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Accuracy & transferability Materials failure process:  
complex chemistry and large systems
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Matching Atomistic and Continuum

5G Singh, JR Kermode, A De Vita and RW Zimmerman, Int. J. Fract. (2014)

Divergence of stress field 
near a crack tip

Cracks in ideal brittle materials  
are atomically sharp

20 A = 2 nm

In situ AFM image of atomically sharp crack 
tip in silica (Image: C. Marlière)

Stillinger-Weber potential, Si(111)

Process zone: ~2 nm
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QM/MM – buffered force mixing

8N Bernstein et al. Rep. Prog. Phys. 72 026501 (2009)

Abrupt force mixing and extended buffer region solve electronic 
termination problem, giving accurate QM forces.

• Retain QM 
forces only in 
(green) core 
region.

• Throw away 
‘bad’ QM forces 
on buffer region 
close to 
artificial surface



N Bernstein et al. Rep. Prog. Phys. 72 026501 (2009)
Figure 3: Force error convergence with respect to buffer size in crystalline bulk silicon
and its 001 surface. Only CE used here.

sizes of ∼ 103 atoms are selected as these are the largest systems for which reference

QM calculations are feasible. The bulk quartz sample (Fig. 4a) is produced from a

cubic cell of quartz containing about about 2600 atoms, where we initially randomise the

atomic positions, and then thermalise the system in a NVT ensemble for about 100 fs

at a temperature of 1000 K with a short-ranged version of the Tangey Scandolo (TS)

silica potential [32]. The amorphous slab (Fig. 4b) of about 1400 atoms was produced as

described in [33]. To produce the silica/water interface (Fig. 4c), the vacuum of about 22

Å between the slabs top and bottom surface is filled with 840 randomly positioned water

molecules. While keeping the silica surface fixed, the water is thermalised for 400 fs at 400

K. The average magnitude of the DFT atomic forces on the three test systems is of the

order of 1 eV/Å. As for the Si and Si/H cases mentioned above, we select a set of atoms

for each of the test systems and calculate the forces for each of these atom by growing

QM regions of increasing size around them. In this case, our QM core contains a single

atom and therefore the buffer size is the radius of the QM region [30]. The atomic forces

evaluated in this way for various buffer sizes and the two different embedding schemes

described earlier are then compared to the forces calculated on the same atoms by means

of a fully QM calculations. In Fig. 4, the force errors (i.e. the difference between the bf-
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Figure 4: (a) thermalised alpha-quartz, (b) hydroxylated amorphous silica slab and, (c)
the same slab in contact with water. Individual force errors for CE (magenta dots) and
EE (yellow dots) and average force error for CE (red line) and EE (green line). The
dashed black line indicates the target force error of 0.1 eV/Å.

QM/MM forces and the target QM ones) for the single test atoms and the average force

error are plotted as a function of the buffer region size for the three test systems. The

test atoms are silicon atoms (i.e. centres of tetrahedra) for the quartz case (Fig. 4a), and

oxygen atoms belonging to surface silanol groups for the amorphous silica slabs (Fig. 4b,c).

In the case of the silica slab in contact with water, full water molecules are included in the

QM regions (i.e. no water covalent bond is cut). In general, we note that the mean force

error decreases with increasing buffer sizes. As in the aforementioned Si and H2O cases,

significant force errors are found for small buffer radii (∼2 Å). The different magnitude

of the force errors in the three systems correspond to different values of the average force

magnitude on test atoms for the three systems, (labelled on the graphs in Fig. 4a-c) with

smaller errors obtained for smaller values of the average force. Average force errors smaller

than 0.2 eV/Å can only be obtained for buffer sizes of about 8 Å, while 12 Å buffer sizes

are needed to achieve force errors lower than 0.1 eV/Å. This shows that larger buffer radii

than in the Si and H2O cases are needed to achieve reasonably accurate force evaluations,

resulting in a larger computational cost. However, the bf-QM/MM approach helps to

systematically improve the accuracy of QM/MM MD simulations and is apparently more

crucial than the details of embedding scheme used. As shown in Fig. 4, EE plays only a

minor role in the accuracy of the QM/MM calculations. While EE yields smaller force

10

Silica (quartz, amorphous) ~ 10 A

A Peguiron et al., J. Chem. Phys, 142 064116 (2015)
9

QM/MM – buffered force mixing
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‘Learn on the Fly’ scheme 

10

Molecular
Mechanics
(empirical,
fast)

Quantum Mechanics
(accurate, slow)

A. De Vita and R. Car, MRS Proc 491, 473 (1998) 
G Csányi et al. Phys. Rev. Lett. 93 175503 (2004) 

Force-based hybrid approach (cf. QM/MM)

✓Get QM forces right on a moving region, 
giving accurate trajectories

✓Reproduces brittle response without any 
empirical crack growth criteria

✓Add chemical complexity near tip: wide range of 
chemomechanical problems in reach

Code:  http://www.libatoms.org

  

http://www.libatoms.org
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Three dimensional effects Crack-impurity scattering

JR Kermode, L Ben-Bashat, F Atrash,  
JJ Cilliers, D Sherman and A. De Vita.,  
Nat. Commun.  4 2441 (2013)

direction of motion, associated with each reconstruction event. If we
assume for simplicity that an average of n reconstruction events take
place during the time interval Dt for a given bead, its momentum mv
will drop by 2nmvt/Dt, where the parameter t=Dt is representative
of the time delay associated with each reconstruction. The number of
events is related to the propagation velocity by n 5 jvDt/l, where l is
the bilayer distance in the (111) direction, that is, the amount of
climb for each reconstruction event. Thus, the momentum change
is 2mjv2t/l, which is the nonlinear drag term in equation (1) dis-
cussed above. We note that if the frequency of reconstruction events
were constant for a given temperature, as is the case for simple acti-
vated processes, then j would scale as 1/v, and would just give rise to a
simple drag term, linear in the velocity. Thus, in an indirect way, this
model sheds light on the role of the cooperative, dynamic nature of
brittle fracture: at high speeds, the atoms near the crack tip are steered
towards clean cleavage.

We perform experimental studies of the low-crack-speed regime
using a technique for applying very small but steady and well-con-
trolled tensile loads. A silicon specimen is loaded by taking advantage
of the thermal expansivity mismatch between the sample and the
aluminium loading frame (Fig. 2b). Micrographs of the resulting
(111) fracture surface are shown in Fig. 2a, c. Triangular ridges, all
deviating in the same direction from the fracture surface, form at a
range of low crack speeds below about 800 m s21. At higher crack
speeds, of about 2,000 m s21, the surface is mirror smooth and no
ridges are present. The crystallographic direction of the deviation
(identical in over 40 independent samples) is the same as the recon-
struction-induced steps in the atomistic simulation, and the shape of
the ridges is qualitatively in agreement with the mesoscopic model
(Fig. 2c, d). Similar features have recently been reported23 under
more complicated loading conditions at a speed of about
1,000 m s21 (see Supplementary Information).

