
Monte Carlo methods for
massively parallel architectures

Martin Weigel

Applied Mathematics Research Centre, Coventry University, Coventry, United Kingdom

CSC at Lunch Seminar
Centre for Scientific Computing

University of Warwick, November 5, 2018.

M. Weigel (Coventry) Parallel MC CSC2018 1 / 44



Parallel Computing and Monte Carlo

Parallel Computing and Monte Carlo

M. Weigel (Coventry) Parallel MC CSC2018 2 / 44



Parallel Computing and Monte Carlo

Moore’s law

M. Weigel (Coventry) Parallel MC CSC2018 3 / 44



Parallel Computing and Monte Carlo

Moore’s law

M. Weigel (Coventry) Parallel MC CSC2018 3 / 44



Parallel Computing and Monte Carlo

Moore’s law

M. Weigel (Coventry) Parallel MC CSC2018 3 / 44



Parallel Computing and Monte Carlo

Monte Carlo simulations

Most successful approach is importance sampling through Markov chains, an inherently
sequential process.

What to do it the era of parallel computing?

use domain decompositions

moderately parallel variants such as
parallel tempering
(Swendsen and Wang, 1986;
Geyer, 1991; Hukushima and
Nemoto, 1996)

parallel multicanonical
(Zierenberg et al., 2013)
and Wang-Landau simulations
(Vogel et al., 2013)

population annealing method

Which methods work for 105 or 106 cores?

M. Weigel (Coventry) Parallel MC CSC2018 4 / 44



Parallel Computing and Monte Carlo

Monte Carlo simulations

Most successful approach is importance sampling through Markov chains, an inherently
sequential process.

What to do it the era of parallel computing?

use domain decompositions

moderately parallel variants such as
parallel tempering
(Swendsen and Wang, 1986;
Geyer, 1991; Hukushima and
Nemoto, 1996)

parallel multicanonical
(Zierenberg et al., 2013)
and Wang-Landau simulations
(Vogel et al., 2013)

population annealing method

Which methods work for 105 or 106 cores?

M. Weigel (Coventry) Parallel MC CSC2018 4 / 44



Parallel Computing and Monte Carlo

Monte Carlo simulations

Most successful approach is importance sampling through Markov chains, an inherently
sequential process.

What to do it the era of parallel computing?

use domain decompositions

moderately parallel variants such as
parallel tempering
(Swendsen and Wang, 1986;
Geyer, 1991; Hukushima and
Nemoto, 1996)

parallel multicanonical
(Zierenberg et al., 2013)
and Wang-Landau simulations
(Vogel et al., 2013)

population annealing method

Which methods work for 105 or 106 cores?

M. Weigel (Coventry) Parallel MC CSC2018 4 / 44



Parallel Computing and Monte Carlo

Monte Carlo simulations

Most successful approach is importance sampling through Markov chains, an inherently
sequential process.

What to do it the era of parallel computing?

use domain decompositions

moderately parallel variants such as
parallel tempering
(Swendsen and Wang, 1986;
Geyer, 1991; Hukushima and
Nemoto, 1996)

parallel multicanonical
(Zierenberg et al., 2013)
and Wang-Landau simulations
(Vogel et al., 2013)

population annealing method

T1

T2

T3

T4

T1

T2

T3

T4

Which methods work for 105 or 106 cores?

M. Weigel (Coventry) Parallel MC CSC2018 4 / 44



Parallel Computing and Monte Carlo

Monte Carlo simulations

Most successful approach is importance sampling through Markov chains, an inherently
sequential process.

What to do it the era of parallel computing?

use domain decompositions

moderately parallel variants such as
parallel tempering
(Swendsen and Wang, 1986;
Geyer, 1991; Hukushima and
Nemoto, 1996)

parallel multicanonical
(Zierenberg et al., 2013)
and Wang-Landau simulations
(Vogel et al., 2013)

population annealing method

Which methods work for 105 or 106 cores?

M. Weigel (Coventry) Parallel MC CSC2018 4 / 44



Parallel Computing and Monte Carlo

Monte Carlo simulations

Most successful approach is importance sampling through Markov chains, an inherently
sequential process.

What to do it the era of parallel computing?

use domain decompositions

moderately parallel variants such as
parallel tempering
(Swendsen and Wang, 1986;
Geyer, 1991; Hukushima and
Nemoto, 1996)

parallel multicanonical
(Zierenberg et al., 2013)
and Wang-Landau simulations
(Vogel et al., 2013)

population annealing method

T1

T2

T3

T4

Which methods work for 105 or 106 cores?

M. Weigel (Coventry) Parallel MC CSC2018 4 / 44



Parallel Computing and Monte Carlo

Monte Carlo simulations

Most successful approach is importance sampling through Markov chains, an inherently
sequential process.

What to do it the era of parallel computing?

use domain decompositions

moderately parallel variants such as
parallel tempering
(Swendsen and Wang, 1986;
Geyer, 1991; Hukushima and
Nemoto, 1996)

parallel multicanonical
(Zierenberg et al., 2013)
and Wang-Landau simulations
(Vogel et al., 2013)

population annealing method

T1

T2

T3

T4

Which methods work for 105 or 106 cores?

M. Weigel (Coventry) Parallel MC CSC2018 4 / 44



Canonical Monte Carlo

Canonical Monte Carlo

M. Weigel (Coventry) Parallel MC CSC2018 5 / 44



Canonical Monte Carlo

Benchmark: the 2D Ising model

Check results for the fruit fly of statistical mechanics, the 2D Ising model.

Hamiltonian

H = −J
∑
〈i,j〉

sisj, si = ±1

T � Tc T ≈ Tc T � Tc

M. Weigel (Coventry) Parallel MC CSC2018 6 / 44



Canonical Monte Carlo

Parallel Metropolis

Consider spin models on regular la�ices, for instance

H = −
∑
〈i,j〉

Jijsisj −
∑
i

hisi.

For short-range interactions, we can use a checkerboard decomposition.

M. Weigel (Coventry) Parallel MC CSC2018 7 / 44



Canonical Monte Carlo

Parallel Metropolis

Consider spin models on regular la�ices, for instance

H = −
∑
〈i,j〉

Jijsisj −
∑
i

hisi.

For short-range interactions, we can use a checkerboard decomposition.

M. Weigel (Coventry) Parallel MC CSC2018 7 / 44



Canonical Monte Carlo

NVIDIA architecture

Device (GPU)
Multiprocessor n

Multiprocessor 2

Multiprocessor 1

R
EG

Processor
1

R
EG

Processor
2

R
EG

Processor
m

Instruction
Unit...

