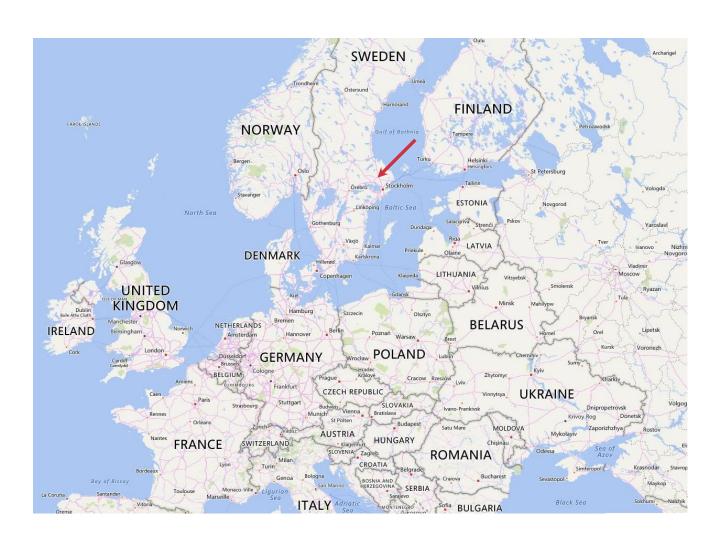
Coupling atomistic and continuum modelling of magnetism

- M. Poluektov^{1,2}
- G. Kreiss²
- O. Eriksson³

- University of Warwick
 WMG
 International Institute for Nanocomposites Manufacturing
- Uppsala University
 Department of Information Technology
 Division of Scientific Computing
- 3 Uppsala University
 Department of Physics and Astronomy
 Division of Materials Theory

Centre for Scientific Computing and Centre for Predictive Modelling seminar 7th November 2016, Coventry, UK

Uppsala University



Department of Information Technology Division of Scientific Computing

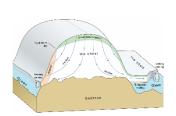
research profile: computational methods with focus on PDEs

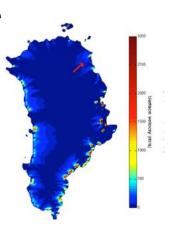
- analysis of mathematical models: shock dynamics, boundary closures, ...
- discrete approximations: finite differences, finite elements, radial basis functions, ...
- numerical linear algebra: parallel iterative solvers, pre-conditioners, ...
- parallel and large-scale computing: load balancing, memory architecture, ...
- optimisation: global optimisation, design optimisation, ...

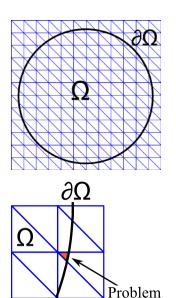
http://www.it.uu.se/research/scientific_computing

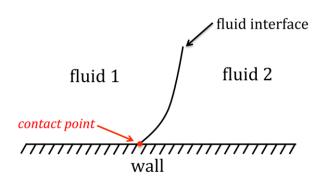
Department of Information Technology Division of Scientific Computing

- wave propagation
 - finite differences, non-conforming grids
 - immersed finite elements
 - perfectly matched layers
- computational fluid dynamics
 - near-wall models for large eddy simulation
 - multiphase flow
- computational systems biology
- computational finance
- ice sheet modelling





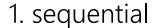


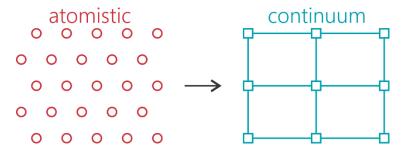


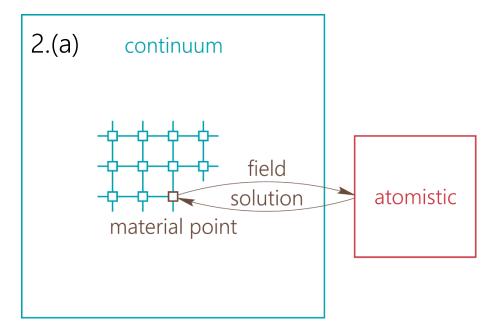
Outline

- research group
- multiscale modelling
- mechanics: coupling local and nonlocal models
 - statics: dealing with the interface error
 - dynamics: dealing with high-frequency waves
- magnetism: statics and dynamics
 - examples
- magnetism: finite temperatures
 - dealing with nonlinearities
- challenges and open problems