We next considered the (110) crack plane. Experiments have
shown that (110)½1!110" cracks propagating along the [001] direction
deflect out of the plane at very low velocity6,18, whereas (110)[001]
cracks propagating in the ½1!110" direction stay on the (110) plane up to
very high velocity (about 2,900 m s21) before also faceting onto (111)
planes6,7. Recent studies25 have assigned critical velocities for this
instability for various propagation directions and have shown that
in all cases the deflection is not immediate but only occurs after some
initial propagation on the (110) plane. We simulated the (110)½1!110"
crack propagation and observed the onset of this deflection. This
crack propagates by breaking a series of bonds, labelled A in Fig. 3a.
The system also contains type-B bonds, which are oriented at the
same angle with respect to the tension axis as A bonds. Resolving the
elastic stresses on the atomic scale reveals that B bonds located imme-
diately above and below the crack plane are almost as highly stressed
as A bonds. However, strong neighbour bonds connecting under-
coordinated atoms left exposed by the advancing crack make the A
bonds weaker than B bonds, so the former are expected to break
selectively during quasi-static (110) cleavage, consistent with the
low-speed experimental observations.

In the simulations we initially observe each newly exposed under-
coordinated surface atom snap back towards the subsurface region.
This induces significant local atomic motion and the excess energy
diffuses into the bulk crystal, but no immediate rebonding occurs as
long as the speed of propagation is sufficiently low. However, bond-
breaking events become more frequent with increasing crack speed,
and the local relaxations overlap in time. As more kinetic energy is
locally available, the fast crack front ‘stumbles’. Local reconstructions
involving the removal of under-coordinated atoms begin to occur on
the open surfaces. This removes the reason for selective A-bond
breaking and in our simulation we indeed observe B-bond breaking
events that deflect the crack front onto a (111) plane. Further simula-
tions reveal that under these conditions any slight disturbance away
from pure tension (for example a small extra shear strain component
as in Fig. 3b) can systematically reverse the initial relative stability of

A and B bonds. This results in multiple coherent breaking of B bonds,
effectively exposing (111) surfaces, consistent with the crack motion
observed experimentally (Fig. 3c–e).

No near degeneracy of crack-tip bonds exists in the orthogonal
½1!110" direction, consistent with the observation of instabilities only
at much higher speeds6. The deflection mechanism is thus only
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Figure 3 | The (110)[1 ·10] crack system. a, Geometry of the crack tip
propagating straight at low speeds by sequential breaking of type A bonds
(blue). Red atoms are described using quantum mechanics, yellow atoms
using an interatomic potential. At each propagation step, the A bond is
weaker than the corresponding B bond because of a neighbouring under-
coordinated atom (indicated by an arrow for the A1–B1 pair). b, At higher
speed an instability occurs. At this point any slight shear disturbance in the
stress field reverses the relative stability of A and B bonds, and the crack is
deflected onto a (111) plane. The energy release rate for this system is
G 5 6.7 J m22. In addition to the main tensile load, this includes a small
G 5 0.24 J m22 shear contribution to break the symmetry in the y direction.
Both exposed (111) crack surfaces undergo a 2 3 1 reconstruction.
c–e, Photographs from three-point bending experiments6 (reprinted with
permission): (110) fracture surface for low-speed cleavage (grey; c); fracture
surface of a specimen with the crack deflected from the (110) plane (white) to
the (111) plane (black) for intermediate-speed cleavage (d); (111) fracture
surface obtained for high-speed cleavage (e).

LETTERS NATURE | Vol 455 | 30 October 2008
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 ©2008 Macmillan Publishers Limited. All rights reserved

Dynamical instabilities in Si

JR Kermode et. al. 
Nature 455 1224 (2008)

C Gattinoni, JR Kermode and 
A De Vita, In prep

Crack-dislocation interactions
H induced ‘SmartCut’

G Moras, L Ciachhi, C Elsässer, 
P Gumbsch and A De Vita 
Phys. Rev. Lett. 105, 075502 (2010)

A Glazier, G Peralta, JR Kermode,  
A De Vita and D Sherman,  
Phys. Rev. Lett,  112 115501 (2014).

Stress corrosion cracking

Fig  2.  Subcritical  crack  advance  on  Si(110),  catalysed  by  oxygen  (red  atoms).  Left:  the
system  before  chemisorption  of  second  O

2
,  Right:  crack  advance  after  dissociative

adsorption.

Machine-­learning  of  QM  forces
Zhenwei Li’s PhD project has advanced considerably during this reporting period. In this                                   

part of the overall project, we are working to improve the informational efficiency of our                                         

modelling approach, particularly on the idea of building a database of previous QM results                                      

“on-­the-­fly”. By reusing (rather than recalculating) the information stored in the database, it                                   

is in principle possible to dramatically reduce the computational cost of our simulations,                                   

while still retaining our target high (QM) accuracy. With this goal in mind, Zhenwei has                                         

developed an advanced interpolation scheme for QM forces based on Gaussian Process                                

regression, with an accuracy which systematically improves as more data is added to the                                      

database of reference configurations. The scheme has been so far tested both on MD and,                                         

more  stringently,  on  the  phonon  band  structure  of  silicon  [3].

Interaction  between  cracks  and  point  defects
Our project on modelling the interaction between crack propagating on the (111) cleavage                                   

plane in silicon and isolated substitutional boron defects has been concluded, and the                                   

resulting  paper  is  currently  under  peer  review  [4].

Our QM simulations predict three regimes: at low speed we see deflection of cracks in                                         

perfect silicon crystals;; at intermediate speeds, crack deflection occurs at defect sites, at a                                      

rate proportional to the linear defect concentration. At higher speeds the crack-­defect                                

interaction is dynamically hindered, and perfectly smooth fracture surfaces are recovered.                             

These predictions are completely consistent with experimental results obtained by our                             

JR Kermode,  A. Glazier,  G Kovel, L Pastewka, 
G Csányi,  D Sherman and A. De Vita, In prep

Recent Chemomechanical Applications
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Crack/dislocation – coarse-graining
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Dislocation core above crack Dislocation core below crack
5

FIG. 4: Snapshot from a LOTF simulation of System B, where
the dislocation core is located below the crack. For this pure
shielding configuration, the red circle indicates the location of
the dislocation core, and the red line the stacking fault. The
colour code shows the �

yy

component of the stress tensor, in
units of GPa. Red/yellow represent tension, and dark blue
compression.

FIG. 5: Snapshot from a LOTF simulation of System A, with
the dislocation above the crack, at the end of a 75 ps sim-
ulation. Away from the dislocation core and its associated
stacking fault (shown with red line), the fracture propagates
relatively straight along the [001] direction, with a reduced
velocity see text, not sure about this due to the anti-
shielding e↵ect of the dislocation. Atom colouring is as in
Fig. ??.

crack. The mutual orientation of the crack tip and dis-
location is important as well, as the tip can be exposed
to the compressive or tensile field around the dislocation
core, resulting in di↵erent behaviours in the core area.
An overall toughening of the material has been observed
when a dislocation is introduced, fitting well with the
continuum mechanics prediction.

This work was funded by the Rio Tinto Centre for Ad-
vanced Mineral Recover at Imperial College, London and
the European Commission ADGLASS FP7 project. We
would like to thank Adrian Sutton for useful discussions.

⇤ Electronic address: c.gattinoni@imperial.ac.uk

5

FIG. 4: Snapshot from a LOTF simulation of System B, where
the dislocation core is located below the crack. For this pure
shielding configuration, the red circle indicates the location of
the dislocation core, and the red line the stacking fault. The
colour code shows the �

yy

component of the stress tensor, in
units of GPa. Red/yellow represent tension, and dark blue
compression.

