
Alan Gray, NVIDIA.  
University of Warwick Seminar, 3rd February 2020

LATEST PERFORMANCE 
ENHANCEMENTS TO GROMACS ON 
SINGLE AND MULTIPLE NVIDIA GPUS



2

ACKNOWLEDGEMENTS
• We are very grateful to the core Gromacs development team in Stockholm for the 

ongoing collaboration, in particular:

• Erik Lindahl, Stockholm University/SciLifeLab/KTH

• Mark Abraham, formerly SciLifeLab/KTH

• Szilard Pall, KTH/PDC

• Berk Hess, SciLifeLab/KTH

• Artem Zhmurov, KTH/PDC

• Paul Bauer, SciLifeLab/KTH

• The EU BioExcel Center of Excellence for Biomolecular Research supports this 
collaboration.



3

AGENDA

• Introduction

• A high-level overview of developments

• Performance results

• Development details

• How to



4

INTRODUCTION



5

INTRODUCTION

• Gromacs, a simulation package for biomolecular systems, is one of the most highly 
used HPC applications globally. 

• It evolves systems of particles using the Newtonian equations of motion:

• Forces between particles dictate their movement (e.g. two positively 
charged ions will repel).

• Calculating forces is most expensive part of simulation - all pairs of particles in 
the simulation can potentially interact. Forces get weaker with distance, but long-
range forces still must be accounted for. 



6

INTRODUCTION
• Force calcs typically fall into three classes in Gromacs:  

• Non-bonded forces: (short range) - particles within a certain cutoff range interact directly

• PME: long-range forces accounted for through a “Particle Mesh Ewald” scheme, where Fourier 
transforms are used to perform calculations in Fourier space, which is much cheaper than 
calculating all interactions directly in real space

• Bonded forces:  required due to specific behaviour of bonds between particles, e.g. the harmonic 
potential when two covalently bonded atoms are stretched

• These are all now accelerated, most recently the addition of GPU bonded forces in Gromacs
2019 (evolved through prototype work by NVIDIA). But we still have a problem….

• …force calcs are now so fast on modern GPUs that other parts are now very significant, especially 
when we wish to utilize multiple GPUs.

• I will describe work to port all significant remaining computational kernels to the GPU, and to 
perform the required Inter-GPU communications using peer-to-peer memory copies, such that 
the GPU is exploited throughout and repeated PCIe transfers are avoided.



7

A HIGH LEVEL OVERVIEW 
OF DEVELOPMENTS



8

GROMACS ON OLD KEPLER ARCHITECTURE

• On old architectures such as Kepler, force calculations are very 
dominant and other overheads are dwarfed.

• ~400K atom “Cellulose” case.

• : GPU Idle time  



9

VOLTA VS KEPLER

• But on new architectures such as Volta, force kernels are so fast 
that other overheads are very significant. 

• The timescales are aligned in the above profiles

Kepler

Volta



10

THE PROBLEM
Single GPU

NB

Bonded

PME

Update&ConstraitsBO BOH2D D2H

CPU

GPU

PCIe

BO = Buffer Ops



11

THE SOLUTION
Single GPU

NB

Bonded

PME

U&CBO BO

CPU

GPU

PCIe

BO = Buffer Ops



12

SINGLE GPU: NEW DEVELOPMENT

GMX 2019

GMX 2020

• Aligned timescales



13

THE PROBLEM
Multi (4X) GPU

NB

Bonded

PME

Update&ConstraitsMPI BO

MPI

BOMPI

MPID2HH2D

H2D D2H

PME

PP

PP

PP

As above

As above

CPU

GPU

PCIe



14

THE SOLUTION
Multi (4X) GPU

NB

Bonded

PME

U&CP2P BO

P2P

BOP2P

P2PPME

PP

PP

PP

As above

As above
GPU

NVLink



15

MULTI-GPU

• For our multi-GPU experiments we use 4 x V100 SXM2 GPUs fully-
connected with NVLink, plus 2xCPU. 