Shared memory

Constant cache

Texture cache

Device memory
(Global memory)

H
ost m

em
ory

...

M. Weigel (Coventry) Parallel MC CSC2018 8 / 44



Canonical Monte Carlo

NVIDIA architecture

Device (GPU)

Grid 1

Host 
(CPU)

Block (0,0)

Thread 
(0,0)

Thread 
(1,0)

Thread 
(0,1)

Thread 
(1,1)

Block (1,0)

Thread 
(0,0)

Thread 
(1,0)

Thread 
(0,1)

Thread 
(1,1)

Block (2,0)

Thread 
(0,0)

Thread 
(1,0)

Thread 
(0,1)

Thread 
(1,1)

Block (0,1)

Thread 
(0,0)

Thread 
(1,0)

Thread 
(0,1)

Thread 
(1,1)

Block (1,1)

Thread 
(0,0)

Thread 
(1,0)

Thread 
(0,1)

Thread 
(1,1)

Block (2,1)

Thread 
(0,0)

Thread 
(1,0)

Thread 
(0,1)

Thread 
(1,1)

Kernel 1

Kernel 2 Grid 2

M. Weigel (Coventry) Parallel MC CSC2018 8 / 44



Canonical Monte Carlo

Checkerboard decomposition

(red) large tiles:
thread blocks

(red) small tiles:
individual
threads

load one large tile
(plus boundary)
into shared
memory

perform several
spin updates per
tile

M. Weigel (Coventry) Parallel MC CSC2018 9 / 44



Canonical Monte Carlo

Checkerboard decomposition

(red) large tiles:
thread blocks

(red) small tiles:
individual
threads

load one large tile
(plus boundary)
into shared
memory

perform several
spin updates per
tile

M. Weigel (Coventry) Parallel MC CSC2018 9 / 44



Canonical Monte Carlo

Performance

10−2

10−1

100

101

102

t fl
ip
[n
s]

16 32 64 128 256 512 1024 2048 4096 8192 16384
L

T = 4

T = 8

T = 16

T = 32

T = 16, Titan

For su�iciently large la�ices, one achieves spin-flip times as low as 20 ps, about 250
times faster than a single CPU core.
The number of threads is limited by the number of spins.

M. Weigel (Coventry) Parallel MC CSC2018 10 / 44



Canonical Monte Carlo

Performance

10−2

10−1

100

101

102

t fl
ip
[n
s]

16 32 64 128 256 512 1024 2048 4096 8192 16384
L

T = 4

T = 8

T = 16

T = 32

T = 16, Titan

For su�iciently large la�ices, one achieves spin-flip times as low as 20 ps, about 250
times faster than a single CPU core.

The number of threads is limited by the number of spins.

M. Weigel (Coventry) Parallel MC CSC2018 10 / 44



Canonical Monte Carlo

Performance

10−2

10−1

100

101

102

t fl
ip
[n
s]

16 32 64 128 256 512 1024 2048 4096 8192 16384
L

T = 4

T = 8

T = 16

T = 32

T = 16, Titan

For su�iciently large la�ices, one achieves spin-flip times as low as 20 ps, about 250
times faster than a single CPU core.
The number of threads is limited by the number of spins.

M. Weigel (Coventry) Parallel MC CSC2018 10 / 44



Multicanonical simulations

Multicanonical simulations

M. Weigel (Coventry) Parallel MC CSC2018 11 / 44



Multicanonical simulations

Multicanonical simulations

Generalized ensembles

Instead of simulating the canonical
distribution,

PK (E) =
1
ZK

Ω(E)e−KE ,

consider using a more general distribution

Pmuca(E) =
Ω(E)/W (E)

Zmuca
=

Ω(E)e−ω(E)

Zmuca
,

engineered to overcome barriers, improve
sampling speed and extend the
reweighting range.

0

0.02

0.04

0.06

0.08

0.1

-500 -400 -300 -200 -100 0

P
(E

)

E

M. Weigel (Coventry) Parallel MC CSC2018 12 / 44



Multicanonical simulations

Multicanonical simulations

Choice of weights

To overcome barriers, we need to broaden P(E), in the extremal case to a constant distribution,

Pmuca(E) = Z−1
muca Ω(E)/W (E) = Z−1

muca e
S(E)−ω(E) != const,

where S(E) = ln Ω(E) is the microcanonical entropy.

Under these assumptions, W (E) = Ω(E) is optimal, i.e., we again desire to estimate the density
of states. This is not known a priori, so (again) use histogram estimator

Ω̂(E) = Zmuca Ĥmuca(E)/N × eω(E).

Canonical averages can be recovered at any time by reweighting:

〈A〉K =

∑
E A(E)PK (E)/Pmuca(E)∑

E PK (E)/Pmuca(E)

M. Weigel (Coventry) Parallel MC CSC2018 12 / 44



Multicanonical simulations

Multicanonical simulations

Muca iteration

Determine muca weights/density of states
iteratively:

1 Use, e.g., a K = 0 canonical
simulation to get initial estimate
Ŝ0(E) = ln Ω̂0(E).

2 Choose multicanonical weights
ω1(E) = Ŝ0(E) for next simulation.

3 Iterate.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

-500 -400 -300 -200 -100 0

P m
uc

a(
E

)

E

zeroth iteration

M. Weigel (Coventry) Parallel MC CSC2018 12 / 44



Multicanonical simulations

Multicanonical simulations

Muca iteration

Determine muca weights/density of states
iteratively:

1 Use, e.g., a K = 0 canonical
simulation to get initial estimate
Ŝ0(E) = ln Ω̂0(E).

2 Choose multicanonical weights
ω1(E) = Ŝ0(E) for next simulation.

3 Iterate.

0

0.005

0.01

0.015

0.02

0.025

-500 -400 -300 -200 -100 0

P m
uc

a(
E

)

E

first iteration

M. Weigel (Coventry) Parallel MC CSC2018 12 / 44



Multicanonical simulations

Multicanonical simulations

Muca iteration

Determine muca weights/density of states
iteratively:

1 Use, e.g., a K = 0 canonical
simulation to get initial estimate
Ŝ0(E) = ln Ω̂0(E).

2 Choose multicanonical weights
ω1(E) = Ŝ0(E) for next simulation.

3 Iterate. 0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

-500 -400 -300 -200 -100 0

P m
uc

a(
E

)

E

nth iteration

M. Weigel (Coventry) Parallel MC CSC2018 12 / 44



Multicanonical simulations

Multicanonical simulations

Muca iteration

Advantages:

always in equilibrium

arbitrary distributions possible

system ideally performs an unbiased
random walk in energy space→
fast(er) dynamics

0

0.001

0.002

0.003

0.004

0.005

-500 -400 -300 -200 -100 0

P m
uc

a(
E

)

E

limiting distribution

M. Weigel (Coventry) Parallel MC CSC2018 12 / 44



Multicanonical simulations

Multicanonical simulations

Multicanonical simulations

Variants:

umbrella sampling, entropic
sampling (identical)

multiple Gaussian modified ensemble

(broad histogram method)

transition-matrix Monte Carlo

metadynamics

Wang-Landau sampling

...