FIG. 5: Snapshot from a LOTF simulation of System A, with
the dislocation above the crack, at the end of a 75 ps sim-
ulation. Away from the dislocation core and its associated
stacking fault (shown with red line), the fracture propagates
relatively straight along the [001] direction, with a reduced
velocity see text, not sure about this due to the anti-
shielding e↵ect of the dislocation. Atom colouring is as in
Fig. ??.

crack. The mutual orientation of the crack tip and dis-
location is important as well, as the tip can be exposed
to the compressive or tensile field around the dislocation
core, resulting in di↵erent behaviours in the core area.
An overall toughening of the material has been observed
when a dislocation is introduced, fitting well with the
continuum mechanics prediction.

This work was funded by the Rio Tinto Centre for Ad-
vanced Mineral Recover at Imperial College, London and
the European Commission ADGLASS FP7 project. We
would like to thank Adrian Sutton for useful discussions.

⇤ Electronic address: c.gattinoni@imperial.ac.uk

C. Gattinoni, J.R. Kermode and A. De Vita, in prep.
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Quantifying loss of information during coarse-graining: uncertainty propagation from atomistic to continuum



Microstructural Uncertainty

14MathSys MSc Project proposal with C. Ortner (Maths) 
http://www2.warwick.ac.uk/fac/sci/mathsys/courses/msc/mscprojects/projects2015 

• Most of our work so far has only considered 
deterministic materials failure problems

• Stochastic microstructural effects are also 
extremely important

• e.g. fracture in glass, a prototypical amorphous 
material, where microstructural variation plays 
key role in determining fracture response

Goal: average over 
representative microstructural 
configurations to produce 
effective mean-field response.  
Probabilistic ‘error bars’ 
essential.

http://www2.warwick.ac.uk/fac/sci/mathsys/courses/msc/mscprojects/projects2015


Background�

Hydrogen embrittlement (HE) is the most devastating and unpredictable, yet least understood, mechanism of 
failure experienced by engineering components. Hydrogen can be introduced into a material from a variety of 
sources: eg from decomposition of water during processing, moisture in the environment, from electrochemical 
reactions in a corrosive (eg marine) environment or electrocoating (such as automotive “body-in-white”), 
decomposition of oil or grease, or direct exposure to H in storage vessels. The presence of hydrogen leads to a 
severe degradation in mechanical properties and consequently a loss in structural integrity of a vast range of 
metals and alloys. In particular, high-strength ferritic steels used for pipelines, pressure vessels, compressors, light 
weight vehicles, gears and in hydrogen storage are prone to hydrogen cracking. It is known that the higher the 
strength of the steel, the more prone it is to HE. Despite the considerable research effort that has been expended 
over the last 30 years the mechanisms responsible for the embrittling process are not understood and there is 
considerable disagreement in the scientific literature concerning the underlying processes that are responsible for 
hydrogen embrittlement, even in simple, nominally pure, material systems.  
 
With increasing demands for advanced and ultra high strength steels, the steel industry faces increasing 
senstitivity to hydrogen embrittlement (HE). The concerns over HE are preventing the automotive industry from 
using these materials more extensively, which is contributing to their failure to meet EU targets for 2015 in CO2 
emissions by up to 35 g/km. TWIP, TRIP and complex phase steels having UTS of 1000–1400 MPa have been 
designed but cannot be put into service because of the risks of HE during manufacture and in service, even under 
mild humid conditions. It is therefore of significant technological importance to develop a more comprehensive 
understanding of hydrogen embrittlement and to use this understanding to underpin design strategies for the next 
generation of ultra high strength steels, that are resistant to hydrogen embrittlement. 
 
The focus of this research programme will be on Hydrogen Embrittlement in Steels (hence the acronym HEmS).  
The presence of hydrogen in interstitial sites results in dilation of the material.  A consequence of this is that H 
wants to diffuse to regions of high tensile hydrostatic stress in a material, such as towards a crack tip, as illustrated 
in Fig 1.  The local high hydrogen concentration in the vicinity of the crack tip has a significant effect on local 

structure and properties. As noted 
above, in many material systems, 
this results in an embrittlement of 
the material (crack propagation at a 
much reduced stress intensity 
factor) 
 
A number of mechanisms of 
embrittlement have been proposed 
in the scientific literature, such as 
Hydrogen-enhanced decohesion 
(HEDE) or Hydrogen enhanced 
local plasticity (HELP), with 
Hydrogen-induced phase 
transformation (HIPT) or Hydrogen-
enhanced stress-induced 
vacancies (HESIV) contributing to 
the embrittling process. These 
mechanisms are described in detail 
in Technical Annex 4. The 
important point to note here is that 
there is significant controversy in 

the scientific literature concerning the conditions under which a given mechanism dominates (or whether it exists at 
all).  This uncertainty and lack of understanding is preventing the development of new steels that are resistant to 
hydrogen embrittlement.  The purpose of the programme of work described below is to develop an in-depth 
understanding of how hydrogen affects mechanical performance by integrating a wide range of computational 
modelling and experimental techniques and to use the new understanding derived from these studies to develop 
new procedures for the design of steel microstructures that are resistant to HE.  Finally we will design, manufacture 

Fig 1 Schematic, showing the diffusion of hydrogen towards a crack tip.  
Understanding the effect of hydrogen on crack propagation requires 
integration of a range of modelling techniques. 
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Figure 1: (a) Convergence of QM forces near the core of a dislocation in the � phase at room temperature
(solid lines, for nearest neighbours, blue n.n., and next nearest neighbours, red n.n.n. of the dislocation
core). The dashed lines indicate the percentage error that the EAM potential makes with respect to DFT.
Quantum calculations are only strictly needed for the nearest neighbours of a dislocation core. (b) Atom-
istic model of a quadrupole of screw dislocations in a Ni-based superalloy. Inset: dissociation of one of
the screw dislocations into Shockley partials, which can be tracked by two separate mobile QM regions
(red circles).

2 Project Structure and Resource Management
Key Scientific Goals. The key targets of this project are to study the glide of screw dislocations
in the � phase (initially bulk, then closer to the �/�0 interface), to evaluate the relevant diffusion
mechanisms and barriers, and to study dislocation climb at the �/�0 interface, including the role
played by vacancies in this process. These overall targets can be decomposed into four work
packages:

• WP1 — Dissociation of a Screw Dislocation into Shockley partials. Studying the mod-
ification induced on the system by the usage of quantum precision for the core atoms.
Expected start date March 2014.

• WP2 — Glide of a dislocation in the � phase. Evaluating diffusion barriers for the
dislocation glide as a function of applied shear strain. Expected start date May 2014.

• WP3 — Glide of a dislocation towards the interface. Observing the modification of
these barriers as a function of the distance of dislocations from the �/�0 interface, and
investigating dislocation pinning. Expected start date June 2014.