NVLink

NVLink

N
V
L
in

k

N
V
L
in

k

P
C
Ie

CPU CPU

GPU GPU

GPU GPU



16

GMX 2019

• Aligned timescales. STMV (~1M atom) case.

GMX 2020

PME GPU:

PME GPU:

PP GPU (1 of 3):

PP GPU (1 of 3):



17

PERFORMANCE RESULTS



18

BENCHMARKS

ADH Dodec
~100K atoms

Cellulose
~400K atoms

STMV
~1M atoms

• Performance results are dependent on system size. We strive to aim our 

benchmarking and optimization to cover the range of typical sizes in use. We 

welcome any feedback on further cases to include. 



19

MULTI-GPU: GMX 2020 VS GMX 2019.5



20

SINGLE-GPU: GMX 2020 VS GMX 2019.5



21

GROMACS 2020: GPU VS CPU



22

DEVELOPMENT DETAILS



23

DEVELOPMENT DETAILS

• Reminder: All developments in collaboration with core Gromacs
developers.

• GPU Bonded Force calculations: 

• 2019 release: 8 new kernels corresponding to bonded force types 

• 2020 release: kernels merged together for better performance

• GPU Buffer Ops: transformations between different data formats 
used in gromacs, and force reduction operations. New kernels and 
major restructuring/refactoring.  



24

DEVELOPMENT DETAILS
• GPU Update and Constraints

• New kernels related to the “update”, “lincs” and “settle” operations 
to update and constrain atom positions from forces. Major 
restructuring and refactoring.

• GPU PME/PP Communications 

• Use of CUDA Peer-to-peer (P2P) memory copies to exchange data 
directly between GPUs

• More details coming up

• Device MPI: PP halo exchanges

• New functionality to pack device-buffers and exchange directly 
between GPUs using Use of CUDA Peer-to-peer (P2P) memory copies.

• More details coming up



25

PP TO PME COMMUNICATION

Data H2D

Data MPI

Data D2H

Data MPI

PP task PME task

Original GROMACS 

New development 

Data CUDA Direct Data CUDA Direct

GPU GPU

GPU GPU

CPU CPU

CPU CPU



26

PP TO PP HALO EXCHANGE COMMUNICATION

Data H2D

Data MPI

Data D2H

Buffer Packing

PP task PP task

Original Gromacs

New development 

Data CUDA direct Data CUDA direct

GPU GPU

GPU GPU

CPU CPU

Small&infrequent

CPU

Data MPI

Buffer Packing

Build index map

Index map D2H
Build index map

Index map D2H

Buffer Packing

Data D2H

Buffer Packing

Data H2D

CPU

Small&infrequent



27

COORDINATE CPU HALO EXCHANGE

Original CPU MPI Path

GPU Local 
Stream 

GPU Non-Local 
Stream 

CPU Thread GPU Non-Local 
Stream 

GPU Local 
Stream 

CPU Thread

MPI Recv data into 
non-local part of 

CPU X buffer

cudaMemcpyAsync

MPI Send CPU 
halo buffer

Sending MPI Rank Receiving MPI Rank

Launch 
cudaMemcpyAsync

Pack CPU halo 
buffer

Launch non-
local NB kernel

Non-local NB kernel



28

(Data previously 
copied to GPU 

in local stream)

