flow

Implementation

Modified rate
in Spatial SSA

Derived rate

29

kw

Naive rate

3D 7

hZ2

2D ,' #

72 G4

h ) A
Y4

D,

hZ2

== === 7
2D 0 2D
D h

v

* Need to make sure transition rates aren’t negative

Noel, Makrakis, IEEE Trans. NanoBiosci., Oct. 2018
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Mesoscopic Flow

Performance
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e Subvolume size h = 1 um, flow speed v = 0.1 mm/s

Noel, Makrakis, IEEE Trans. NanoBiosci., Oct. 2018
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Mesoscopic Flow

Performance
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e Subvolume size h = 1 um, flow speed v = 0.1 mm/s

Noel, Makrakis, IEEE Trans. NanoBiosci., Oct. 2018




Mesoscopic Flow

Performance
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40 Analytical 7
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lgx = 10 pm

Number of molecules
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e Subvolume size h = 1 um, flow speed v = 0.1 mm/s

Noel, Makrakis, IEEE Trans. NanoBiosci., Oct. 2018




Mesoscopic Flow

Dependence on Subvolume Size
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* Flow speed v = 0.4 mm/s, distance lrx = 2 um

Noel, Makrakis, IEEE Trans. NanoBiosci., Oct. 2018
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Mesoscopic Flow

Dependence on Subvolume Size
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Noel, Makrakis, IEEE Trans. NanoBiosci., Oct. 2018

Simulation of Reaction-Diffusion Systems



Mesoscopic Flow

Dependence on Subvolume Size
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Noel, Makrakis, IEEE Trans. NanoBiosci., Oct. 2018

Simulation of Reaction-Diffusion Systems



Mesoscopic Flow

Dependence on Subvolume Size
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* Flow speed v = 0.4 mm/s, distance lrx = 2 um

Noel, Makrakis, IEEE Trans. NanoBiosci., Oct. 2018
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Mesoscopic Flow

Time-Varying Statistics

w0

'%') (a) Analytical (b) Proposed Method
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® Flow speed v = 0.1 mm/s, distance lgx = 10 um

Noel, Makrakis, IEEE Trans. NanoBiosci., Oct. 2018
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O On-Going Work
Behavioural Dynamics
Information Transfer
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Long Term Objectives

How to design small systems with both living and synthetic devices
where we can predict and control behaviour?

Communications and

Biology . Q‘ Signal Processing
"o
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Long Term Objectives

How to design small systems with both living and synthetic devices
where we can predict and control behaviour?

Communications and

Biology . Q‘ Signal Processing
"o

On-going topics
Use communications and signal processing tools to model:

e Behavioural dynamics of the system
e Devices’ ability to share information (including living “devices”)
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Behaviour in Microscopic Cellular Populations

Heterogeneous Quorum Sensing

CeIITypeB/\
,‘/v\ \
& \;f\.«.-_,' S
g8 ) D) -
) a---"
N/

' Cell Type C

Noel, Fang, Yang, Makrakis, Eckford, https://arxiv.org/abs/1711.04870
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Behaviour in Microscopic Cellular Populations

Heterogeneous Quorum Sensing Tumour Growth and

@ Development
(o) O asaate

Cell Type B ~ ’:'

,’/_\ \ P
L//f,'\\“f,_.«.--,' P "“‘@@ \ :
. Tumor Cells
' Cell Type C

Noel, Fang, Yang, Makrakis, Eckford, https://arxiv.org/abs/1711.04870
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Behaviour in Microscopic Cellular Populations

Heterogeneous Quorum Sensing Tumour Growth and

Cell Type A @ | Development
< ren i <@g
E) ehae

Cell Type B ~ ':'

[

Tumor Cel
' Cell Type C

The Idea
Noisy signalling contributes uncertainty for us to mitigate or enhance

Noel, Fang, Yang, Makrakis, Eckford, https://arxiv.org/abs/1711.04870
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Information Theory in Biochemical Processes

How much information is there?

Neuron with Light

Light Source

—

Sensitive Membrane

Target Sequence u I] u
1 1 | 1 1 1
Membrane Potential ‘ ‘ ‘
Generated Sequence I L I @
Distortion

e Optogenetics lets us externally stimulate neurons
e What are the limits to generate any kind of spike train?
e We are constrained by a neuron’s membrane potential dynamics

Noel, Makrakis, Eckford, IEEE Trans. Biomed. Eng., Dec. 2018
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Information Transfer in Chemical Reactions

@ =@ ~® 0

4 E ki “Ea - E

e Biochemical reactions occur with significant randomness
* Gillespie method initially intended for chemical reactions

e How much information can be transmitted in a reaction?

e How well can we statistically characterize the evolution of a
chemical reaction?
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Conclusions

Communications engineering can be applied to reaction-diffusion
modelling J
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Conclusions

Communications engineering can be applied to reaction-diffusion
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We want to predict and control behaviour in small natural environmentSJ
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Conclusions

Communications engineering can be applied to reaction-diffusion
modelling J

We want to predict and control behaviour in small natural environmentSJ

Going Forward
Many open questions in behavioural dynamics and information transfer
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The End

Thank you for your time and attention!

Homepage: www.warwick.ac.uk/adamnoel

AcCoRD Simulator:

www.warwick.ac.uk/adamnoel/software/accord/
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Point vs Spherical Receiver

NRgx (t) — number of molecules expected at RX as a function of time

3D Point Receiver Observation (Point TX) — “Classical” Result

3D Spherical Receiver Observation (Point TX)

Nex () = 5 [erf (rif/,%d) ek (Sxﬁﬁdﬂ
T e e e O aS]

Noel, Cheung, Schober, Proc. IEEE ICC MoNaCom, Jun. 2013
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Point vs Volume Transmitter

1D Receiver Observation (Point TX)

i o (55) -5

1D Receiver Observation (Volume TX)

Nrx (r)—N{ Pt exp (_%) . (_%) exp (_%)

2rrx m
(xi — rax)? 1 Xt + ”RX)
+ - + = | (x + £
exp ( i 5 (% + rRx) er Wor

— (i + rax) erf (Xiz-\F/;x) — (x; — rgx) erf <Xf2\—/;x> + (xi — rpx) erf (xiz\_/;x) } }

v

Noel, Makrakis, Hafid, Proc. CSIT BSC, Jun. 2016
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