• WP4 — Dislocation/vacancy interaction at the interface. Analysing the role played by
vacancies in the climb motion of dislocations at the interface. Expected start date October
2014.
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SiO2  Fracture:  Chemomechanics  with  a  ML  Hybrid  QM/MM  SchemePI:  James  Kermode  

(a)      (b)    

(c)  (d)  
  
Fig.2.Highlightsofongoingwork:(a)snapshotfroma10layerdeepsimulationoffractureontheSi(110)cleavage                                         
plane,relevanttoM1.1,with~500atomsalongthecrackfrontmodelledattheDFTlevel.Notethepatternofbroken                                           
bondsalongthefrontshowingpropagationviakinkmotion.(cbCloseupofcracktipregionina~100,000atom                                         
simulationofbrittlefractureinquartz,with~200QMatoms(highlightedinblue),relevanttoM1.1.(c)Closeupofthe                                           
cracktipregioninasimulationoffractureinamorphoussilica(glass),relevanttoM1.2.Colouredatomscorrespond                                     
tothe15QMregions,witheachcolourcorrespondingtoadifferentDFTcalculationrunningona128nodesubblock                                         
partition,foratotalpartitionsizeof2048nodeshere(seeSection1.3.2formoredetailsofpartitioningscheme);;(d)                                         
example  set  of  molecules  using  for  QM  force  Machine  Learning  (see  text).  
  
Highlightsofongoingwork-­1.three-­dimensionaleffects.ProductioncalculationsforM1.1(dry                           
crystallinefracture)aremostlycomplete,andincludenewDFT-­basedsimulationsofthreedimensional                           
mechanismofthermallyactivatedcrackpropagationthatwouldnothavebeenfeasiblewithoutaccessto                               
Leadershipclassresources.Wefindthatcrackscanpropagateatverylowspeedsbythenucleationand                                   
migrationofkinks,analogoustodislocationjogs.Toourknowledge,thesearethefirstseriesof3D                                   
DFT-­accuratefracturesimulationseverperformed.Ourtheoreticalpredictionsareconsistentwithnew                         
experiments.Anarticledescribingthisworkisinpreparation[7].Thisworkhasbenefitedfroma                                 
collaborationwiththegroupofProf.PeterGumbschattheFraunhoferIWMinFreiburg,Germany,who                                 
are  also  actively  involved  in  our  ongoing  silica  stress  corrosion  research.  
  
Highlightsofongoingwork-­2.silicafracturemechanisms.Productioncalculationsareongoingfor                             
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HPC Scalability

QUIP
proxy

QUIPN clusters

QM/MM MD
with N QM atomsN forces

QM Box 1
Cluster 1

Force 1 QM calculation on Cluster 1

QM Box 2
Cluster 2

Force 2 QM calculation on Cluster 2

1024 cores

QM Box N
Cluster N

Force N QM calculation on Cluster N

...
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Monday, 7 October 13

• Force-mixing allows work of QM 
calculations to be distributed

• Automatically split large QM 
regions into smaller convex 
clusters by graph partitioning

• Individual QM calculations run in 
parallel on ~1024 cores each

• Scalable up to ~100,000 core 
Petascale machines
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Typical individual production MD simulations will have an 8 hour walltime when running on 
131,072 cores. 

3.5 Parallel Performance 

The test system used to evaluate parallel performance corresponds exactly to the quartz fracture 
system that will be used for the first set of production simulations (M1.1), illustrated in Fig. 5a. 
The calculations were performed on the Cetus and Mira BG/Q machine at ALCF. 

VASP parallel performance for individual QM cluster calculations. We first benchmarked 
VASP using individual QM clusters automatically carved from the quartz crack tip system, each 
containing around 200 atoms. We measured the time to perform a fixed number of electronic 
minimisation steps (Fig. 9a). The code scales up to 4096 cores (256 nodes), with 1024 cores 
(64 nodes) representing the best balance between computational cost and time-to-solution. (The 
speed of these calculations is notably five times faster for the same number of cores than on the 
previous generation Intrepid BG/P machine). 

QUIP ensemble parallelism performance. Ensemble parallelism over independent QM clusters 
leads to weak scaling in the time-to-solution for computing all the QM forces (Fig. 9b), which is 
the rate-determining step for our QM/MM dynamical simulations. The benchmark time shown 
includes all the I/O currently required for communication between QUIP and VASP, although 
we plan to reduce this overhead using an improved interfacing strategy in future. Note that while 
in principle perfect weak-scaling should be obtained, our pilot implementation of the ensemble 
parallelism is based on a proxy process running on the FEN as schematically illustrated in Fig 
8.proxy, which leads to a slight drop off in scaling at the largest partition size of 131,072 cores 
(8192 nodes). This is due to the inability of a single FEN to keep up with the I/O workload 
needed to service this many simultaneous calculations (one execution thread is required to 
handle each sub-block partition). Efficiency improvements which replace file-based 
communication with a new solution using sockets are under active development, and we are 
confident this will recover the close-to-ideal weak scaling observed up to 65,536 cores. 
 

a  b  
 

Fig. 9. Scaling plots for: a VASP calculations for a single 200 atom SiO2 QM cluster. b Ensemble parallelism 
performance. For each data point, QUIP runs on one 1024 core sub-block partition, and each SiO2 QM cluster 
included in the calculation runs on a separate VASP sub-block partition including 1024 cores. As the number 
of simultaneous QM calculations increases from 1 to 127 and the total number of cores from 2,048 to 131,072 
cores (weak scaling) the time-to-solution remains approximately constant. 

 

 

4,096 cores
4 QM clusters

65,536 cores
64 QM clusters
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cores grow together



‘Learn on the Fly’ predictor/corrector

 LOTF vs. buffered force mixing:
✓ Both give correct 

trajectories
✓ LOTF allows speed up with 

predictor/corrector 
dynamics
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Cheap classical forces + adj. springs

Expensive QM potential

Fit points

‘Learn on the Fly’ scheme adds ‘springs’ tuned to reproduce QM forces

k1 k4
k3k2

U(R) = Uclassical(R) +
�

springs n

�nrn

G Csányi et al. Phys. Rev. Lett. 93 175503 (2004) 
N Bernstein et al. Rep. Prog. Phys. 72 026501 (2009)
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Typically ΔT ~ 10 Δt

Extrap Interp

Cheap classical forces + adj. springs

Expensive QM potential

Fit points

‘Learn on the Fly’ predictor/corrector

G Csányi et al. Phys. Rev. Lett. 93 175503 (2004) 
N Bernstein et al. Rep. Prog. Phys. 72 026501 (2009)
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Accelerate QM/MM with ML-
based scheme where forces on 
atoms are:

• Either predicted using 
Gaussian Process 
regression

• Or computed on-the-fly 
and added to growing ML 
database

Towards Optimal Information Efficiency

Z Li, JR Kermode and A De Vita,  Phys. Rev. Lett, In Press (2015)

•Recent trend of automatic, non-parametric force field construction using Machine Learning 
techniques (e.g. NNs [1], GAPs [2]), extending force-matching approach

•Our Idea: rather than learning whole PES once-and-for-all, use same technique, Gaussian 
Process regression, to predict QM forces as a function of local atomic environment

•Keeping “in touch” with QM reduces risk of extrapolating outside of fit domain
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Molecular Dynamics with On-The-Fly Machine Learning
of Quantum Mechanical Forces: Supplementary Material

