Correlating structure and function for nanoparticle catalysts

Graeme Henkelman

University of Texas at Austin

Co-workers

Liang Zhang, Zhiyao Duan, Long Luo, Hao Li, and the Crooks group

Importance of catalysis for energy

- The chemical sector is the largest industrial energy user, accounting for 10% of total worldwide energy demand and 7% of green house gas emissions.
- 90% of chemical processes use catalysts.
- Efficiency improvements of 20-40% will save 13 Exajoules and 1 Gigaton of CO2 per year by 2050*
- Many transformative technologies are limited by the cost of precious metal catalysts.
 - energy efficient fuel cell vehicles
 - chemical production of liquid fuels
 - CO₂ reduction back into hydrocarbons

CARBON FOOTPRINT

Average S&P 500 chemical company emits 6.6 million metric tons of carbon

NOTE: Data represent 2007 average emissions for companies in each sector of the S&P 500 presented. SOURCES: NSF International, Trucost

CE&N Aug. 31, 2009 87(35) 10.

Hyundai Tucson: \$100,000 fuel cell

The promise of materials by design

- With an increase in available computational power and improvement of theoretical algorithms, it is now becoming possible to understand the function of existing materials at the atomic scale.
- Looking forward, we will focus on the inverse challenge of the computational design of new materials with desired properties.
- Development of tools and methods that will make it possible to use first-principle theory to predict the sizes, compositions, and structures of heterogeneous catalysts that have desired catalytic functions.

Materials Genome Initiative

Catalyst design cycle

Modeling catalysis

Oxygen reduction: different catalysts change both the energy of saddle points and the binding energy of products

Brønsted-Evans-Polanyi relation

Similar catalysts: saddle point energies are linearly related to reaction energies

O₂ dissociative adsorption

Electronic structure:

Barriers and binding energies are both determined by the energy of the bonding electronic states (*d*-band)

Xu, Ruban, Mavrikakis, *JACS*.**126**, 4717 (2004) Bligaard, Nørskov, *et al.*, *J. Catal.* **224**, 206 (2004)

Volcano plots from reactivity descriptors

Volcano plot:

A peak in catalytic activity corresponds to the optimal balance between reactive and noble metals

Pt has the highest activity of any single transition metal catalyst for the O-reduction reaction (ORR)

Near surface alloys for tuning catalysts

Subsurface alloys

strain effect

ligand effect

Overlayers:

Alloy metal can wet the surface, or form a subsurface alloy

Subsurface alloys:

Change the *d*-band level (and reactivity) of the surface

Besenbacher, Chorkendorff, Clausen, Hammer, Molenbroek, Nørskov, and Stensgaard, *Science* **279**, 1913 (1998). Greeley and Mavrikakis, *Nature Materials* **3**, 810 (2004)

Dendrimer encapsulated nanoparticles

Dendrimer encapsulation:

NaBH₄

Gn-OH

make reproducible alloy or core/ shell nanoparticles

Core/Shell

tune the reactivity

of the shell

R. W. J. Scott, O. M. Wilson, S.-K. Oh, E. A. Kenik, and R. M. Crooks, *J. Am. Chem. Soc.* **126**, 15583 (2004). O. M. Wilson, R. W. J. Scott, J. C. Garcia-Martinez, and R. M. Crooks, *J. Am. Chem. Soc.* **127**, 1015 (2005).

Alloy

More Noble Metal Salt

Tools for determining nanoparticle structure

PDF (x-ray: pair distribution function)

- Long range
- Total scattering

EXAFS (extended x-ray adsorption)

- Short range
- Atom identity

DFT (density functional theory)

$$\hat{H}\Psi = E\Psi$$

- Potential energy
- Idealized model

TEM (transmission electron microscopy)

Particle size and morphology

Structural information from X-ray scattering

Pair Distribution Function X-ray Data: Valeri Petkov

Compare experimental PDF data (G_{expt}) with that calculated from a model particle (G_{calc}):

$$G_{\text{calc}}(r) = \frac{A}{r} \sum_{i,j} \frac{1}{2\pi\sigma^2} e^{-\frac{(r-r_{ij})^2}{2\sigma^2}}$$

Combine error in PDF (χ^2) with the total energy (U) to give a single object function, (F):

$$\chi^2 = \frac{1}{R} \int_0^R [G_{\text{expt}}(r) - G_{\text{calc}}(r)]^2 dr$$
$$F = \alpha U + (1 - \alpha)\chi^2$$

FCC crystals are the best-fit structures

Searching a large number of conformations with an empirical (EAM) potential

Refine with DFT: truncated octahedron (1) best fits the experimental data and has the lowest energy

EXAFS spectra and standard fitting

Experiment

Theory

 $\chi(k) = \sum_{j} \frac{N_{j} f_{j}(k) e^{-2k^{2} \sigma_{j}^{2}}}{k R_{j}^{2}} \sin[2k R_{j} + \delta_{j}(k)]$

N = Coordination Number

CN_{X-Y}: Average number of atoms X around Y

Bulk Au: $CN_{Au-Au} = 12$

 Au_{147} NP: $CN_{Au-Au} = 8.98$

R = Bond Length

σ^2 = Debye-Waller Factor

Average bond length variance Combination of static and dynamic disorder

Fitting

Determine N, R, σ^2 e.g. with IFEFFIT

Potential problems with EXAFS fitting

Dependency between fitting parameters

EXAFS fitting can convolute physical properties, for example, coordination number and disorder (disordered particles look like smaller bulk-like particles)

Bulk reference model can break down for nanoparticles

Distributions in bond lengths may be non-Gaussian, particularly at low temperatures

A range of Debye-Waller factors can also be found in disordered materials

Self-consistency test for the fitting model

Determine the accuracy of the **fitting model** without experimental uncertainty

Use DFT to generate an ensemble of structures around an initial geometry.

