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Parallel Computing and Monte Carlo

Monte Carlo simulations

Most successful approach is importance sampling through Markov chains, an inherently
sequential process.

What to do it the era of parallel computing?

use domain decompositions

moderately parallel variants such as
parallel tempering
(Swendsen and Wang, 1986;
Geyer, 1991; Hukushima and
Nemoto, 1996)

parallel multicanonical
(Zierenberg et al., 2013)
and Wang-Landau simulations
(Vogel et al., 2013)

population annealing method

Which methods work for 105 or 106 cores?
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Canonical Monte Carlo

Benchmark: the 2D Ising model

Check results for the fruit fly of statistical mechanics, the 2D Ising model.

Hamiltonian

H = −J
∑
〈i,j〉

sisj, si = ±1

T � Tc T ≈ Tc T � Tc
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Canonical Monte Carlo

Parallel Metropolis

Consider spin models on regular la�ices, for instance

H = −
∑
〈i,j〉

Jijsisj −
∑
i

hisi.

For short-range interactions, we can use a checkerboard decomposition.
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Canonical Monte Carlo

NVIDIA architecture
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Canonical Monte Carlo

NVIDIA architecture
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Canonical Monte Carlo

Checkerboard decomposition

(red) large tiles:
thread blocks

(red) small tiles:
individual
threads

load one large tile
(plus boundary)
into shared
memory

perform several
spin updates per
tile
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Canonical Monte Carlo

Performance
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For su�iciently large la�ices, one achieves spin-flip times as low as 20 ps, about 250
times faster than a single CPU core.
The number of threads is limited by the number of spins.
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Multicanonical simulations

Multicanonical simulations

Generalized ensembles

Instead of simulating the canonical
distribution,

PK (E) =
1
ZK

Ω(E)e−KE ,

consider using a more general distribution

Pmuca(E) =
Ω(E)/W (E)

Zmuca
=

Ω(E)e−ω(E)

Zmuca
,

engineered to overcome barriers, improve
sampling speed and extend the
reweighting range.
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Multicanonical simulations

Multicanonical simulations

Choice of weights

To overcome barriers, we need to broaden P(E), in the extremal case to a constant distribution,

Pmuca(E) = Z−1
muca Ω(E)/W (E) = Z−1

muca e
S(E)−ω(E) != const,

where S(E) = ln Ω(E) is the microcanonical entropy.

Under these assumptions, W (E) = Ω(E) is optimal, i.e., we again desire to estimate the density
of states. This is not known a priori, so (again) use histogram estimator

Ω̂(E) = Zmuca Ĥmuca(E)/N × eω(E).

Canonical averages can be recovered at any time by reweighting:

〈A〉K =

∑
E A(E)PK (E)/Pmuca(E)∑

E PK (E)/Pmuca(E)
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Multicanonical simulations

Multicanonical simulations

Muca iteration

Determine muca weights/density of states
iteratively:

1 Use, e.g., a K = 0 canonical
simulation to get initial estimate
Ŝ0(E) = ln Ω̂0(E).

2 Choose multicanonical weights
ω1(E) = Ŝ0(E) for next simulation.

3 Iterate.
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Multicanonical simulations

Multicanonical simulations

Muca iteration

Advantages:

always in equilibrium

arbitrary distributions possible

system ideally performs an unbiased
random walk in energy space→
fast(er) dynamics
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Multicanonical simulations

Multicanonical simulations

Multicanonical simulations

Variants:

umbrella sampling, entropic
sampling (identical)

multiple Gaussian modified ensemble

(broad histogram method)

transition-matrix Monte Carlo

metadynamics

Wang-Landau sampling

...
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Multicanonical simulations

Multicanonical simulations

Wang-Landau sampling

Muca weights are updated as

ωi+1(E)− ωi(E) = const + ln Ĥi(E),

i.e., if an energy E is visited more o�en
than others, it receives less weight in
future iterations.

This behavior can be imitated in a one-step
iteration: simulate

PWL(E) ∝ Ω(E)e−ω(E),

but update

ωi+1(E)− ωi(E) = φ,

each time an energy E is seen.
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but update
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each time an energy E is seen.

WL iteration

1 Start with ω(E) = 0 ∀E .

2 Simulate “su�iciently long” while
continuously updating ω(E).

3 Reduce modification factor, e.g.,

φ→ φ/2

4 Iterate till φ < φthres.
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Multicanonical simulations

Multicanonical simulations

Use and justification

Di�erent possible interpretations of this
scheme:

Rather e�icient way of calculating muca
weights.

Standalone algorithm for estimating the
density of states (convergence?).