Zhenwei Li, James R. Kermode and Alessandro De Vita

S1 Gaussian Process Regression

A Gaussian Process (GP) provides a nonparametric way to carry out Bayesian inference of an
unknown function f(x), here any force component associated with the atomistic configuration
x. A Gaussian covariance function C(x, x0,�

cov

) is a priori assumed to express the correlation
between f(x) and f(x0) when the distance between x and x0 is comparable with �

cov

. Given a
vector set {y} of values (yk = f(xk), k = 1, N) which the force component is known to take, within
some uncertainty �

err

, over a teaching set {x} of atomic-configuration data points (xk, k = 1, N),
the predicted “posterior” distribution for the value yN+1

at a new point xN+1

has mean and
variance

yN+1

= k

T
C

�1
y (S1)

�2

y,N+1

= � k

T
C

�1

k (S2)

where C(x, x0,�
cov

) has been used to generate (i) the N -dimensional ‘feature vector’ k describing
the covariance between the database configurations {x} and the new ‘test’ atomic configuration
xN+1

; (ii) the covariance  between the test configuration and itself and (iii) the N⇥N covariance
matrix C describing the overlap between the data points in {x}[1]:

Cmn = exp

✓
� d2mn

2�2

cov

◆
+ �mn�

2

err

. (S3)

We note that, as an alternative to the rotationally invariant internal vector (IV) representation
discussed in the main text, more general representations could be chosen requiring the determi-
nation of the optimal rotational alignment of pairs of atomic configurations. Some work in this
direction revealed that this could be achieved by a search in the 3D rotations space using a stan-
dard quaternion representation to exploit the better topology of the SU(2) manifold through its
double mapping on SO(3) [2].

S2 Further Tests and Features of Machine-Learned Forces

S2.1 Sampling Density and Energy Conservation

Following on from the discussion presented alongside Fig. 2 in the main text, to further test the
newly proposed scheme, we also investigated the importance of time-proximal database entries by
setting the number of database entries to N = 400 and doubling the spacing between teaching
points from 20 fs to 40 fs. This leads to only a ⇠10% increase in the midpoint force error. Even
when further increasing the spacing to 80 fs, the average midpoint error increase relative to the
20 fs sampling remains below 20%. This suggests that the information encoded in a relatively
small 2000 configuration teaching database on average interpolates the atomic forces encountered
in a 1000 K bulk Si system very well.

Note that achieving forces on atoms accurate within ⇠0.1 eV/Å does not imply strict energy
conservation (null work over closed trajectory loops)1. As in the previous ‘Learn on the Fly’
scheme, while energy conservation is approximately achieved to a very good extent [3], the present
force field is not strictly conservative, unlike classical FFs and fixed-database ML approaches. This
is a direct consequence of the fact that the algorithm keeps learning, and applies generally to any
dynamically evolving FF (whether or not PES-based, or ML-based); strict energy conservation is

1
The converse is also true, as strict energy conservation (e.g., due to the atomic force field being an exact

di↵erential of a potential energy function) is of course no guarantee of force accuracy.

1

Posterior mean

Posterior variance
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   (smoothness of prior)

Black: function f(x)

Blue: observations  
        yi = f(xi)

Red: GP mean, std. dev.

Gaussian Process (GP) regression: use Bayesian inference to compute most likely function values 
given data and a prior distribution for model parameters

1D Example:
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Self-covariance κ

p(parameters|data) ∝
L(data|parameters) p(parameters)
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2

diction”. As in PES-learning ML schemes, an e�cient
representation of an atomic environment x should be
invariant under transformations to physically-equivalent
systems such as rotations and permutations of atoms of
the same chemical species [23]. A special di�culty asso-
ciated with a force-learning ML scheme is that the Carte-
sian force components depend on the choice of reference
frame, unlike the (physically scalar, however defined)
atomic energies, so that the best force components to
be learned from a database configuration are only known
after a rotation to its optimal alignment with the target
configuration. As will be shown below, an e�cient way to
deal with this issue is to define a rotationally invariant
“internal” representation for atomic configurations and
force vectors [24]. After carrying out ML in this repre-
sentation, we transform the predicted force back into the
Cartesian representation, so that they have the correct
orientation for MD trajectory integration.

For each atom, k independent internal vectors (IVs)
Vi can be uniquely defined by the relative positions rq of
its neighbours, which makes them invariant under trans-
lations and any permutation of neighbours of the same
chemical species. A possible choice is:

Vi =

NneighbX

q=1

r̂q exp

"
�
✓

rq
r
cut

(i)

◆p(i)
#

(1)

where each of these vectors is defined by di↵erent values
of the parameters r

cut

and p, chosen within a suitable
range reflecting the decay rate/interaction range of forces
in the system. Crucially, to improve the prediction accu-
racy, this set can be expanded to include any additional
vector presumed to carry useful information on target
QM forces. These are typically force vectors obtained
from well-established classical force fields or from QM
models less computationally expensive than the current
reference Hamiltonian (e.g., an empirical tight binding
model if the main QM model is DFT-based, see inset
of Fig. 2). The directions V̂i = Vi/||Vi|| form an in-
ternal coordinate system which for k > 3 gives an over-
determined description of vector quantities. A represen-
tation for the atomic configuration x is given by the k⇥k
matrix X with elements Xij = Vi · V̂j = (V AT )ij where
we have defined the vector and direction matrices

V T =

0

@
| | |

V
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. . . Vk

| | |

1

A , AT =

0

@
| | |

V̂
1

. . . V̂k

| | |

1

A . (2)

The feature matrix X = V AT is invariant under trans-
lations, permutations and rotations of the corresponding
atomic configuration. The similarity between two atomic
environments xm and xn is expressed by the distance

d2mn =
1

k

kX

i,j=1


Xm

ij

�i
�

Xn
ij

�i

�
2

(3)

where the scale factors �i are the standard deviation over
the database of the Euclidean distance in the internal rep-
resentation space between the Vi vectors from di↵erent
configurations:

�2

i =
NX

n,m=1

kX

j=1

(Xm
ij �Xn

ij)
2

N2

. (4)

This distance is used to build the covariance matrix (Sup-
plementary Eq. S3), which further requires tuning the
correlation length and data noise hyperparameters �

cov

and �
err

. The former is always of the order of unity due
to the �i distance normalisation in Eq. 3, and �

cov

= 1.0
is the value used in this work. For the latter, we typi-
cally impose �

err

= 0.05 eV/Å, which has the e↵ect of
regularising the linear algebra [25]. After predicting the
components of the k-dimensional internal force vector F
(Supplementary Eq. S1), its Cartesian space coordinates
can be reconstructed as F = A+F using a least squares
approach where the absolute orientation of the testing
configuration is provided by the pseudo-inverse matrix
A+ = (ATA)�1AT .
As a first, stringent test of the robustness and accu-

racy of our matrix representation (Eq. 2) we probed its
performance in handling highly symmetric target config-
urations involving very small or null components of inter-
nal vectors and target forces, by computing the phonon
dispersion of crystalline Si using the supercell approach.
The predicted phonon spectra closely tracks the target
QM benchmark (Fig. 1), here obtained from a Density
Functional Tight Binding (DFTB) Hamiltonian [28]. The
spectrum obtained from the Stillinger-Weber (SW) clas-
sical potential [29] is also shown for comparison. In par-

FIG. 1. Comparison of the bulk Si phonon spectrum calcu-
lated with DFTB (blue), and SW (black) and with the ML
on-the-fly approach (red), computed with the finite displace-
ment Parlinksi-Li-Kawazoe method [26, 27] using a standard
�err=0.05 eV/Å (dotted lines) and a high-accuracy �err =
5 ⇥ 10�4 eV/Å value (solid lines) for the ML data noise pa-
rameter. The ML database was constructed from a 300 K
MD trajectory.
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Internal vectors 
(i =1… k)

Feature matrix

Requires a measure of “similarity for force learning” of two atomic configs,  
invariant to translation, permutation and rotation. Complication: forces are vectors!