0

0.001

0.002

0.003

0.004

0.005

-500 -400 -300 -200 -100 0

P m
uc

a(
E

)

E

limiting distribution

M. Weigel (Coventry) Parallel MC CSC2018 12 / 44



Multicanonical simulations

Multicanonical simulations

Wang-Landau sampling

Muca weights are updated as

ωi+1(E)− ωi(E) = const + ln Ĥi(E),

i.e., if an energy E is visited more o�en
than others, it receives less weight in
future iterations.

This behavior can be imitated in a one-step
iteration: simulate

PWL(E) ∝ Ω(E)e−ω(E),

but update

ωi+1(E)− ωi(E) = φ,

each time an energy E is seen.

0

0.001

0.002

0.003

0.004

0.005

-500 -400 -300 -200 -100 0

P m
uc

a(
E

)

E

limiting distribution

M. Weigel (Coventry) Parallel MC CSC2018 12 / 44



Multicanonical simulations

Multicanonical simulations

Wang-Landau sampling

Muca weights are updated as

ωi+1(E)− ωi(E) = const + ln Ĥi(E),

i.e., if an energy E is visited more o�en
than others, it receives less weight in
future iterations.

This behavior can be imitated in a one-step
iteration: simulate

PWL(E) ∝ Ω(E)e−ω(E),

but update

ωi+1(E)− ωi(E) = φ,

each time an energy E is seen.

WL iteration

1 Start with ω(E) = 0 ∀E .

2 Simulate “su�iciently long” while
continuously updating ω(E).

3 Reduce modification factor, e.g.,

φ→ φ/2

4 Iterate till φ < φthres.

M. Weigel (Coventry) Parallel MC CSC2018 12 / 44



Multicanonical simulations

Multicanonical simulations

Use and justification

Di�erent possible interpretations of this
scheme:

Rather e�icient way of calculating muca
weights.

Standalone algorithm for estimating the
density of states (convergence?).

Violates detailed balance for any φ > 0,
but convergence can be proved as a
stochastic approximation (instead of
MCMC) algorithm for

φ =
t0

max(t, t0)
∼

1
t
, t > t0

instead of
φ = φ0 2−t

(cf. simulated annealing)

WL iteration

1 Start with ω(E) = 0 ∀E .

2 Simulate “su�iciently long” while
continuously updating ω(E).

3 Reduce modification factor, e.g.,

φ→ φ/2

4 Iterate till φ < φthres.

M. Weigel (Coventry) Parallel MC CSC2018 12 / 44



Multicanonical simulations

Parallel muca

Each update requires the value of the current energy to evaluate W (E)/W (E ′),
e�ectively serializing all spin flips!

Intrinsically serial algorithm?

Suggested ways out:

divide the energy range in windows, or

use multiple walkers (Zierenberg et al., 2013)

H(n) W (n+1)

MC MC

MC MC

MC MC

.

.

.

.

.

.

M. Weigel (Coventry) Parallel MC CSC2018 13 / 44



Multicanonical simulations

Parallel muca

Each update requires the value of the current energy to evaluate W (E)/W (E ′),
e�ectively serializing all spin flips!

Intrinsically serial algorithm?

Suggested ways out:

divide the energy range in windows, or

use multiple walkers (Zierenberg et al., 2013)

H(n) W (n+1)

MC MC

MC MC

MC MC

.

.

.

.

.

.

M. Weigel (Coventry) Parallel MC CSC2018 13 / 44



Multicanonical simulations

Parallel muca

Each update requires the value of the current energy to evaluate W (E)/W (E ′),
e�ectively serializing all spin flips!

Intrinsically serial algorithm?

Suggested ways out:

divide the energy range in windows, or

use multiple walkers (Zierenberg et al., 2013)

H(n) W (n+1)

MC MC

MC MC

MC MC

.

.

.

.

.

.

M. Weigel (Coventry) Parallel MC CSC2018 13 / 44



Multicanonical simulations

Parallel muca

Each update requires the value of the current energy to evaluate W (E)/W (E ′),
e�ectively serializing all spin flips!

Intrinsically serial algorithm?

Suggested ways out:

divide the energy range in windows, or

use multiple walkers (Zierenberg et al., 2013)

H(n) W (n+1)

MC MC

MC MC

MC MC

.

.

.

.

.

.

M. Weigel (Coventry) Parallel MC CSC2018 13 / 44



Multicanonical simulations

Parallel muca (cont’d)

Each walker samples its own histogram, all of them are combined for the next weight
update,

H(n)(E) =
∑
i

H(n)
i (E).

This scheme can be e�iciently implemented on MPI clusters (Zierenberg et al.,

2013) and on GPUs.

0.1

1

0 10000 20000 30000 40000 50000 60000 70000

CPU

TITAN

TESLA

ti
m
e
p
er

sp
in

fl
ip

[n
s]

number of GPU walkers

L = 64
L = 32
L = 16

M. Weigel (Coventry) Parallel MC CSC2018 14 / 44



Multicanonical simulations

Parallel muca (cont’d)

Each walker samples its own histogram, all of them are combined for the next weight
update,

H(n)(E) =
∑
i

H(n)
i (E).

This scheme can be e�iciently implemented on MPI clusters (Zierenberg et al.,

2013) and on GPUs.

0.1

1

0 10000 20000 30000 40000 50000 60000 70000

CPU

TITAN

TESLA

ti
m
e
p
er

sp
in

fl
ip

[n
s]

number of GPU walkers

L = 64
L = 32
L = 16

M. Weigel (Coventry) Parallel MC CSC2018 14 / 44



Multicanonical simulations

Parallel muca (cont’d)

Additional walkers lead to a faster convergence of the weight iteration.

M. Weigel (Coventry) Parallel MC CSC2018 15 / 44



Multicanonical simulations

Parallel muca (cont’d)

Additional walkers lead to a faster convergence of the weight iteration.