Violates detailed balance for any φ > 0,
but convergence can be proved as a
stochastic approximation (instead of
MCMC) algorithm for

φ =
t0

max(t, t0)
∼

1
t
, t > t0

instead of
φ = φ0 2−t

(cf. simulated annealing)

WL iteration

1 Start with ω(E) = 0 ∀E .

2 Simulate “su�iciently long” while
continuously updating ω(E).

3 Reduce modification factor, e.g.,
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Multicanonical simulations

Parallel muca

Each update requires the value of the current energy to evaluate W (E)/W (E ′),
e�ectively serializing all spin flips!

Intrinsically serial algorithm?

Suggested ways out:

divide the energy range in windows, or

use multiple walkers (Zierenberg et al., 2013)
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Multicanonical simulations

Parallel muca (cont’d)

Each walker samples its own histogram, all of them are combined for the next weight
update,

H(n)(E) =
∑
i

H(n)
i (E).

This scheme can be e�iciently implemented on MPI clusters (Zierenberg et al.,

2013) and on GPUs.
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Multicanonical simulations

Parallel muca (cont’d)

Additional walkers lead to a faster convergence of the weight iteration.
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Multicanonical simulations

Parallel muca (cont’d)

Additional walkers lead to a faster convergence of the weight iteration.
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Population Annealing

Population Annealing
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Population Annealing

Population annealing
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Population Annealing

Population annealing

Population annealing algorithm (Hukushima + Iba, 2003; Machta, 2010):
1 Set up an equilibrium ensemble of R independent copies of the system at inverse

temperature β0. Typically β0 = 0, where this can be easily achieved.

2 To create an approximately equilibrated sample at βi > βi−1, resample
configurations with their relative Boltzmann weight exp[−(βi − βi−1)Ej]/Q,
where Q =

∑
exp(−(βi − βi−1)Ej).

3 Update each copy (replica) by θ rounds of an MCMC algorithm at inverse
temperature βi .

4 Calculate estimates for observable quantities O as population averages∑
j Oj/R.

5 Goto step 2 until target temperature is reached.

The MCMC is not strictly necessary but significant for the overall performance.
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Population Annealing

Benchmark: the 2D Ising model

Check results for the fruit fly of statistical mechanics, the 2D Ising model.

Hamiltonian

H = −J
∑
〈i,j〉

sisj, si = ±1

T � Tc T ≈ Tc T � Tc
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Population Annealing

Population annealing

A sequential annealing of the population from infinite temperature, β = 0, down to
β = 1.
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Population Annealing

Correct results?

Exact results are available for finite la�ices for the internal energy, specific heat and
free energy (Ferdinand + Fisher, 1969).
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Population Annealing

Not always
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Need to understand dependence on parameters, R, θ, ∆β.
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Population Annealing

Correlations

The replicas in the population are not independent:

resampling creates copies, so increases correlations

MCMC moves decorrelate configurations

How can the e�ect be measured?

An upper bound is provided by considering the statistics of families (W. Wang et
al., 2015).

For a be�er estimate, learn from time-series analysis.

σ2(A) =
σ2(A)
Ne�

, Ne� = N/2τint

The e�ective population size Re� can be determined from blocking,

Re� =
σ2(Ō1)
σ2(ŌNb )

.
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Population Annealing

Population annealing
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Population Annealing

Correlations (cont’d)

The e�ective population size Re� can be determined from blocking,

Re� =
σ2(Ō1)
σ2(ŌNb )

.

Nb

(a)

(b)

(t− 1)Nb tNb

Can use regular jackknife with B blocks.
Alternatively use delete-m jackknife on families.

Re� is central for the further analysis. Self-consistency demands

2τint � Nb ⇒ Re� � B.

Need of the order of B = 100 blocks for reliable estimates, hence Re� must be O(103 − 104),
independent of R.
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Population Annealing

Correlations (cont’d)
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Population Annealing

Correlations (cont’d)
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Population Annealing

Correlations (cont’d)
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Population Annealing

Bias and statistical error

We can show that the bias

∆A ∼ ∆β
Re�

e−θ/τ ,

and
Re� ≈ R(1− e−θ/τe� ).

Hence, increasing θ is more e�icient in reducing bias than increasing R, whenever the
MCMC is e�icient.

Statistical errors also depend on Re� :

σ(A) ∼ 1√
Re�

.