Application to force learning: compute most probable force given database of atomic environments 
and associated QM forces (plus a prior assumption that forces vary smoothly as atoms move).

Z Li, JR Kermode and A De Vita,  Phys. Rev. Lett, In Press (2015)

Force Gaussian Processes for Fracture Simulations at the Atomic Scale 
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the following equation: 
 

𝐓෡ 𝐫 =  r1′ 𝐔1 ൫𝐓෡ 𝐫൯ + r2′ 𝐓෡𝐔2൫𝐓෡ 𝐫൯ + r3′ 𝐓෡𝐔3൫𝐓෡ 𝐫൯   
(10.4) 

Comparing equation 10.3 with 10.4, we obtain the result: 
 

        𝐔𝑖 ൫𝐓෡ 𝐫൯ = 𝐓෡𝐔𝑖(𝐫)        (𝑖 = 1, 2, and 3)                            (10.5) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10.1: Schematic 2D projection of an atomic cluster within 
spherical radius  r𝑐𝑢𝑡 . Both external coordinate {x, y} and internal 
coordinate {U(r01, m1), U(r02, m2)} are shown. Force F on the target 
central atom (green ball) is indicated by the thick black arrow. The 
internal vectors are functions of the positional vectors of the neighboring 
atoms (red balls) while the parameters of r0 and m are both tunable to 
generate different internal vectors. 
 

In order to establish a 3-D internal coordinate for an atomic cluster, at least three internal 
vectors (IVs) that are not co-planar have to be invented. Figure 10.1 demonstrates the IVs in 
a two-dimensional case, where, both U(r01, m1) and U(r02, m2) are functions of the positional 
vectors of neighbouring atoms with respect to the central one. However, several further 
constraints have to be applied before the IVs are considered to be suitable for use in the 
Force Gaussian Process. First of all, they have to be non-zeros. This looks apparent yet is a 
difficult part in choosing IVs for the coordinates, as it doesn’t make sense to think that one 
defined vector can be constantly no-zero for any configuration. Secondly, the vector should 
be in good correlation with the force, which means they have similar variations with respect 
to the change of atomic environments. The reason for this second constraint can be 
understood noting that we certainly don’t expect the information from the IVs to overtake 
and cloud our target information of force in the Gaussian Process. Under the two constraints, 
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“Curse of dimensionality” – QM is long range
• Forces depend mostly on atoms within 

cutoff ~10 A from central atom
• Project target forces into internal 

coordinate system (dim. k ~ 10-20)
• Perform GP regression there
• Overdetermined system - transform back 

to find ‘best’ absolute Cartesian reference 
frame in least squares sense

A+ =
�
ATA

��1
AT

F = A+F

Force Gaussian Processes for Fracture Simulations at the Atomic Scale 

 
 

24 
 

the following equation: 
 

𝐓෡ 𝐫 =  r1′ 𝐔1 ൫𝐓෡ 𝐫൯ + r2′ 𝐓෡𝐔2൫𝐓෡ 𝐫൯ + r3′ 𝐓෡𝐔3൫𝐓෡ 𝐫൯   
(10.4) 

Comparing equation 10.3 with 10.4, we obtain the result: 
 

        𝐔𝑖 ൫𝐓෡ 𝐫൯ = 𝐓෡𝐔𝑖(𝐫)        (𝑖 = 1, 2, and 3)                            (10.5) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10.1: Schematic 2D projection of an atomic cluster within 
spherical radius  r𝑐𝑢𝑡 . Both external coordinate {x, y} and internal 
coordinate {U(r01, m1), U(r02, m2)} are shown. Force F on the target 
central atom (green ball) is indicated by the thick black arrow. The 
internal vectors are functions of the positional vectors of the neighboring 
atoms (red balls) while the parameters of r0 and m are both tunable to 
generate different internal vectors. 
 

In order to establish a 3-D internal coordinate for an atomic cluster, at least three internal 
vectors (IVs) that are not co-planar have to be invented. Figure 10.1 demonstrates the IVs in 
a two-dimensional case, where, both U(r01, m1) and U(r02, m2) are functions of the positional 
vectors of neighbouring atoms with respect to the central one. However, several further 
constraints have to be applied before the IVs are considered to be suitable for use in the 
Force Gaussian Process. First of all, they have to be non-zeros. This looks apparent yet is a 
difficult part in choosing IVs for the coordinates, as it doesn’t make sense to think that one 
defined vector can be constantly no-zero for any configuration. Secondly, the vector should 
be in good correlation with the force, which means they have similar variations with respect 
to the change of atomic environments. The reason for this second constraint can be 
understood noting that we certainly don’t expect the information from the IVs to overtake 
and cloud our target information of force in the Gaussian Process. Under the two constraints, 

F = AF

2

diction”. As in PES-learning ML schemes, an e�cient
representation of an atomic environment x should be
invariant under transformations to physically-equivalent
systems such as rotations and permutations of atoms of
the same chemical species [23]. A special di�culty asso-
ciated with a force-learning ML scheme is that the Carte-
sian force components depend on the choice of reference
frame, unlike the (physically scalar, however defined)
atomic energies, so that the best force components to
be learned from a database configuration are only known
after a rotation to its optimal alignment with the target
configuration. As will be shown below, an e�cient way to
deal with this issue is to define a rotationally invariant
“internal” representation for atomic configurations and
force vectors [24]. After carrying out ML in this repre-
sentation, we transform the predicted force back into the
Cartesian representation, so that they have the correct
orientation for MD trajectory integration.

For each atom, k independent internal vectors (IVs)
Vi can be uniquely defined by the relative positions rq of
its neighbours, which makes them invariant under trans-
lations and any permutation of neighbours of the same
chemical species. A possible choice is:

Vi =

NneighbX

q=1

r̂q exp

"
�
✓

rq
r
cut

(i)