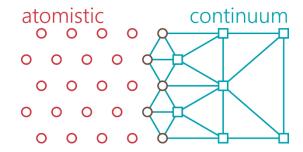
Atomistic-continuum methods

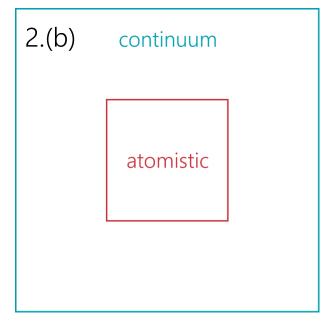






2. concurrent





Mechanics, statics

Statics, atomistic description

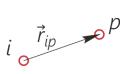
- goal: obtain minimum energy configuration
- total atomistic energy

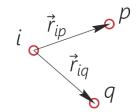
$$E = \sum_{i} E_{i}^{A}$$

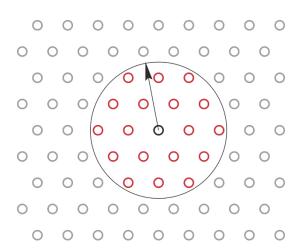
$$\mathbf{E}_{i}^{A} = \frac{1}{2} \sum_{p \neq i} \Pi_{ip}^{(2)} \left(\vec{r}_{ip} \right) + \frac{1}{6} \sum_{p \neq i} \sum_{q \neq p, i} \Pi_{ipq}^{(3)} \left(\vec{r}_{ip}, \vec{r}_{iq} \right)$$

$$\vec{f}_i = -\frac{\partial E}{\partial \vec{r}_i} = 0$$

nonlocal interatomic interaction





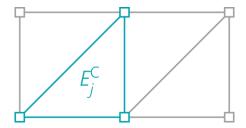


Statics, continuum description

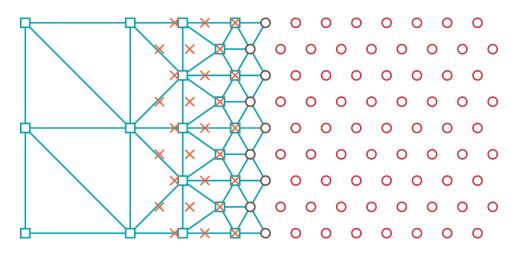
- goal: obtain minimum energy configuration
- continuum energy
 - local energy density e^{C}
 - finite-element representation

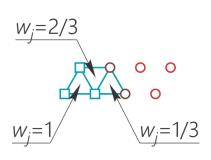
$$E = \sum_{j} E_{j}^{C}$$

$$E_j^{\mathsf{C}} = \int_{V_j} e^{\mathsf{C}} \mathrm{d}V_j$$



Coupling

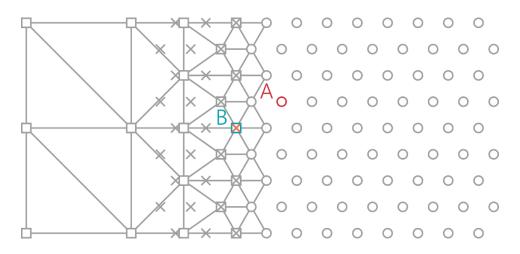


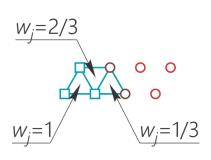


- introduce pad atoms (x), finite range of interatomic interaction
- all coupling methods differ in treatment of total energy

$$E = \sum_{i} E_{i}^{A} + \sum_{j} w_{j} E_{j}^{C}$$

Coupling



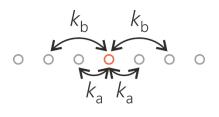


- introduce pad atoms (x), finite range of interaction
- all coupling methods differ in treatment of total energy