COORDINATE GPU HALO EXCHANGE

Launch packing kernel

GPU Local 
Stream 

GPU Non-Local 
Stream 

CPU Thread GPU Non-Local 
Stream 

GPU Local 
Stream 

CPU Thread

Pack GPU halo 
buffer

cudaMemcpyAsync
push of halo buffer

Event record
MPI Send event pointer

MPI Recv
remote event 

pointer
Stream wait event

Launch cudaMemcpyAsync

Launch event record

Sending Thread-MPI Rank Receiving Thread-MPI Rank

Stream Wait event
Event record Launch stream wait event

Launch event record

Launch non-
local NB kernel

Non-local NB kernel



29

Launch unpacking 
kernel

GPU Local 
Stream 

GPU Non-Local 
Stream 

CPU Thread GPU Non-Local 
Stream 

GPU Local 
Stream 

CPU Thread

Unpack GPU halo 
buffer into local 
part of F buffer

cudaMemcpyAsync
push of non-local 
part of F buffer

Event record MPI Send event pointer
Recv remote 
event pointer

Stream wait event

Launch cudaMemcpyAsyc

Launch event record

Sending Thread-MPI Rank Receiving Thread-MPI Rank

Stream Wait event

Event record

Launch stream 
wait event

Launch event 
record

Launch local F 
Buffer Ops Local F buffer ops

Launch cudaMemcpyAsync
Or cudaMemsetAsync(0)

cudaMemcpyAsync
CPU forces or 

cudaMemsetAsync(0)

Stream Wait event

Event record
Launch stream 

wait event

Launch event 
record

FORCE GPU HALO EXCHANGE



30

HOW TO



31

ENABLING NEW OPTIMIZATIONS

• The new optimizations are not yet enabled by default: the new code-paths have been 
verified by the standard GROMACS regression tests, but still lack substantial “real-world” 
testing. 

• We stress that users should carefully verify results against the default path, and any 
reported issues will be gratefully received by the developer team to help us mature the 
software. 



32

ENABLING NEW OPTIMIZATIONS

Gromacs should be built using its internal threadMPI library instead of any external MPI library 
(see above), and at run time the optimizations can be fully enabled by setting the following 
three environment variables to any non-NULL value in your shell (as shown for bash shell 
here). 

For halo exchange communications between PP tasks:

export GMX_GPU_DD_COMMS=true

For communications between PME and PP tasks:

export GMX_GPU_PME_PP_COMMS=true

To multi-GPU enable the update and constraints part of the timestep: 

export GMX_FORCE_UPDATE_DEFAULT_GPU=true

The combination of these will trigger all optimizations, including dependencies such as GPU-
acceleration of buffer operations. 

http://www.gromacs.org/Documentation/Acceleration_and_parallelization#Multithreading_with_thread-MPI


33

ENABLING NEW OPTIMIZATIONS

When running on a single GPU, only GMX_FORCE_UPDATE_DEFAULT_GPU is required (or, for 
single-GPU only, this can equivalently by enabled by adding the -update gpu flag to the 
mdrun command).

Of course, in both single and multi GPU cases it is also necessary to assign the three classes of 
force calculations to the GPU through the 

-nb gpu -bonded gpu -pme gpu

options to mdrun (where, on multi-GPU, the -npme 1 option will also be required to limit 
PME to a single GPU). 



34

USE H-BONDS CONSTRAINTS

• Note also that the new GPU update and constraints code-path is only supported in 
combination with domain decomposition of the PP tasks across multiple GPUs when update 
groups are used. 

• This means constraining all bonds is not supported, except for small molecules. To 
facilitate this, it is recommended to convert bonds with hydrogen bonds to constraints, 
rather than all bonds. 

• To do this, in the .mdp input file to the Gromacs preprocessor grompp, change the line

constraints = all-bonds

to

constraints = h-bonds

For more information see the mdp options section of the user guide.

http://manual.gromacs.org/documentation/current/user-guide/mdp-options.html


35

SPECIFIC COMMAND USED FOR RESULTS

The full set of mdrun options used when running the above 4XGPU performance comparisons 
are as follows: 

gmx mdrun -v -nsteps 100000 -resetstep 90000 -noconfout \

-ntmpi 4 -ntomp 10 \

-nb gpu -bonded gpu -pme gpu -npme 1 \

-nstlist 400



36

SPECIFIC COMMAND USED FOR RESULTS

• The first line instructs Gromacs to run 100,000 steps for this relatively short benchmark 
test, with the timing counters reset at step 90,000 to avoid initialization costs being 
included in the timing since these will not be important for typical long production runs. 