◆p(i)
#

(1)

where each of these vectors is defined by di↵erent values
of the parameters r
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and p, chosen within a suitable
range reflecting the decay rate/interaction range of forces
in the system. Crucially, to improve the prediction accu-
racy, this set can be expanded to include any additional
vector presumed to carry useful information on target
QM forces. These are typically force vectors obtained
from well-established classical force fields or from QM
models less computationally expensive than the current
reference Hamiltonian (e.g., an empirical tight binding
model if the main QM model is DFT-based, see inset
of Fig. 2). The directions V̂i = Vi/||Vi|| form an in-
ternal coordinate system which for k > 3 gives an over-
determined description of vector quantities. A represen-
tation for the atomic configuration x is given by the k⇥k
matrix X with elements Xij = Vi · V̂j = (V AT )ij where
we have defined the vector and direction matrices
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The feature matrix X = V AT is invariant under trans-
lations, permutations and rotations of the corresponding
atomic configuration. The similarity between two atomic
environments xm and xn is expressed by the distance
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where the scale factors �i are the standard deviation over
the database of the Euclidean distance in the internal rep-
resentation space between the Vi vectors from di↵erent
configurations:
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This distance is used to build the covariance matrix (Sup-
plementary Eq. S3), which further requires tuning the
correlation length and data noise hyperparameters �

cov

and �
err

. The former is always of the order of unity due
to the �i distance normalisation in Eq. 3, and �

cov

= 1.0
is the value used in this work. For the latter, we typi-
cally impose �

err

= 0.05 eV/Å, which has the e↵ect of
regularising the linear algebra [25]. After predicting the
components of the k-dimensional internal force vector F
(Supplementary Eq. S1), its Cartesian space coordinates
can be reconstructed as F = A+F using a least squares
approach where the absolute orientation of the testing
configuration is provided by the pseudo-inverse matrix
A+ = (ATA)�1AT .
As a first, stringent test of the robustness and accu-

racy of our matrix representation (Eq. 2) we probed its
performance in handling highly symmetric target config-
urations involving very small or null components of inter-
nal vectors and target forces, by computing the phonon
dispersion of crystalline Si using the supercell approach.
The predicted phonon spectra closely tracks the target
QM benchmark (Fig. 1), here obtained from a Density
Functional Tight Binding (DFTB) Hamiltonian [28]. The
spectrum obtained from the Stillinger-Weber (SW) clas-
sical potential [29] is also shown for comparison. In par-

FIG. 1. Comparison of the bulk Si phonon spectrum calcu-
lated with DFTB (blue), and SW (black) and with the ML
on-the-fly approach (red), computed with the finite displace-
ment Parlinksi-Li-Kawazoe method [26, 27] using a standard
�err=0.05 eV/Å (dotted lines) and a high-accuracy �err =
5 ⇥ 10�4 eV/Å value (solid lines) for the ML data noise pa-
rameter. The ML database was constructed from a 300 K
MD trajectory.
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diction”. As in PES-learning ML schemes, an e�cient
representation of an atomic environment x should be
invariant under transformations to physically-equivalent
systems such as rotations and permutations of atoms of
the same chemical species [23]. A special di�culty asso-
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frame, unlike the (physically scalar, however defined)
atomic energies, so that the best force components to
be learned from a database configuration are only known
after a rotation to its optimal alignment with the target
configuration. As will be shown below, an e�cient way to
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performance in handling highly symmetric target config-
urations involving very small or null components of inter-
nal vectors and target forces, by computing the phonon
dispersion of crystalline Si using the supercell approach.
The predicted phonon spectra closely tracks the target
QM benchmark (Fig. 1), here obtained from a Density
Functional Tight Binding (DFTB) Hamiltonian [28]. The
spectrum obtained from the Stillinger-Weber (SW) clas-
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FIG. 1. Comparison of the bulk Si phonon spectrum calcu-
lated with DFTB (blue), and SW (black) and with the ML
on-the-fly approach (red), computed with the finite displace-
ment Parlinksi-Li-Kawazoe method [26, 27] using a standard
�err=0.05 eV/Å (dotted lines) and a high-accuracy �err =
5 ⇥ 10�4 eV/Å value (solid lines) for the ML data noise pa-
rameter. The ML database was constructed from a 300 K
MD trajectory.

Computed using forces learnt from 300 K MD trajectory (DFTB)
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FIG. 3: a Average QM calling rate of low- and a
high-temperature MD “learning” simulations in bulk
crystalline silicon. Red circles pinpoint QM calls,
getting remarkably sparse after the initial learning
phase. b Temperature profile of an MD simulation

alternating between 300K and 800K; c Instantaneous
QM call frequency (left vertical axis, red stars) and

total call count within each 800K cycle (right axis, blue
histograms) of the simulation of panel b.

This is a safe criterion, as the “predictor error” is system-
atically larger than both the midpoint and time-averaged
errors actually incurred along the final corrected trajec-
tory in predictor-corrector schemes. Since the calculation
starts with an empty database, database incorporation of
QM results is initially needed with high frequency. The
di↵erent “learning curves” in the figure reflect — and ac-
tually allow us to measure — the di↵erent complexity of
the two systems for MD force learning.

At 200 K (red solid line and points), after an initial
1 ps learning, long time intervals in excess of 1000 MD
steps occur where no QM calculations are required. This
suggests that the relatively small database accumulated
in the first ps of dynamics encodes an essentially com-
plete knowledge of the force repertoire of this simple sys-
tem, for the given target error. The observation that the
necessary QM incorporation frequency approaches zero
after this time simply reflects a lower rate of “chemically
new” configurations occurring further along the trajec-
tory (at 2.5 ps, 2.7 ps and 4.2 ps in this test, cf. Fig 3a).
The configuration space for the same system at 1000 K

(black solid line) is more complex and force learning is
correspondingly slower. However, we find that that af-
ter an initial 2 ps simulation time, the target predictor
error can be met by carrying out QM calculations every
30 fs (black dotted line). Remarkably, this time interval
is at least three times longer than that required by a non-
ML LOTF approach [34] set to the same target predictor
error.
Figs. 3b and 3c illustrate the overall learning process

for a new MD simulation of the same system where a
Langevin thermostat [35] is used to take the temperature
from 300K to 800K and back in ten identical 5 ps cycles.
While the necessary QM database additions are quite
frequent during the first cycle, their number (blue his-
togram) drops significantly in the next two cycles, as the
800K system conditions are no more “new” to the learn-
ing algorithm when they are encountered for the second
and third time. New database entries are still occasion-
ally generated from here on, all within 800K stretches,
either in a sparse or in a time-correlated fashion (see e.g.,
star symbols in the 4th and 5th cycles, respectively, mea-
suring on the left axis the “instantaneous learning rate”
defined as the inverse number of time steps between cur-
rent and last entry).
We expect the present method to be particularlyuse-

ful for the simulation of materials processes where com-
plex but recurring chemical steps are encountered, which
can be learned, while time-localised occurrences of new
chemical bonding geometries cannot be ruled out, so that
a fixed classical potential is never an option. Exam-
ples may include bond breaking and reforming during
crack propagation, dislocation motion, or point defect
di↵usion, tribochemical processes, repeated catalytic re-
action steps, or atomic deposition/di↵usion processes on
surfaces. In practical MD applications, monitoring the
predictor error can be used to progressively lengthen,
or if needed sometimes abruptly shorten, the predictor-
corrector interval, as appropriate for the system inves-
tigated. Combining this with cautious use of an “in-
ternally estimated” error (Supplementary Eq. S2) could
be useful during system thermalisation, or in more ex-
ploratory runs where a reduced accuracy will su�ce or
the issue of validation can be temporarily postponed. In
all cases, every QM calculation performed on-the-fly dur-
ing a dynamical simulation is automatically and perma-
nently stored for later use in similar MD runs or across
di↵erent projects. Scaling with database size poses, how-
ever, no direct problem, since the size of the covariance
matrix actually used in the calculations is independent
of the database size. The scheme is also particularly well
suited for parallel implementations, as the QM force cal-
culation and all other parts of the algorithm scale linearly
with system size [30].
This work was funded by the Rio Tinto Centre for Ad-

vanced Mineral Recovery at Imperial College, London,
the European Commission ADGLASS FP7 project and

• 64 atom bulk Si test system; QM forces evaluated every step for testing
• Configs added to database when average force error > 0.1 eV/A
• Learning rate provides measure of complexity for MD force learning - ‘chemical novelty’
• T = 200 K – long periods (> 1 ps) where no QM is necessary
• T = 1000 K – QM calculation rate of 1/30 sufficient after initial phase

Z Li, JR Kermode and A De Vita,  Phys. Rev. Lett, In Press (2015)
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Supplementary Figure S2: Relative error of ML-predicted force magnitudes compared to
the average QM force magnitude for MD trajectories of: (a) a 72-atom amorphous SiO

2

system
at 300 K, computed with DFT (LDA); (b) a 64-atom �-SiC system at 1000 K, computed with
DFTB. The black curves show results from descriptors including only IVs from Eq. S4. The red
curves are obtained from descriptors also including forces from classical interatomic potentials:
Tangney-Scandolo (TS) for SiO

2

[5] and Stillinger-Weber (SW) reparameterised for SiC [6].
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also lost in any currently used hybrid QM/MM scheme flexible enough to allow exchange of atoms
between the MM and QM zones [4].