10

20

30

40

50

10

20

30

40

50
sp

ee
d
u
p

10

20

30

40

50

0 10000 20000 30000 40000 50000 60000 70000

10

20

30

40

50sp
ee
d
u
p

T
E
S
L
A

T
IT

A
N

number of GPU walkers

L = 16 L = 32 L = 64

M. Weigel (Coventry) Parallel MC CSC2018 15 / 44



Multicanonical simulations

Parallel muca (cont’d)

Additional walkers lead to a faster convergence of the weight iteration.

0

1000

2000

3000

4000

5000

6000

7000

0 10000 20000 30000 40000 50000 60000 70000

N
2
4
/N

W

number of GPU walkers

L = 16
L = 32
L = 64

There is super-linear scaling at least up to 70, 000 threads.
M. Weigel (Coventry) Parallel MC CSC2018 15 / 44



Population Annealing

Population Annealing

M. Weigel (Coventry) Parallel MC CSC2018 16 / 44



Population Annealing

Population annealing

T1

T2

T3

T4

M. Weigel (Coventry) Parallel MC CSC2018 17 / 44



Population Annealing

Population annealing

Population annealing algorithm (Hukushima + Iba, 2003; Machta, 2010):
1 Set up an equilibrium ensemble of R independent copies of the system at inverse

temperature β0. Typically β0 = 0, where this can be easily achieved.

2 To create an approximately equilibrated sample at βi > βi−1, resample
configurations with their relative Boltzmann weight exp[−(βi − βi−1)Ej]/Q,
where Q =

∑
exp(−(βi − βi−1)Ej).

3 Update each copy (replica) by θ rounds of an MCMC algorithm at inverse
temperature βi .

4 Calculate estimates for observable quantities O as population averages∑
j Oj/R.

5 Goto step 2 until target temperature is reached.

The MCMC is not strictly necessary but significant for the overall performance.

M. Weigel (Coventry) Parallel MC CSC2018 18 / 44



Population Annealing

Population annealing

Population annealing algorithm (Hukushima + Iba, 2003; Machta, 2010):
1 Set up an equilibrium ensemble of R independent copies of the system at inverse

temperature β0. Typically β0 = 0, where this can be easily achieved.
2 To create an approximately equilibrated sample at βi > βi−1, resample

configurations with their relative Boltzmann weight exp[−(βi − βi−1)Ej]/Q,
where Q =

∑
exp(−(βi − βi−1)Ej).

3 Update each copy (replica) by θ rounds of an MCMC algorithm at inverse
temperature βi .

4 Calculate estimates for observable quantities O as population averages∑
j Oj/R.

5 Goto step 2 until target temperature is reached.

The MCMC is not strictly necessary but significant for the overall performance.

M. Weigel (Coventry) Parallel MC CSC2018 18 / 44



Population Annealing

Population annealing

Population annealing algorithm (Hukushima + Iba, 2003; Machta, 2010):
1 Set up an equilibrium ensemble of R independent copies of the system at inverse

temperature β0. Typically β0 = 0, where this can be easily achieved.
2 To create an approximately equilibrated sample at βi > βi−1, resample

configurations with their relative Boltzmann weight exp[−(βi − βi−1)Ej]/Q,
where Q =

∑
exp(−(βi − βi−1)Ej).

3 Update each copy (replica) by θ rounds of an MCMC algorithm at inverse
temperature βi .

4 Calculate estimates for observable quantities O as population averages∑
j Oj/R.

5 Goto step 2 until target temperature is reached.

The MCMC is not strictly necessary but significant for the overall performance.

M. Weigel (Coventry) Parallel MC CSC2018 18 / 44



Population Annealing

Population annealing

Population annealing algorithm (Hukushima + Iba, 2003; Machta, 2010):
1 Set up an equilibrium ensemble of R independent copies of the system at inverse

temperature β0. Typically β0 = 0, where this can be easily achieved.
2 To create an approximately equilibrated sample at βi > βi−1, resample

configurations with their relative Boltzmann weight exp[−(βi − βi−1)Ej]/Q,
where Q =

∑
exp(−(βi − βi−1)Ej).

3 Update each copy (replica) by θ rounds of an MCMC algorithm at inverse
temperature βi .

4 Calculate estimates for observable quantities O as population averages∑
j Oj/R.

5 Goto step 2 until target temperature is reached.

The MCMC is not strictly necessary but significant for the overall performance.

M. Weigel (Coventry) Parallel MC CSC2018 18 / 44



Population Annealing

Population annealing

Population annealing algorithm (Hukushima + Iba, 2003; Machta, 2010):
1 Set up an equilibrium ensemble of R independent copies of the system at inverse

temperature β0. Typically β0 = 0, where this can be easily achieved.
2 To create an approximately equilibrated sample at βi > βi−1, resample

configurations with their relative Boltzmann weight exp[−(βi − βi−1)Ej]/Q,
where Q =

∑
exp(−(βi − βi−1)Ej).

3 Update each copy (replica) by θ rounds of an MCMC algorithm at inverse
temperature βi .

4 Calculate estimates for observable quantities O as population averages∑
j Oj/R.

5 Goto step 2 until target temperature is reached.

The MCMC is not strictly necessary but significant for the overall performance.

M. Weigel (Coventry) Parallel MC CSC2018 18 / 44



Population Annealing

Population annealing

Population annealing algorithm (Hukushima + Iba, 2003; Machta, 2010):
1 Set up an equilibrium ensemble of R independent copies of the system at inverse

temperature β0. Typically β0 = 0, where this can be easily achieved.
2 To create an approximately equilibrated sample at βi > βi−1, resample

configurations with their relative Boltzmann weight exp[−(βi − βi−1)Ej]/Q,
where Q =

∑
exp(−(βi − βi−1)Ej).

3 Update each copy (replica) by θ rounds of an MCMC algorithm at inverse
temperature βi .

4 Calculate estimates for observable quantities O as population averages∑
j Oj/R.

5 Goto step 2 until target temperature is reached.

The MCMC is not strictly necessary but significant for the overall performance.

M. Weigel (Coventry) Parallel MC CSC2018 18 / 44



Population Annealing

Benchmark: the 2D Ising model

Check results for the fruit fly of statistical mechanics, the 2D Ising model.

Hamiltonian

H = −J
∑
〈i,j〉

sisj, si = ±1

T � Tc T ≈ Tc T � Tc

M. Weigel (Coventry) Parallel MC CSC2018 19 / 44



Population Annealing

Population annealing

A sequential annealing of the population from infinite temperature, β = 0, down to
β = 1.

M. Weigel (Coventry) Parallel MC CSC2018 20 / 44



Population Annealing

Correct results?

