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INTRODUCTION

Gromacs, a simulation package for biomolecular systems, is one of the most highly
used HPC applications globally.

It evolves systems of particles using the Newtonian equations of motion:

Forces between particles dictate their movement (e.g. two positively
charged ions will repel).

Calculating forces is most expensive part of simulation - all pairs of particles in
the simulation can potentially interact. Forces get weaker with distance, but long-
range forces still must be accounted for.
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INTRODUCTION

Force calcs typically fall into three classes in Gromacs:
Non-bonded forces: (short range) - particles within a certain cutoff range interact directly
PME: long-range forces accounted for through a “Particle Mesh Ewald” scheme, where Fourier
transforms are used to perform calculations in Fourier space, which is much cheaper than

calculating all interactions directly in real space

Bonded forces: required due to specific behaviour of bonds between particles, e.g. the harmonic
potential when two covalently bonded atoms are stretched

These are all now accelerated, most recently the addition of GPU bonded forces in Gromacs
2019 (evolved through prototype work by NVIDIA). But we still have a problem....

...force calcs are now so fast on modern GPUs that other parts are now very significant, especially
when we wish to utilize multiple GPUs.

| will describe work to port all significant remaining computational kernels to the GPU, and to
perform the required Inter-GPU communications using peer-to-peer memory copies, such that
the GPU is exploited throughout and repeated PCle transfers are avoided.
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GROMACS ON OLD KEPLER ARCHITECTURE

On old architectures such as Kepler, force calculations are very
dominant and other overheads are dwarfed.

~400K atom “Cellulose” case.

= - GPU Idle time
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But on new architectures such as Volta, force kernels are so fast
that other overheads are very significant.

The timescales are aligned in the above profiles s v




THE PROBLEM
Single GPU

NCoT roo | N6 | oz ] 50] Updsteaconsiais g

Bonded

PME

CPU
GPU
PCle

BO = Buffer Ops



THE SOLUTION
Single GPU

T o]k
" bonded

Bonded

CPU
GPU
PCle

BO = Buffer Ops



SINGLE GPU: NEW DEVELOPMENT
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Multi (4X) GPU
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MULTI-GPU

* For our multi-GPU experiments we use 4 x V100 SXM2 GPUs fully-
connected with NVLink, plus 2xCPU.
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BENCHMARKS

ADH Dodec Cellulose STMV
~100K atoms ~400K atoms ~1M atoms

Performance results are dependent on system size. We strive to aim our
benchmarking and optimization to cover the range of typical sizes in use. We
welcome any feedback on further cases to include.
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MULTI-GPU: GMX 2020 VS GMX 2019.5

2020 vs 2019.5, 4 x V100 SXM2 16GB

3.5

Speedup vs 2019.5

147 ns/day
441 ns/day
196 ns/day 54 ns/day
20195 2020 2019.5 2020
ADHD Cellulose
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2019.5
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2020
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SINGLE-GPU: GMX 2020 VS GMX 2019.5

2020 vs 2019.5, 1xV100 SXM2 16GB

Speedup vs 2019.5
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GPU Speedup vs 2xCPU

14

12

10

GROMACS 2020: GPU VS CPU

NVIDIA V100-SXM2 16GB GPU vs

Dual-socket Intel Gold 6240 CPU server (36 cores total)

441 ns/day

225 ns/day

48 ns/day

[]

2XCPU 1XGPU 4XGPU

ADHD

147 ns/day

63 ns/day

14 ns/day

[]

2XCPU 1XGPU 4XGPU

Cellulose

43.1 ns/day

12.9 ns/day

3.5 ns/day

1 1L L

2XCPU 1XGPU 4XGPU
STMV

NVIDIA.



DEVELOPMENT DETAILS



DEVELOPMENT DETAILS

Reminder: All developments in collaboration with core Gromacs
developers.

GPU Bonded Force calculations:
2019 release: 8 new kernels corresponding to bonded force types

2020 release: kernels merged together for better performance

GPU Buffer Ops: transformations between different data formats
used in gromacs, and force reduction operations. New kernels and
major restructuring/refactoring.



DEVELOPMENT DETAILS

GPU Update and Constraints

New kernels related to the “update”, “lincs” and “settle” operations
to update and constrain atom positions from forces. Major
restructuring and refactoring.

GPU PME/PP Communications

Use of CUDA Peer-to-peer (P2P) memory copies to exchange data
directly between GPUs

More details coming up
Device MPI: PP halo exchanges

New functionality to pack device-buffers and exchange directly
between GPUs using Use of CUDA Peer-to-peer (P2P) memory copies.