• These specific values have been chosen to allow Gromacs long enough to automatically 
perform PME tuning, where the size of the PME grid is tuned to give an optimal load 
balance between PP and PME tasks. 

• Similarly, the -noconfout option instructs Gromacs not to write output files at the end of 
this short benchmarking run to avoid artificially high I/O overheads. 



37

SPECIFIC COMMAND USED FOR RESULTS

• The second line specifies that 4 thread-MPI tasks should be used (i.e. one per GPU), with 10 
OpenMP threads per thread-MPI task such that a total of 40 OpenMP threads are in use to 
match the number of physical CPU cores in our server.

• The third line offloads all force calculations to the GPU 

• And the final -nstlist 400 option instructs Gromacs to update the neighbor list with 
frequency of 400 steps – this can be adapted without any loss of accuracy (when using the 
Verlet scheme), and we found this value to give the best performance through 
experimentation.



38

DEFAULT: ONLY NB FORCE ON GPU

gmx mdrun -v -s cellulose-hbond.tpr -nsteps 2000 \

-ntmpi 4 \ #run on 4 GPUs (1 tMPI task per GPU)…

-ntomp 10 \ # … with 10 OpenMP tasks per tMPI task (40-core server)

-notunepme \ #Don’t perform PME tuning (more later) 

-resetstep 1000 \ #Benchmarking: reset timers to rm init overhead 

–noconfout #Benchmarking: don’t write output configuration  

…

(ns/day)    (hour/ns)

Performance:        6.822 3.518



39

ACTIVATE BONDED AND PME FORCE ON GPU

gmx mdrun -v -s cellulose-hbond.tpr -nsteps 2000 -ntmpi 4 -ntomp 10 \

-notunepme -resetstep 1000 –noconfout \

-bonded gpu -pme gpu -npme 1 #put bonded and PME force calcs on GPU

…

(ns/day)    (hour/ns)

Performance:       42.785 0.561



40

ACTIVATE NEW GROMACS 2020 FEATURES

#Activate new 2020 features

export GMX_GPU_DD_COMMS=1

export GMX_GPU_PME_PP_COMMS=1

export GMX_FORCE_UPDATE_DEFAULT_GPU=1

gmx mdrun -v -s cellulose-hbond.tpr -nsteps 2000 -ntmpi 4 -ntomp 10 \

-notunepme -resetstep 1000 –noconfout \

-bonded gpu -pme gpu -npme 1

…

(ns/day)    (hour/ns)

Performance:       87.661 0.274



41

ALLOW TUNING OF  PME GRID SIZE AND 
DECREASE NEIGHBOUR SEARCH FREQUENCY

#Activate new 2020 features

export GMX_GPU_DD_COMMS=1

export GMX_GPU_PME_PP_COMMS=1

export GMX_FORCE_UPDATE_DEFAULT_GPU=1

gmx mdrun -v -s cellulose-hbond.tpr -nsteps 100000 -ntmpi 4 -ntomp 10 \

-resetstep 90000 \

–noconfout \

-bonded gpu -pme gpu -npme 1 \

-nstlist 400

#removed –notunepme and increased number of steps to allow PME tuning 

to complete

…

(ns/day)    (hour/ns) 

Performance:      147.440 0.163



42

SUMMARY AND FUTURE WORK
• Modern GPUs are so fast in performing Gromacs force calculations that the other 

parts of the simulation timestep are becoming a bottleneck.

• In Gromacs 2020 we have accelerated all other main computational parts and 
enabled peer-to-peer communication directly between GPUs.

• Large performance improvements available on multi-GPU. Less dramatic but 
significant performance improvements available on single-GPU.

• Future work will include

• Stabilization and further refactoring.

• PME decomposition: enablement of multi-GPU for PME could improve load balance, 
and also potentially allow scaling to higher numbers of GPUs.

• Remove single-node limitation for new GPU communication performance features.

• Further performance improvements, especially for smaller cases, through more 
overlapping