Exact results are available for finite la�ices for the internal energy, specific heat and
free energy (Ferdinand + Fisher, 1969).

0

0.5

1

1.5

2

2.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4

L = 64

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

0 0.2 0.4 0.6 0.8 1

C
V

β

exact

PA

|(
C

V
−

C
V
,e
x
a
c
t
)/
C

V
,e
x
a
c
t
|

β

R = 50 000, θ = 10

M. Weigel (Coventry) Parallel MC CSC2018 21 / 44



Population Annealing

Correct results?

Exact results are available for finite la�ices for the internal energy, specific heat and
free energy (Ferdinand + Fisher, 1969).

0

0.5

1

1.5

2

2.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4

L = 64

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

0 0.2 0.4 0.6 0.8 1

C
V

β

exact

PA

|(
C

V
−

C
V
,e
x
a
c
t
)/
C

V
,e
x
a
c
t
|

β

R = 50 000, θ = 10

M. Weigel (Coventry) Parallel MC CSC2018 21 / 44



Population Annealing

Not always

0

0.5

1

1.5

2

2.5

3

3.5

0 0.2 0.4 0.6 0.8 1

(a)

1

1.5

2

0.4 0.45 0.5

C
V

β

Metropolis
R = 50000, θ = 1
R = 25000, θ = 2
R = 10000, θ = 5
R = 5000, θ = 10

exact

Need to understand dependence on parameters, R, θ, ∆β.

M. Weigel (Coventry) Parallel MC CSC2018 22 / 44



Population Annealing

Not always

0

0.5

1

1.5

2

2.5

3

3.5

0 0.2 0.4 0.6 0.8 1

(b)

1

1.5

2

0.4 0.45 0.5

C
V

β

heatbath
R = 50000, θ = 1
R = 25000, θ = 2
R = 10000, θ = 5
R = 5000, θ = 10

exact

Need to understand dependence on parameters, R, θ, ∆β.

M. Weigel (Coventry) Parallel MC CSC2018 22 / 44



Population Annealing

Not always

0

0.5

1

1.5

2

2.5

3

3.5

0 0.2 0.4 0.6 0.8 1

(c)

C
V

β

Metropolis
R = 50000, θ = 1
R = 25000, θ = 2
R = 10000, θ = 5
R = 5000, θ = 10

exact

Need to understand dependence on parameters, R, θ, ∆β.

M. Weigel (Coventry) Parallel MC CSC2018 22 / 44



Population Annealing

Not always

0

0.5

1

1.5

2

2.5

3

3.5

0 0.2 0.4 0.6 0.8 1

(c)

C
V

β

Metropolis
R = 50000, θ = 1
R = 25000, θ = 2
R = 10000, θ = 5
R = 5000, θ = 10

exact

Need to understand dependence on parameters, R, θ, ∆β.

M. Weigel (Coventry) Parallel MC CSC2018 22 / 44



Population Annealing

Correlations

The replicas in the population are not independent:

resampling creates copies, so increases correlations

MCMC moves decorrelate configurations

How can the e�ect be measured?

An upper bound is provided by considering the statistics of families (W. Wang et
al., 2015).

For a be�er estimate, learn from time-series analysis.

σ2(A) =
σ2(A)
Ne�

, Ne� = N/2τint

The e�ective population size Re� can be determined from blocking,

Re� =
σ2(Ō1)
σ2(ŌNb )

.

M. Weigel (Coventry) Parallel MC CSC2018 24 / 44



Population Annealing

Correlations

The replicas in the population are not independent:

resampling creates copies, so increases correlations

MCMC moves decorrelate configurations

How can the e�ect be measured?

An upper bound is provided by considering the statistics of families (W. Wang et
al., 2015).

For a be�er estimate, learn from time-series analysis.

σ2(A) =
σ2(A)
Ne�

, Ne� = N/2τint

The e�ective population size Re� can be determined from blocking,

Re� =
σ2(Ō1)
σ2(ŌNb )

.

M. Weigel (Coventry) Parallel MC CSC2018 24 / 44



Population Annealing

Correlations

The replicas in the population are not independent:

resampling creates copies, so increases correlations

MCMC moves decorrelate configurations

How can the e�ect be measured?

An upper bound is provided by considering the statistics of families (W. Wang et
al., 2015).

For a be�er estimate, learn from time-series analysis.

σ2(A) =
σ2(A)
Ne�

, Ne� = N/2τint

The e�ective population size Re� can be determined from blocking,

Re� =
σ2(Ō1)
σ2(ŌNb )

.

M. Weigel (Coventry) Parallel MC CSC2018 24 / 44



Population Annealing

Population annealing

T1

T2

T3

T4

M. Weigel (Coventry) Parallel MC CSC2018 25 / 44



Population Annealing

Correlations

The replicas in the population are not independent:

resampling creates copies, so increases correlations

MCMC moves decorrelate configurations

How can the e�ect be measured?

An upper bound is provided by considering the statistics of families (W. Wang et
al., 2015).

For a be�er estimate, learn from time-series analysis.

σ2(A) =
σ2(A)
Ne�

, Ne� = N/2τint

The e�ective population size Re� can be determined from blocking,

Re� =
σ2(Ō1)
σ2(ŌNb )

.

M. Weigel (Coventry) Parallel MC CSC2018 26 / 44



Population Annealing

Correlations

The replicas in the population are not independent:

resampling creates copies, so increases correlations

MCMC moves decorrelate configurations

How can the e�ect be measured?

An upper bound is provided by considering the statistics of families (W. Wang et
al., 2015).

For a be�er estimate, learn from time-series analysis.

σ2(A) =
σ2(A)
Ne�

, Ne� = N/2τint

The e�ective population size Re� can be determined from blocking,

Re� =
σ2(Ō1)
σ2(ŌNb )

.

M. Weigel (Coventry) Parallel MC CSC2018 26 / 44



Population Annealing

Correlations (cont’d)

The e�ective population size Re� can be determined from blocking,

Re� =
σ2(Ō1)
σ2(ŌNb )

.

Nb

(a)

(b)

(t− 1)Nb tNb

Can use regular jackknife with B blocks.
Alternatively use delete-m jackknife on families.

Re� is central for the further analysis. Self-consistency demands

2τint � Nb ⇒ Re� � B.

Need of the order of B = 100 blocks for reliable estimates, hence Re� must be O(103 − 104),
independent of R.

M. Weigel (Coventry) Parallel MC CSC2018 27 / 44



Population Annealing

Correlations (cont’d)

The e�ective population size Re� can be determined from blocking,

Re� =
σ2(Ō1)
σ2(ŌNb )

.