$$E = \sum_{i} E_{i}^{A} + \sum_{j} w_{j} E_{j}^{C}$$

minimisation of total energy, ghost forces

Illustrative 1D example



$$E_i^{A} = \frac{1}{2} \left(\frac{1}{2} k_a (u_i - u_{i-1})^2 + \frac{1}{2} k_b (u_i - u_{i-2})^2 + \frac{1}{2} k_a (u_i - u_{i+1})^2 + \frac{1}{2} k_b (u_i - u_{i+2})^2 \right)$$

$$k_{c}$$

$$E_j^{C} = \frac{1}{2}k_{c}\left(u_j^{R} - u_j^{L}\right)^2$$
 $u_{j+1}^{L} = u_j^{R}$ $k_{c} = k_{a} + 4k_{b}$

interface atom

$$E^{\mathsf{T}} = \dots + E^{\mathsf{A}}_{-2} + E^{\mathsf{A}}_{-1} + E^{\mathsf{A}}_{0} + \frac{1}{2}E^{\mathsf{C}}_{1} + E^{\mathsf{C}}_{2} + E^{\mathsf{C}}_{3} + \dots$$

$$u_i - u_{i-1} = \varepsilon a$$

Illustrative 1D example

interface atom ... o o o o 1 2 3 4 ... element numbers -3 -2 -1 0 1 2 3 4 ... atom/node numbers pad atom $E^{\mathsf{T}} = \dots + E^{\mathsf{A}}_{-2} + E^{\mathsf{A}}_{-1} + E^{\mathsf{A}}_{0} + \frac{1}{2}E^{\mathsf{C}}_{1} + E^{\mathsf{C}}_{2} + E^{\mathsf{C}}_{3} + \dots$ $u_i - u_{i-1} = \varepsilon a$ $f_{-2} = -\frac{\partial E^{1}}{\partial u_{-2}} = 0$ $f_1 = -\frac{\partial E^1}{\partial u_1} = k_b \varepsilon a$ $f_{-1} = -\frac{\partial E^{\mathsf{T}}}{\partial u_{-1}} = -k_{\mathsf{b}} \varepsilon a$ $f_2 = -\frac{\partial E^{\mathsf{T}}}{\partial u_2} = -k_{\mathsf{b}} \varepsilon a$

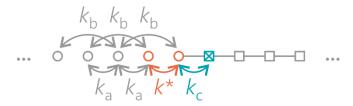
$$f_0 = -\frac{\partial E^{\mathsf{T}}}{\partial u_0} = k_{\mathsf{b}} \varepsilon a \qquad \qquad f_3 = -\frac{\partial E^{\mathsf{T}}}{\partial u_3} = 0$$

Methods

- energy-based coupling methods (E)
 - ghost-force reduction techniques
 - quasi-nonlocal (QNL) atoms
- force-based coupling methods (E^A , E^C)

$$E^{A} = \sum_{i} E_{i}^{A} + \sum_{k} E_{k}^{P}$$
 $E^{C} = \sum_{j} E_{j}^{C}$

- many variations of these methods
 - overlapping and non-overlapping regions
 - review [Miller Tadmor 2009 Modelling Simul. Mater. Sci. Eng. 17 053001]
- our approach (similar to QNL) modify atoms at the interface

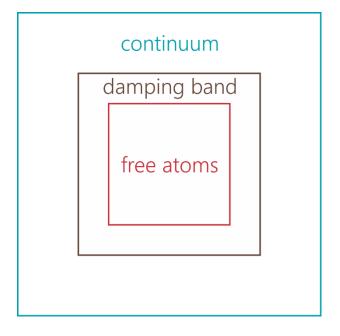


Mechanics, dynamics

Dynamics

- main problem: treatment of scale coarsening
 - wave reflections not an issue of coupling methods

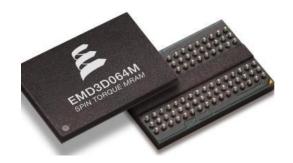
- approach: stadium damping region
 - wave-absorbing layer
 - thermostatting