Do a full EXAFS calculation, using FEFF, for each configuration in the ensemble.

Compare fit values to direct ensemble averages: $\langle r \rangle, \sigma^2, N, c_3, c_4$

S. T. Chill, R. M. Anderson, D. F. Yancey, A. I. Frenkel, R. M. Crooks, and G. Henkelman, ACS Nano 9, 4036 (2015).

Problems for Au nanoparticles

Molecular Dynamics

Simulate EXAFS

Fit $\langle \chi(k) \rangle$

Compare fit values to known ensemble averages.

Thiol-induced disorder in Au nanoparticles

Experimental vs Theoretical (MD-DFT) Analysis

Change surface disorder with increasing thiol ligands (N)

Fitted Model Values

D. F. Yancey, S. T. Chill, L. Zhang, A. I. Frenkel, G. Henkelman, and R. M. Crooks, Chem. Sci. 4, 2912-2921 (2013).

First attempt: ORR on Pd-shell nanoparticles

Choose **Pd shell** because it is close to Pt

See how the **core metal** changes the ORR on the shell

A **truncated octahedral** structure has the lowest energy in vacuum

Reaction are assumed to take place on the (111) facet; this is the lowest energy, and most noble surface

BEP relationship for nanoparticles

Tune the Pd shell to be like Pt by choosing a non-noble core metal

Pd-shell nanoparticles:

follow a BEP relationship as the core metal is changed

d-band center of the shell:

is a good measure of the barrier and binding for the ORR

Activity is not intermediate to the core and shell

A **Pd shell**particle, combined
with a *less* nobel
metal core, results
in a particle with a
shell that is *more*noble than Pd

Possibility: can a core-shell particle be constructed from non-noble metals that reacts like a noble metal?

Experimental tests: Stability is important

Synthesis: Keith Stevenson's group

Mo@Pd are found to form a Pd@MoOx structure

Scanning electrochemical microscopy: Allen Bard's group

While Co@Pd particles are not stable, de-alloyed Co/Pd bulk samples are seen to be highly active for the oxygen reduction reaction.

Example I: Tuning a Pd/Au alloy @ Pt particle

Tune the activity of a particle shell with the core composition.

Optimal core composition is predicted to be 3 Pd / 1 Au

L. Zhang and G. Henkelman, J. Phys. Chem. C 116, 20860-20865 (2012).

Experimental validation

L. Zhang, R. Iyyamperumal, D. F. Yancey, R. M. Crooks, and G. Henkelman, ACS Nano 7, 9168-9172 (2013).

Example II: Cyclohexene hydrogenation

Reaction Mechanism: elementary steps follow BEP relationships for pure metals

Scaling relations + Microkinetic model

= Volcano Plot:

Experiments: Turn over frequency

Experiments: Catalytic activity

Highest activity: found when Au or Ag is alloyed with Rh

Specific activity

Specific activity / Rh atom

Calculations of H binding to Alloys

Alloying: can tune the H binding energy to the optimal value

When the details matter: Part I

Calculations: 2 nm Au/Pd@Pt particles show a smooth change in the CO binding energy with core composition

Experiments: 1.7 nm Au/Pd@Pt particles show an unusual non-linear CO stripping potential with core composition

When the details matter: Part I

Experiments: 1.7 nm Au/Pd@Pt particles show an unusual non-linear CO stripping potential with core composition

When the details matter: Part II

Allyl alcohol hydrogenation: on metal surfaces

Descriptors: H and Allyl Alcohol binding energies

Can particles be tuned for hydrogenation by alloying?

Experiments

DENs size distribution: TEM

Alloys: Cu UPD stripping

Catalytic activity: Measure the change in H₂ pressure over time

Experimental results

Pd/Au alloys have enhanced activity; Pt/Au do not!

Different trends in H binding energies

What makes an alloy tunable?

Pd/Au: Mixed metal hollow binding site

Pt/Au: binds to Pt;

hollow, bridge or

top site

Tunable Binding

Non-Tunable Binding

Tunability factor

Comparison to Experiment: H coverage

Calculations of H coverage

100 Calculated $\theta_{\rm H}$ 80 60 40 20 0.6 0.8 0.0 0.2 0.4 x in M_xAu_{1-x} 100

Measurements of H coverage

Comparison to Experiment: Activity

Experiments

Theory: but with the details

Pt/Au alloys: basically no improvement

Rh/Au alloys: some improvement

Pd/Au alloys: significant improvement

Research Group

Acknowledgments

Funding

NSF - CHE, DMR, DMREF

Welch Foundation

DOE - BES

ExxonMobile Research

Computer Time

Texas Advanced Computing Center

DOE NERSC

Software tools

http://theory.cm.utexas.edu/vtsttools/

http://theory.cm.utexas.edu/bader/

Research Group

Wenjie Tang→UVA Sam Chill

Matt Welborn→MIT Penghao Xiao

Chun-Yaung Lu→LANL Rye Terrell

Dan Sheppard→LANL Juliana Duncan

Liang Zhang Zachary Pozun

Nathan Froemming→UW Shannon Stauffer

Collaborators

Crooks group Valeri Petkov

Stevenson group Anatoly Frenkel

Bard group

aKMC, Dimer, NEB, and dynamical matrix

methods implemented in the VASP code

Bader charge density analysis