Nb

(a)

(b)

(t− 1)Nb tNb

Can use regular jackknife with B blocks.
Alternatively use delete-m jackknife on families.

Re� is central for the further analysis. Self-consistency demands

2τint � Nb ⇒ Re� � B.

Need of the order of B = 100 blocks for reliable estimates, hence Re� must be O(103 − 104),
independent of R.

M. Weigel (Coventry) Parallel MC CSC2018 27 / 44



Population Annealing

Correlations (cont’d)

100

1000

10000

100000

0 0.2 0.4 0.6 0.8 1

R
eff

β

heatbath
R = 25000, θ = 2
R = 10000, θ = 5
R = 5000, θ = 10

Can use regular jackknife with B blocks.
Alternatively use delete-m jackknife on families.

Re� is central for the further analysis. Self-consistency demands

2τint � Nb ⇒ Re� � B.

Need of the order of B = 100 blocks for reliable estimates, hence Re� must be O(103 − 104),
independent of R.

M. Weigel (Coventry) Parallel MC CSC2018 27 / 44



Population Annealing

Correlations (cont’d)

100

1000

10000

100000

0 0.2 0.4 0.6 0.8 1

R
eff

β

heatbath
R = 25000, θ = 2
R = 10000, θ = 5
R = 5000, θ = 10

Can use regular jackknife with B blocks.
Alternatively use delete-m jackknife on families.

Re� is central for the further analysis. Self-consistency demands

2τint � Nb ⇒ Re� � B.

Need of the order of B = 100 blocks for reliable estimates, hence Re� must be O(103 − 104),
independent of R.

M. Weigel (Coventry) Parallel MC CSC2018 27 / 44



Population Annealing

Correlations (cont’d)

100

1000

10000

100000

0 0.2 0.4 0.6 0.8 1

R
eff

β

heatbath
R = 25000, θ = 2
R = 10000, θ = 5
R = 5000, θ = 10

Can use regular jackknife with B blocks.
Alternatively use delete-m jackknife on families.

Re� is central for the further analysis. Self-consistency demands

2τint � Nb ⇒ Re� � B.

Need of the order of B = 100 blocks for reliable estimates, hence Re� must be O(103 − 104),
independent of R.

M. Weigel (Coventry) Parallel MC CSC2018 27 / 44



Population Annealing

Bias and statistical error

We can show that the bias

∆A ∼ ∆β
Re�

e−θ/τ ,

and
Re� ≈ R(1− e−θ/τe� ).

Hence, increasing θ is more e�icient in reducing bias than increasing R, whenever the
MCMC is e�icient.

Statistical errors also depend on Re� :

σ(A) ∼ 1√
Re�

.

Asymptotically, statistical errors dominate. Overall recipe:

use adaptive temperature steps (see below)

increase θ only up to a point where bias is negligible over fluctuations

then maximize R to reduce statistical errors

M. Weigel (Coventry) Parallel MC CSC2018 28 / 44



Population Annealing

Massively parallel approach

The approach is naturally suitable for an implementation on massively parallel
hardware such as GPUs.

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

1 10 100

(a)

single-spin coding

t S
F
/
to

p
t

S
F

θ

GPU, R = 2000
GPU, R = 10 000
GPU, R = 50 000
GPU, R = 100 000
CPU, R = 10 000

L. Barash, MW, M. Borovský, W, Janke, and L. Shchur,
Comput. Phys. Commun. 220, 341 (2017).

Code at github.com/LevBarash/PAising.

M. Weigel (Coventry) Parallel MC CSC2018 29 / 44



Population Annealing

Massively parallel approach

The approach is naturally suitable for an implementation on massively parallel
hardware such as GPUs.

CPU GPU

SSC MSC
L tSF [ns] tSF [ns] speedup tSF [ns] speedup

16 23.1 0.092 251 0.0096 2406
32 22.9 0.094 243 0.0095 2410
64 22.6 0.095 238 0.0098 2306

128 22.6 0.098 230 0.0098 2306
256 22.5 0.099 227 0.0098 2295

L. Barash, MW, M. Borovský, W, Janke, and L. Shchur,
Comput. Phys. Commun. 220, 341 (2017).

Code at github.com/LevBarash/PAising.

M. Weigel (Coventry) Parallel MC CSC2018 30 / 44



Population Annealing

Parallel scaling

Compare MCMC and PA regarding parallel scaling.

Consider total work of parallel implementation. For MCMC we have

W ∝ pE + T .

and statistical errors are ∝ 1/
√
T . On the other hand, for PA one needs

W ∝ R.

M. Weigel (Coventry) Parallel MC CSC2018 31 / 44



Population Annealing

Parallel scaling

Compare MCMC and PA regarding parallel scaling.

Consider total work of parallel implementation. For MCMC we have

W ∝ pE + T .

and statistical errors are ∝ 1/
√
T . On the other hand, for PA one needs

W ∝ R.

M. Weigel (Coventry) Parallel MC CSC2018 31 / 44



Population Annealing

Parallel scaling

Compare MCMC and PA regarding parallel scaling.

Consider total work of parallel implementation. For MCMC we have

W ∝ pE + T .

and statistical errors are ∝ 1/
√
T . On the other hand, for PA one needs

W ∝ R.

The parallel speedup is hence

S =
T1

Tp
=

{
E+T

E+T/p
p→∞−→ 1 + T

E MCMC,

p
p→∞−→ ∞ PA

M. Weigel (Coventry) Parallel MC CSC2018 31 / 44



Population Annealing

Parallel scaling

Compare MCMC and PA regarding parallel scaling.

Consider total work of parallel implementation. For MCMC we have

W ∝ pE + T .

and statistical errors are ∝ 1/
√
T . On the other hand, for PA one needs

W ∝ R.

0

10

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 100

S
p

p

MCMC
PA

M. Weigel (Coventry) Parallel MC CSC2018 31 / 44



Population Annealing

Improvements

Three natural extensions that improve the algorithm significantly:

1 Adaptive temperature steps: E�iciency and bias of the resampling depends
on histogram overlap.

⇒ choose temperature step adaptively on the fly to ensure fixed overlap of
neighboring energy histograms (as estimated from populations).

M. Weigel (Coventry) Parallel MC CSC2018 33 / 44



Population Annealing

Improvements

Three natural extensions that improve the algorithm significantly:

1 Adaptive temperature steps: E�iciency and bias of the resampling depends
on histogram overlap.

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

h
is
to
g
ra
m

o
v
er
la
p

β

∆β = 0.01
∆β = 0.02

⇒ choose temperature step adaptively on the fly to ensure fixed overlap of
neighboring energy histograms (as estimated from populations).