Magnetism

Magnetic materials

- variety of applications
 - magnetic storage media
 - magnetic RAM
 - nanowires
 - etc.
- continuum modelling: micromagnetics
 - can handle relatively large spatial and time scales
- atomistic modelling: spin dynamics
 - precise treatment of singularities
 - material defects
- combine advantages multiscale approach



Magnetism, statics

Spin statics

discrete set of spin magnetic moments of atoms

 $|\vec{m}_k| = 1, \quad \forall k$

fixed lattice positions

$$E = -\frac{1}{2} \sum_{i} \sum_{j \neq i} J_{ij} \vec{m}_{i} \cdot \vec{m}_{j} + \frac{1}{2} \sum_{i} \sum_{j \neq i} \vec{G}_{ij} \cdot (\vec{m}_{i} \times \vec{m}_{j}) - \frac{1}{2} \sum_{i} K (\vec{p} \cdot \vec{m}_{i})^{2} - \mu \sum_{i} \vec{H}_{e} \cdot \vec{m}_{i}$$

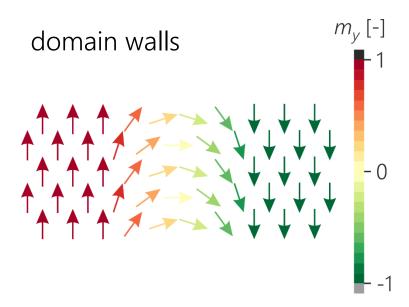
Spin statics

• discrete set of spin magnetic moments of atoms

 $|\vec{m}_k| = 1, \quad \forall k$

fixed lattice positions

$$E = -\frac{1}{2} \sum_{i} \sum_{j \neq i} J_{ij} \vec{m}_i \cdot \vec{m}_j + \frac{1}{2} \sum_{i} \sum_{j \neq i} \vec{G}_{ij} \cdot (\vec{m}_i \times \vec{m}_j) - \frac{1}{2} \sum_{i} K (\vec{p} \cdot \vec{m}_i)^2 - \mu \sum_{i} \vec{H}_e \cdot \vec{m}_i$$



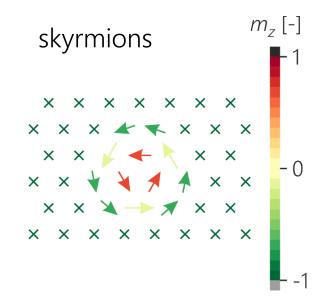
Spin statics

• discrete set of spin magnetic moments of atoms

$$|\vec{m}_k| = 1, \quad \forall k$$

fixed lattice positions

$$E = -\frac{1}{2} \sum_{i} \sum_{j \neq i} J_{ij} \vec{m}_i \cdot \vec{m}_j + \frac{1}{2} \sum_{i} \sum_{j \neq i} \vec{G}_{ij} \cdot (\vec{m}_i \times \vec{m}_j) - \frac{1}{2} \sum_{i} K (\vec{p} \cdot \vec{m}_i)^2 - \mu \sum_{i} \vec{H}_e \cdot \vec{m}_i$$



Analogy with mechanics

- mathematically equivalent to molecular statics
- spherical coordinates two d.o.f. per atom

$$\vec{m}_k = \vec{e}_x \sin \theta_k \cos \phi_k + \vec{e}_y \sin \theta_k \sin \phi_k + \vec{e}_z \cos \theta_k$$

$$\vec{u}_k = \vec{e}_1 \theta_k + \vec{e}_2 \phi_k$$

$$E = \sum_i E_i^A$$

$$E_i^{A} = \Pi^{(1)} \left(\vec{R}_i, \ \vec{u}_i \right) + \frac{1}{2} \sum_{j \neq i} \Pi^{(2)} \left(\vec{R}_{ij}, \ \vec{u}_j - \vec{u}_i, \ \vec{u}_j + \vec{u}_i \right)$$

- energy represented via potentials
 - $-R_i$ atomic position vectors (not d.o.f.)
 - R_{ij} vectors connecting atoms i and j (not d.o.f.)