More details coming up y
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PP TO PME COMMUNICATION

PP task PME task

Data D2H
Data MPI

Data MPI
Data H2D

Original GROMACS

Data CUDA Direct Data CUDA Direct

New development



PP TO PP HALO EXCHANGE COMMUNICATION

PP task PP task

Data D2H
Buffer Packing

Data D2H
Buffer Packing

Data MPI
Data H2D

Data MPI
Data H2D

Original Gromacs

Build index map Build index map
Index map D2H Index map D2H

Buffer Packing Buffer Packing

Data CUDA direct Data CUDA direct

New development 2% AnviDia



GPU Local

Stream

COORDINATE CPU HALO EXCHANGE

Sending MPI Rank

Stream

GPU Non-Local

CPU Thread

Pack CPU halo
buffer

MPI Send CPU
halo buffer

Receiving MPl Rank

CPU Thread

GPU Non-Local GPU Local
Stream Stream

MPI Recv data into

non-local part of
CPU X buffer

Launch

cudaMemcpyAsync

\‘ cudaMemcpyAsync

Launch non-
local NB kernel

\ Non-local NB kernel
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COORDINATE GPU HALO EXCHANGE

Sending Thread-MPI Rank Receiving Thread-MPIl Rank

GPU Local GPU Non-Local

Stream Stream
(Data previously

copied to GPU

_ Launch event record
Event record <«—— Llaunch stream wait event

CPU Thread GPU Non-Local GPU Local
Stream Stream

CPU Thread

Stream Wait event
«————— Launch packing kernel

Pack GPU halo
buffer __— Launch cudaMemcpyAsync
/
cudaMemcpyAsync |_~ Launch event record
push of halo buffer

a MPI Send event pointer
Event record

MPI Recv
remote event
pointer

\ Stream wait event

Launch non-
local NB kernel

\ Non-local NB kernel
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FORCE GPU HALO EXCHANGE

Sending Thread-MPI| Rank Receiving Thread-MPIl Rank
O remt GPUNon-Local - cpy) rpreaq CPUThread  GPUNon-Local ~ GPU Local
tream Stream Stream

Launch cudaMemcpyAsync

cudaMemcpyAsync
CPU forces or «—— | OrcudaMemsetAsync(0)

cudaMemsetAsync(0) Launch event

/ record
Event record

Launch stream
wait event

P

Stream Wait event

.———— Launch cudaMemcpyAsyc

cudaMemcpyAsync
push of non-local
part of F buffer

Launch event record

Event record MPI Send event pointer

m‘ Recv remote

Y€ Feq; i
Syncéon e\?enged event pointer  [=y| Stream wait event
recory
Launch unpacking .
kernel Unpack GPU halo
buffer into local
Launch event part of F buffer

record
\ Event record

Launch stream

wait event \

Stream Wait event

Launch local F

Buffer Ops \—> Local F buffer ops »

NVIDIA.



HOW TO



ENABLING NEW OPTIMIZATIONS

The new optimizations are not yet enabled by default: the new code-paths have been
verified by the standard GROMACS regression tests, but still lack substantial “real-world”
testing.

We stress that users should carefully verify results against the default path, and any

reported issues will be gratefully received by the developer team to help us mature the
software.
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ENABLING NEW OPTIMIZATIONS

Gromacs should be built using its internal library instead of any external MPI library
(see above), and at run time the optimizations can be fully enabled by setting the following
three environment variables to any non-NULL value in your shell (as shown for bash shell
here).

For halo exchange communications between PP tasks:

export GMX GPU DD COMMS=true

For communications between PME and PP tasks:

export GMX GPU PME PP COMMS=true

To multi-GPU enable the update and constraints part of the timestep:
export GMX FORCE UPDATE DEFAULT GPU=true

The combination of these will trigger all optimizations, including dependencies such as GPU-
acceleration of buffer operations.
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http://www.gromacs.org/Documentation/Acceleration_and_parallelization#Multithreading_with_thread-MPI

ENABLING NEW OPTIMIZATIONS

When running on a single GPU, only GMX FORCE UPDATE DEFAULT GPU is required (or, for
single-GPU only, this can equivalently by enabled by adding the —update gpu flag to the
mdrun command).

Of course, in both single and multi GPU cases it is also necessary to assign the three classes of
force calculations to the GPU through the

-nb gpu -bonded gpu -pme gpu

options to mdrun (where, on multi-GPU, the -npme 1 option will also be required to limit
PME to a single GPU).

33

NVIDIA.



USE H-BONDS CONSTRAINTS

Note also that the new GPU update and constraints code-path is only supported in
combination with domain decomposition of the PP tasks across multiple GPUs when update
groups are used.

This means constraining all bonds is not supported, except for small molecules. To
facilitate this, it is recommended to convert bonds with hydrogen bonds to constraints,
rather than all bonds.