M. Weigel (Coventry) Parallel MC CSC2018 33 / 44



Population Annealing

Improvements

Three natural extensions that improve the algorithm significantly:

1 Adaptive temperature steps: E�iciency and bias of the resampling depends
on histogram overlap.

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

h
is
to
g
ra
m

o
v
er
la
p

β

∆β = 0.01
∆β = 0.02

⇒ choose temperature step adaptively on the fly to ensure fixed overlap of
neighboring energy histograms (as estimated from populations).

M. Weigel (Coventry) Parallel MC CSC2018 33 / 44



Population Annealing

Improvements

Three natural extensions that improve the algorithm significantly:

1 Adaptive temperature steps: E�iciency and bias of the resampling depends
on histogram overlap.

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

h
is
to
g
ra
m

o
v
er
la
p

β

∆β = 0.01
∆β = 0.02

adaptive stepping

⇒ choose temperature step adaptively on the fly to ensure fixed overlap of
neighboring energy histograms (as estimated from populations).

M. Weigel (Coventry) Parallel MC CSC2018 33 / 44



Population Annealing

Improvements

2 Adaptive time steps: Number of independent replicas Re� crucially
determines bias as well as statistical errors.

⇒ choose θ ∝ R/Re� to e�ectively decorrelate configurations.

M. Weigel (Coventry) Parallel MC CSC2018 34 / 44



Population Annealing

Improvements

2 Adaptive time steps: Number of independent replicas Re� crucially
determines bias as well as statistical errors.

0

10000

20000

30000

40000

50000

60000

70000

80000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

L = 32

R
eff

β

θ = 10

⇒ choose θ ∝ R/Re� to e�ectively decorrelate configurations.

M. Weigel (Coventry) Parallel MC CSC2018 34 / 44



Population Annealing

Improvements

2 Adaptive time steps: Number of independent replicas Re� crucially
determines bias as well as statistical errors.

0

2

4

6

8

10

12

14

16

18

20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

L = 32

θ

β

adaptive θ

⇒ choose θ ∝ R/Re� to e�ectively decorrelate configurations.

M. Weigel (Coventry) Parallel MC CSC2018 34 / 44



Population Annealing

Improvements

2 Adaptive time steps: Number of independent replicas Re� crucially
determines bias as well as statistical errors.

0

10000

20000

30000

40000

50000

60000

70000

80000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

L = 32

R
eff

β

θ = 10
adaptive θ

⇒ choose θ ∝ R/Re� to e�ectively decorrelate configurations.

M. Weigel (Coventry) Parallel MC CSC2018 34 / 44



Population Annealing

Improvements

3 Multi-histogram analysis: Information from neighboring temperatures is also
relevant.

This also allows to estimate the density of states. Iterations as in the
Ferrenberg/Swendsen scheme are not required.

M. Weigel (Coventry) Parallel MC CSC2018 35 / 44



Population Annealing

Improvements

3 Multi-histogram analysis: Information from neighboring temperatures is also
relevant.

2.2 2.4 2.6 2.8 3.0
T

-0.006

-0.004

-0.002

0.002

0.004

HC-CexactL�Cexact

This also allows to estimate the density of states. Iterations as in the
Ferrenberg/Swendsen scheme are not required.

M. Weigel (Coventry) Parallel MC CSC2018 35 / 44



Population Annealing

Comparison

Adaptive scheme performs significantly be�er than original one.

M. Weigel (Coventry) Parallel MC CSC2018 36 / 44



Population Annealing

Comparison

Adaptive scheme performs significantly be�er than original one.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

L = 32

σ̂
(C

V
)

β

heatbath
PA
PT

adaptive PA

M. Weigel (Coventry) Parallel MC CSC2018 36 / 44



Population Annealing

Sampling the density of states

Something that we normally think can only be done with multicanonical or
Wang-Landau simulations.

L = 64

M. Weigel (Coventry) Parallel MC CSC2018 37 / 44



Population Annealing

Sampling the density of states

Something that we normally think can only be done with multicanonical or
Wang-Landau simulations.

-2 -1 1 2
E�N

500

1000

1500

2000

2500

lnHgHELL

L = 64

M. Weigel (Coventry) Parallel MC CSC2018 37 / 44



Population Annealing

Sampling the density of states

Something that we normally think can only be done with multicanonical or
Wang-Landau simulations.

-1 0 1 2
E�N

10
-7

10
-5

0.001

0.1

ln Hg HELL - ln Hgexact HELL

ln Hgexact HELL

L = 64

M. Weigel (Coventry) Parallel MC CSC2018 37 / 44



Population Annealing

Sampling the density of states (cont’d)

Estimate density of states of Chimera spin-glass samples with planted solutions.

10110-110-310-510-7

101

10-1

10-3

10-5

10-7

10210010-210-410-6
102

100

10-2

10-4

10-6

r10
WL - r10

exact  r10
exact

r
10P
A
-
r
10e
xa
ct


r
10e
xa
ct

r10 =
Ω(E1)
Ω(E0)

M. Weigel (Coventry) Parallel MC CSC2018 38 / 44



Population Annealing

Population annealing molecular dynamics

Population annealing as a meta algorithm can be combined with other types of
underlying dynamics.

simulate R systems with NVT
MD in parallel

need to use a stochastic
thermostat

resampling using the same rule
as before

can easily use existing MD code,
for example OpenMM, Gromacs,
NAMD, ...

M. Weigel (Coventry) Parallel MC CSC2018 39 / 44



Population Annealing

Population annealing molecular dynamics (cont’d)

Test for met-enkephalin in vacuo, a pentapeptide with sequence
Tyr-Gly-Gly-Phe-Met.

−180

−90

0

90

180

−180 −90 0 90 180

(a)

Ψ

Φ

GLY-2

PA


anon.

−180

−90

0

90

180

−180 −90 0 90 180

(b)

Ψ

Φ

GLY-3

PA


anon.

−180

−90

0

90

180

−180 −90 0 90 180

(
)

Ψ

Φ

PHE-4

PA


anon.

−180

−90

0

90

180

−180 −90 0 90 180

(a)

Ψ

Φ

GLY-2

PA

PT

−180

−90

0

90

180

−180 −90 0 90 180

(b)

Ψ

Φ

GLY-3

PA

PT

−180

−90

0

90

180

−180 −90 0 90 180

(
)

Ψ

Φ

PHE-4

PA

PT

M. Weigel (Coventry) Parallel MC CSC2018 40 / 44



Population Annealing

Population annealing molecular dynamics (cont’d)

So the e�iciency of PA for MD is on par with PT given the same computational
resources, but PA scales to a practically arbitrary number of cores!