Asymptotically, statistical errors dominate. Overall recipe:

use adaptive temperature steps (see below)

increase θ only up to a point where bias is negligible over fluctuations

then maximize R to reduce statistical errors
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Population Annealing

Massively parallel approach

The approach is naturally suitable for an implementation on massively parallel
hardware such as GPUs.
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L. Barash, MW, M. Borovský, W, Janke, and L. Shchur,
Comput. Phys. Commun. 220, 341 (2017).

Code at github.com/LevBarash/PAising.
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Population Annealing

Massively parallel approach

The approach is naturally suitable for an implementation on massively parallel
hardware such as GPUs.

CPU GPU

SSC MSC
L tSF [ns] tSF [ns] speedup tSF [ns] speedup

16 23.1 0.092 251 0.0096 2406
32 22.9 0.094 243 0.0095 2410
64 22.6 0.095 238 0.0098 2306

128 22.6 0.098 230 0.0098 2306
256 22.5 0.099 227 0.0098 2295

L. Barash, MW, M. Borovský, W, Janke, and L. Shchur,
Comput. Phys. Commun. 220, 341 (2017).

Code at github.com/LevBarash/PAising.
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Population Annealing

Parallel scaling

Compare MCMC and PA regarding parallel scaling.

Consider total work of parallel implementation. For MCMC we have

W ∝ pE + T .

and statistical errors are ∝ 1/
√
T . On the other hand, for PA one needs

W ∝ R.
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Compare MCMC and PA regarding parallel scaling.

Consider total work of parallel implementation. For MCMC we have

W ∝ pE + T .

and statistical errors are ∝ 1/
√
T . On the other hand, for PA one needs

W ∝ R.

The parallel speedup is hence

S =
T1

Tp
=

{
E+T

E+T/p
p→∞−→ 1 + T

E MCMC,

p
p→∞−→ ∞ PA
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Population Annealing

Improvements

Three natural extensions that improve the algorithm significantly:

1 Adaptive temperature steps: E�iciency and bias of the resampling depends
on histogram overlap.

⇒ choose temperature step adaptively on the fly to ensure fixed overlap of
neighboring energy histograms (as estimated from populations).
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Population Annealing

Improvements

2 Adaptive time steps: Number of independent replicas Re� crucially
determines bias as well as statistical errors.

⇒ choose θ ∝ R/Re� to e�ectively decorrelate configurations.
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Population Annealing

Improvements

3 Multi-histogram analysis: Information from neighboring temperatures is also
relevant.

This also allows to estimate the density of states. Iterations as in the
Ferrenberg/Swendsen scheme are not required.

M. Weigel (Coventry) Parallel MC CSC2018 35 / 44



Population Annealing

Improvements

3 Multi-histogram analysis: Information from neighboring temperatures is also
relevant.

2.2 2.4 2.6 2.8 3.0
T

-0.006

-0.004

-0.002

0.002

0.004

HC-CexactL�Cexact

This also allows to estimate the density of states. Iterations as in the
Ferrenberg/Swendsen scheme are not required.

M. Weigel (Coventry) Parallel MC CSC2018 35 / 44



Population Annealing

Comparison

Adaptive scheme performs significantly be�er than original one.
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Population Annealing

Sampling the density of states

Something that we normally think can only be done with multicanonical or
Wang-Landau simulations.

L = 64
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Population Annealing

Sampling the density of states (cont’d)

Estimate density of states of Chimera spin-glass samples with planted solutions.
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Population Annealing

Population annealing molecular dynamics

Population annealing as a meta algorithm can be combined with other types of
underlying dynamics.

simulate R systems with NVT
MD in parallel

need to use a stochastic
thermostat

resampling using the same rule
as before

can easily use existing MD code,
for example OpenMM, Gromacs,
NAMD, ...

M. Weigel (Coventry) Parallel MC CSC2018 39 / 44



Population Annealing

Population annealing molecular dynamics (cont’d)

Test for met-enkephalin in vacuo, a pentapeptide with sequence
Tyr-Gly-Gly-Phe-Met.
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Population Annealing

Population annealing molecular dynamics (cont’d)

So the e�iciency of PA for MD is on par with PT given the same computational
resources, but PA scales to a practically arbitrary number of cores!
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Summary

Summary
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Summary

Conclusions

Parallel Monte Carlo:

use domain decomposition for canonical updates of short-range models

non-local updates possible (Swendsen-Wang and friends)

very e�icient on GPUs

Multicanonical simulations:

parallelize with multiple walkers

of particular interest for systems with 1st order transitions

super-linear speedup observed up to 70k walkers

Population annealing:

theoretically perfect parallel scaling with R plus can combine independent runs

free-energy estimator generalizes thermodynamic integration

can be turned into a fully adaptive algorithm
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