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Beyond the Cubic-Scaling Limit
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Nearsightedness

e the behaviour of large systems is short-ranged, or
“nearsighted”

e the density matrix decays exponentially in systems with a gap

= how can we exploit nearsightedness to treat large systems?
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Key Quantities

Support Functions (SFs)

write KS orbitals as linear
combinations of SFs ¢ (r):

= Z €' Pa(r)

o localized (user-defined radius)
e atom-centred
e expanded in systematic basis

KS orbitals

localize

~ Loz

support functions.

Density Kernel

define the density matrix
p(r,r’) and kernel K°5:

p(r,r') = ZW 1)) (% (1))
= Z $a (1) K (p5(r)
o,

Total Energy

Hop = (¢alH|ps);
E=Tr(KH);

Sap = (¢alp)
N = Tr (KS)




DFT for
1000s of
Atoms

Laura
Ratcliff

O (N)
DFT

The Algorithm

) e

extended Kohn-Sham orbitals
cubic scaling, high accuracy

atomic
orbitals

energy
& forces

localized support functions (LCAO) localized adaptive support functions
linear scaling, low accuracy linear scaling, high accuracy

Accurate Minimal Basis

e energy is minimized with respect to both
SFs and kernel

e SFs adapt to the environment

o different options for kernel optimization:
Fermi Operator Expansion (FOE), penalty
functional, purification, LNV. ..

= minimal, localized basis with the same
high accuracy as underlying systematic basis
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Basis Sets — Psincs and Wavelets

Common Features

e localized e orthogonal e systematic e use of PSPs

Wavelet Features Psinc Features
o flexible boundary conditions e periodic boundary conditions
e analytic operators e equivalence with plane waves

o multiresolution grid: 1 grid, 2 e regular grid: 1 psinc function
resolution levels centred at each grid point




et Support Functions

1000s of
Atoms

poure Common Features
S e strict localization (~ 6 — 8 bohr)
o e minimal number: e.g. 1 SF per H, 4 per C/N/O etc.

BigDFT ONETEP

e Non-orthogonal Generalized

e quasi-orthogonal SFs
Wannier Functions (NGWFs)

e use of a confining potential
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i From Sparsity to Linear Scaling

1000s of
Atoms

Lwra  Oparse Matrices

Ratcliff
oo e strict localization leads to sparse matrices
DFT e sparsity depends on size and

dimensionality
e make use of sparse matrix algebra
sparsity impacts crossover point

Walltime (min.)
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O (N) DFT
e can treat 1000s of atoms using DFT at a high accuracy

e many functionalities and features available
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Exploiting Repetition

Calculation Bottleneck
o SF optimization takes the majority of compute time

e what happens in similar chemical environments?

Water Droplet

e internal molecular
environment dominates
o differences between water
molecules are small
R e can we use the same SFs

for each molecule?




b= Reformatting

1000s of
Atoms

Laura Rototranslations
et how do we account for varying orientations and positions?
e scheme to detect rototranslations with respect to reference
T (“template”) coordinates
Apereach e accurate and efficient wavelet interpolation scheme
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Fragment Approach

Template Full Calculation

Calculation I .

optimize ‘

support

functions / ’
replicate v '

support fixed support
functions functions

Calculation Steps

e template calculation: optimize SFs for isolated fragment

o reformatting: replicate and rototranslate template SFs for
each fragment instance

e full calculation: use fragment SFs as a fixed basis, optimizing
density kernel only
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e energies affected by basis set superposition error

e but equilibrium bond length less affected

e can increase basis to improve accuracy

e approach is suited to weakly interacting fragments
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Constrained DFT (CDFT)

o wavelet basis is ideal for adding a (constrained) charge
Fragment

Approach e in CDFT we find the lowest energy state satisfying a given
(charge) constraint on the density

e we want to associate a given charge with a particular fragment
can be used to reduce the self-interaction problem and include
environmental effects on site energies

CDFT with SFs
W [n, V] = Exs [n] + V. (2Tr [Kw| — N.)

The SF basis lends itself to a Lowdin like approach for the
weight function: we = S2PS2
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ZnBC-BC complex

e varying charge separation between two molecules
e can find charge transfer states
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OLEDs

on site energies ¢

transfer integrals

hole  __ —+1 0
E Etot - Etot

on-site

Fragments in Disordered Host-Guest Material

e extract cluster of nearest neighbours for each molecule

e template calculations for isolated host and guest molecules

o use fragment basis to calculate transfer integrals in clusters (a)
e use CDFT to add charge to central molecule in each cluster

e calculate on site energies using CDFT results (b)
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OLED Transport Parameters
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C Environmental Effects
Statistics

o shift in average Eonsite (- - -) vs.

disorder = dispersion .
¢ — disp isolated molecules (—)

of values for Eg_site )
o differences between pure host and
and Jij

host guest materials

Future Challenge for Simulating OLEDs

improve the description of excitations in realistic morphologies

7.4
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Fragment Approach Simulating OLEDs

exploiting repetition excitations in an environment
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