−180

−90

0

90

180

−180 −90 0 90 180

Ψ

Φ

GLY-3

PA

PT

M. Weigel (Coventry) Parallel MC CSC2018 41 / 44



Summary

Summary

M. Weigel (Coventry) Parallel MC CSC2018 42 / 44



Summary

Conclusions

Parallel Monte Carlo:

use domain decomposition for canonical updates of short-range models

non-local updates possible (Swendsen-Wang and friends)

very e�icient on GPUs

Multicanonical simulations:

parallelize with multiple walkers

of particular interest for systems with 1st order transitions

super-linear speedup observed up to 70k walkers

Population annealing:

theoretically perfect parallel scaling with R plus can combine independent runs

free-energy estimator generalizes thermodynamic integration

can be turned into a fully adaptive algorithm

M. Weigel (Coventry) Parallel MC CSC2018 43 / 44



Summary

Conclusions

Parallel Monte Carlo:

use domain decomposition for canonical updates of short-range models

non-local updates possible (Swendsen-Wang and friends)

very e�icient on GPUs

Multicanonical simulations:

parallelize with multiple walkers

of particular interest for systems with 1st order transitions

super-linear speedup observed up to 70k walkers

Population annealing:

theoretically perfect parallel scaling with R plus can combine independent runs

free-energy estimator generalizes thermodynamic integration

can be turned into a fully adaptive algorithm

M. Weigel (Coventry) Parallel MC CSC2018 43 / 44



Summary

Conclusions

Parallel Monte Carlo:

use domain decomposition for canonical updates of short-range models

non-local updates possible (Swendsen-Wang and friends)

very e�icient on GPUs

Multicanonical simulations:

parallelize with multiple walkers

of particular interest for systems with 1st order transitions

super-linear speedup observed up to 70k walkers

Population annealing:

theoretically perfect parallel scaling with R plus can combine independent runs

free-energy estimator generalizes thermodynamic integration

can be turned into a fully adaptive algorithm

M. Weigel (Coventry) Parallel MC CSC2018 43 / 44



Summary

Acknowledgements

Co-workers

Coventry group:
Ravinder Kumar, Je�rey Kelling, Michal
Borovský, Taras Yavors’kii

Lev Barash, Moscow
Jonathan Gross, Leipzig
Alexander Hartmann, Oldenburg
Wolfhard Janke, Leipzig
Helmut Katzgraber, College Station
Jon Machta, Amherst
Markus Manssen, Oldenburg
Lev Shchur, Moscow
Johannes Zierenberg, Gö�ingen

M. Weigel (Coventry) Parallel MC CSC2018 44 / 44



Summary

Acknowledgements

Co-workers

Coventry group:
Ravinder Kumar, Je�rey Kelling, Michal
Borovský, Taras Yavors’kii

Lev Barash, Moscow
Jonathan Gross, Leipzig
Alexander Hartmann, Oldenburg
Wolfhard Janke, Leipzig
Helmut Katzgraber, College Station
Jon Machta, Amherst
Markus Manssen, Oldenburg
Lev Shchur, Moscow
Johannes Zierenberg, Gö�ingen

Funding

German Research Foundation (DFG,
Emmy Noether group)

Coventry University (Research Sabbatical
Fellowship)

European Commission (IRSES network
DIONICOS)

M. Weigel (Coventry) Parallel MC CSC2018 44 / 44



Summary

Acknowledgements

Co-workers

Coventry group:
Ravinder Kumar, Je�rey Kelling, Michal
Borovský, Taras Yavors’kii

Lev Barash, Moscow
Jonathan Gross, Leipzig
Alexander Hartmann, Oldenburg
Wolfhard Janke, Leipzig
Helmut Katzgraber, College Station
Jon Machta, Amherst
Markus Manssen, Oldenburg
Lev Shchur, Moscow
Johannes Zierenberg, Gö�ingen

Funding

German Research Foundation (DFG,
Emmy Noether group)

Coventry University (Research Sabbatical
Fellowship)

European Commission (IRSES network
DIONICOS)

References
MW, Monte Carlo methods for massively parallel computers, in: "Order, disorder and criticality", Vol. 5, ed. Yu.
Holovatch (World Scientific, Singapore, 2018), pp. 271–340, arXiv:1709.04394
H. Christiansen, MW, W. Janke, Preprint arXiv:1806.06016
J. Gross, J. Zierenberg, MW, and W. Janke, Comput. Phys. Commun. 224, 387 (2018)
L. Barash, MW, M. Borovský, W. Janke, L. Shchur, Comput. Phys. Commun. 220, 314 (2017)

L. Barash, MW, L. Shchur, W. Janke, EPJ Spec. Topics 226, 595 (2017)

M. Weigel (Coventry) Parallel MC CSC2018 44 / 44



Summary

Acknowledgements

Co-workers

Coventry group:
Ravinder Kumar, Je�rey Kelling, Michal
Borovský, Taras Yavors’kii

Lev Barash, Moscow
Jonathan Gross, Leipzig
Alexander Hartmann, Oldenburg
Wolfhard Janke, Leipzig
Helmut Katzgraber, College Station
Jon Machta, Amherst
Markus Manssen, Oldenburg
Lev Shchur, Moscow
Johannes Zierenberg, Gö�ingen

Funding

German Research Foundation (DFG,
Emmy Noether group)

Coventry University (Research Sabbatical
Fellowship)

European Commission (IRSES network
DIONICOS)

You

Thank you for your a�ention!

References
MW, Monte Carlo methods for massively parallel computers, in: "Order, disorder and criticality", Vol. 5, ed. Yu.
Holovatch (World Scientific, Singapore, 2018), pp. 271–340, arXiv:1709.04394
H. Christiansen, MW, W. Janke, Preprint arXiv:1806.06016
J. Gross, J. Zierenberg, MW, and W. Janke, Comput. Phys. Commun. 224, 387 (2018)
L. Barash, MW, M. Borovský, W. Janke, L. Shchur, Comput. Phys. Commun. 220, 314 (2017)

L. Barash, MW, L. Shchur, W. Janke, EPJ Spec. Topics 226, 595 (2017)

M. Weigel (Coventry) Parallel MC CSC2018 44 / 44


	Parallel Computing and Monte Carlo
	Canonical Monte Carlo
	Multicanonical simulations
	Population Annealing
	Summary