To do this, in the .mdp input file to the Gromacs preprocessor grompp, change the line

constraints = all-bonds
to
constraints = h-bonds

For more information see
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http://manual.gromacs.org/documentation/current/user-guide/mdp-options.html

SPECIFIC COMMAND USED FOR RESULTS

The full set of mdrun options used when running the above 4XGPU performance comparisons
are as follows:

gmx mdrun -v -nsteps 100000 -resetstep 90000 -noconfout \

-ntmpi 4 -ntomp 10 \

-nb gpu -bonded gpu -pme gpu -npme 1 \
-nstlist 400

IIIIIII



SPECIFIC COMMAND USED FOR RESULTS

The first line instructs Gromacs to run 100,000 steps for this relatively short benchmark
test, with the timing counters reset at step 90,000 to avoid initialization costs being
included in the timing since these will not be important for typical long production runs.

These specific values have been chosen to allow Gromacs long enough to automatically
perform PME tuning, where the size of the PME grid is tuned to give an optimal load
balance between PP and PME tasks.

Similarly, the -noconfout option instructs Gromacs not to write output files at the end of
this short benchmarking run to avoid artificially high 1/0 overheads.
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SPECIFIC COMMAND USED FOR RESULTS

The second line specifies that 4 thread-MPI tasks should be used (i.e. one per GPU), with 10
OpenMP threads per thread-MPI task such that a total of 40 OpenMP threads are in use to
match the number of physical CPU cores in our server.

The third line offloads all force calculations to the GPU

And the final -nstl1ist 400 option instructs Gromacs to update the neighbor list with
frequency of 400 steps - this can be adapted without any loss of accuracy (when using the
Verlet scheme), and we found this value to give the best performance through
experimentation.
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DEFAULT: ONLY NB FORCE ON GPU

gmx mdrun -v -s cellulose-hbond.tpr -nsteps 2000 \
-ntmpi 4 \ #run on 4 GPUs (1 tMPI task per GPU)..
-ntomp 10 \ # .. with 10 OpenMP tasks per tMPI task (40-core server)
—notunepme \ #Don’t perform PME tuning (more later)
-resetstep 1000 \ #Benchmarking: reset timers to rm init overhead

—noconfout #Benchmarking: don’t write output configuration

(ns/day) (hour/ns)
Performance: 6.822 3.518
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ACTIVATE BONDED AND PME FORCE ON GPU

gmx mdrun -v -s cellulose-hbond.tpr -nsteps 2000 -ntmpi 4 -ntomp 10 \
-notunepme -resetstep 1000 —-noconfout \
-bonded gpu -pme gpu -npme 1 #put bonded and PME force calcs on GPU

(ns/day) (hour/ns)
Performance: 42 .785 0.561
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ACTIVATE NEW GROMACS 2020 FEATURES

#Activate new 2020 features

export GMX GPU DD COMMS=1

export GMX GPU PME PP COMMS=1

export GMX FORCE UPDATE DEFAULT | GPU=1

gmx mdrun -v -s cellulose-hbond.tpr -nsteps 2000 -ntmpi 4 -ntomp 10 \
-notunepme -resetstep 1000 —-noconfout \
-bonded gpu -pme gpu -npme 1

(ns/day) (hour/ns)
Performance: 87.661 0.274
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ALLOW TUNING OF PME GRID SIZE AND
DECREASE NEIGHBOUR SEARCH FREQUENCY

#Activate new 2020 features

export GMX GPU DD COMMS=1

export GMX GPU PME PP COMMS=1

export GMX_FORCE_UPDATE_DEFAULT_GPU=1

gmx mdrun -v -s cellulose-hbond.tpr -nsteps 100000 -ntmpi 4 -ntomp 10 \
-resetstep 90000 \

—noconfout \

-bonded gpu -pme gpu -npme 1 \

-nstlist 400

fremoved —notunepme and increased number of steps to allow PME tuning
to complete

(ns/day) (hour/ns)
Performance: 147.440 0.163
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SUMMARY AND FUTURE WORK

Modern GPUs are so fast in performing Gromacs force calculations that the other
parts of the simulation timestep are becoming a bottleneck.

In Gromacs 2020 we have accelerated all other main computational parts and
enabled peer-to-peer communication directly between GPUs.

Large performance improvements available on multi-GPU. Less dramatic but
significant performance improvements available on single-GPU.

Future work will include
Stabilization and further refactoring.

PME decomposition: enablement of multi-GPU for PME could improve load balance,
and also potentially allow scaling to higher numbers of GPUs.

Remove single-node limitation for new GPU communication performance features.

Further performance improvements, especially for smaller cases, through more
overlapping
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