S2.2 Independent Test and Teaching Trajectories

In addition to the tests described in the main text, we also investigated the force accuracy achieved
when our trajectory-derived databases are used to predict the forces along new, independent
trajectories. The results reveal a slightly slower convergence with database size than when the
testing and teaching configurations come from the same trajectory (blue dot-dashed line in Fig. 2),
consistent with the fact that the available “nearest” configurations are now less pertinent. However,
acceptable force accuracies are still achieved when ⇠ 1000 configurations or more are included,
interestingly also when a database generated from a 2500K trajectory is used to predict the forces
of a 1000 K simulation (cyan dotted line in Fig. 2).

S3 Extension to Multi-component Systems

We have carried out preliminary work to assess the suitability of our Machine Learning approach
for predicting QM forces in multi-component systems. For the purpose of this tests, the descriptor
is of the same form as described in the main paper, while the definition of the IVs (Eq. 1) was
extended so that individual vectors are constructed only between atoms with the same species:
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where s is the atom of interest, q is one of its neighbours and Zs and Zq are the species of atoms
s and q. The IVs are next combined to form an extended feature matrix Xij similar to the
one described in the main paper (Eq. 2 and following text), with an additional block structure
reflecting the presence of di↵erent atomic species:
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formed from the IVs and normalized directions
for species Z
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and Z
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, respectively.
We selected crystalline �-SiC described at the DFTB level and amorphous SiO

2

described at the
DFT (LDA) level as test systems, to provide a range of bonding and long-range order properties.
In both cases, we find that the forces from reference 300 K QMmolecular dynamics trajectories can
be reproduced within a 10% accuracy using a database containing 2000 configurations (Figs. S1(a)
and S1(b)). For the 300 K amorphous SiO

2

trajectory, we further investigated if and to what extent
the accuracy of the predicted forces can be improved by incorporating in the descriptor the force
vector predicted by a short-ranged form of the polarisable Tangney-Scandolo interatomic potential,
known to give a reasonably accurate description of silica [5]. As can be seen in Fig. S2(a), this
decreases the relative force error achievable with a modest ⇠1000 configuration database from
10% to 6% (corresponding to a 0.06 eV/Å error, compared to the average DFT force magnitude
of 1.0 eV/Å). This is very close to the standard error assumed in the Gaussian Process for the
teaching data by setting the �

err

hyperparameter to 0.05 eVÅ.
For the SiC system, we next increased the temperature of the target trajectory to 1000 K,

and found that 2000 configurations are still su�cient to stay within a 10% force error, once more
provided that the sets of IVs are augmented by forces from an appropriate classical interatomic
potential (in this case a Stillinger-Weber potential [6] re-parametrised to match the bulk and
elastic properties predicted by the reference DFTB Hamiltonian (Fig. S2(b)).

2

also lost in any currently used hybrid QM/MM scheme flexible enough to allow exchange of atoms
between the MM and QM zones [4].

S2.2 Independent Test and Teaching Trajectories

In addition to the tests described in the main text, we also investigated the force accuracy achieved
when our trajectory-derived databases are used to predict the forces along new, independent
trajectories. The results reveal a slightly slower convergence with database size than when the
testing and teaching configurations come from the same trajectory (blue dot-dashed line in Fig. 2),
consistent with the fact that the available “nearest” configurations are now less pertinent. However,
acceptable force accuracies are still achieved when ⇠ 1000 configurations or more are included,
interestingly also when a database generated from a 2500K trajectory is used to predict the forces
of a 1000 K simulation (cyan dotted line in Fig. 2).

S3 Extension to Multi-component Systems

We have carried out preliminary work to assess the suitability of our Machine Learning approach
for predicting QM forces in multi-component systems. For the purpose of this tests, the descriptor
is of the same form as described in the main paper, while the definition of the IVs (Eq. 1) was
extended so that individual vectors are constructed only between atoms with the same species:

V

(s)
i =

NneighbX

q=1

r̂sq exp

"
�
✓

rsq
r
cut

(i)

◆p(i)
#
�Zs,Zq (S4)

where s is the atom of interest, q is one of its neighbours and Zs and Zq are the species of atoms
s and q. The IVs are next combined to form an extended feature matrix Xij similar to the
one described in the main paper (Eq. 2 and following text), with an additional block structure
reflecting the presence of di↵erent atomic species:

X =

✓
VZ1A

T
Z1

VZ1A
T
Z2

VZ2A
T
Z1

VZ2A
T
Z2

◆
(S5)

where the matrices VZ1 , A
T
Z1

and VZ2 and A

T
Z2

formed from the IVs and normalized directions
for species Z

1

and Z
2

, respectively.
We selected crystalline �-SiC described at the DFTB level and amorphous SiO

2

described at the
DFT (LDA) level as test systems, to provide a range of bonding and long-range order properties.
In both cases, we find that the forces from reference 300 K QMmolecular dynamics trajectories can
be reproduced within a 10% accuracy using a database containing 2000 configurations (Figs. S1(a)
and S1(b)). For the 300 K amorphous SiO

2

trajectory, we further investigated if and to what extent
the accuracy of the predicted forces can be improved by incorporating in the descriptor the force
vector predicted by a short-ranged form of the polarisable Tangney-Scandolo interatomic potential,
known to give a reasonably accurate description of silica [5]. As can be seen in Fig. S2(a), this
decreases the relative force error achievable with a modest ⇠1000 configuration database from
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Summary
• Hybrid QM/MM approaches allow ‘chemomechanical’ materials failure 

problems to be modelled with QM precision 
• Addresses lengthscale limitations of QM approaches e.g. DFT
• Practical: e.g., experimentally verifiable predictions of fracture phenomena
• Timescale limitations – prohibitive to model many important processes

• On-the-fly Machine Learning of QM forces improves timescales accessible 
• Target optimal information efficiency – only do QM when necessary
• Need representation of atomic environments suitable for force learning
• Progressively fewer QM calculations are required when same chemical process is 

encountered again
• Chemical ‘novelty’ and uncertainty can be quantified

• Next Steps 
• Improved atomic environment descriptors, e.g. vector covariance kernel
• Use GP variance predictions to quantify uncertainties
• Integrate on-the-fly ML and hybrid QM/MM approaches
• Propagation of uncertainties through coarse-graining
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