Coarse-graining

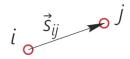
- matching energies
- atomistic description

$$E = -\frac{1}{2} \sum_{i} \sum_{j \neq i} J_{ij} \vec{m}_i \cdot \vec{m}_j + \dots$$

continuum description

$$E = \frac{1}{2V_0} \int_V A_e \left(\left| \nabla m_x \right|^2 + \left| \nabla m_y \right|^2 + \left| \nabla m_z \right|^2 \right) dV + \dots$$

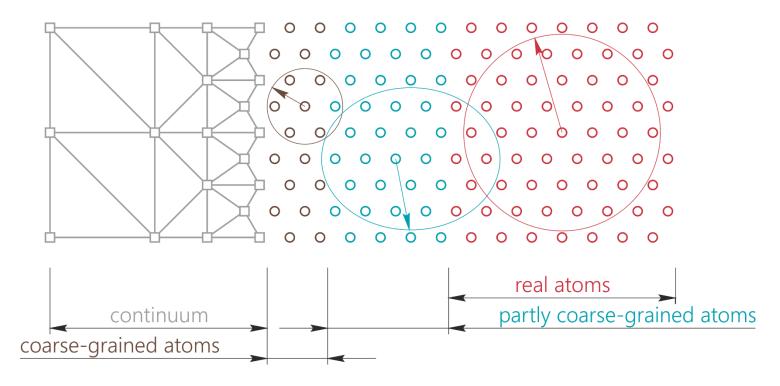
$$A_{e} = \frac{1}{2} \sum_{j \neq i} J_{ij} \left(\vec{s}_{ij} \cdot \vec{e}_{x} \right) \left(\vec{s}_{ij} \cdot \vec{e}_{x} \right)$$



mismatch between descriptions

Coupling

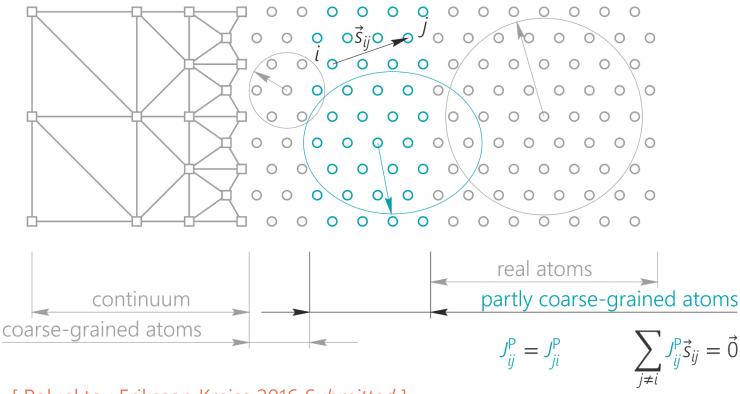
transition zone: modify atoms at the interface (J_{ij})



[Poluektov Eriksson Kreiss 2016 Submitted]

Coupling

transition zone: modify atoms at the interface (J_{ij})



[Poluektov Eriksson Kreiss 2016 Submitted]

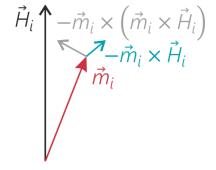
Magnetism, dynamics

Spin dynamics

- atomistic spin dynamics: discrete set of spin magnetic moments
- fixed lattice positions
- Landau-Lifshitz-Gilbert equation

$$\frac{\partial}{\partial t}\vec{m}_{i} = -\beta_{L}\vec{m}_{i} \times \vec{H}_{i} - \alpha_{L}\vec{m}_{i} \times \left(\vec{m}_{i} \times \vec{H}_{i}\right)$$

$$\vec{H}_{i} = \sum_{i} J_{ij}\vec{m}_{j} + \dots$$



micromagnetics: continuum vector field

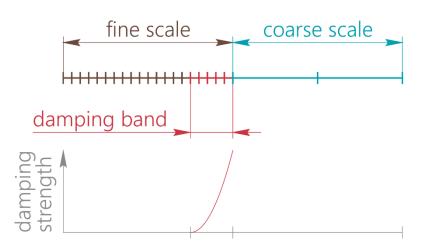
$$\vec{m}_i \rightarrow \vec{m}(x)$$

Damping band

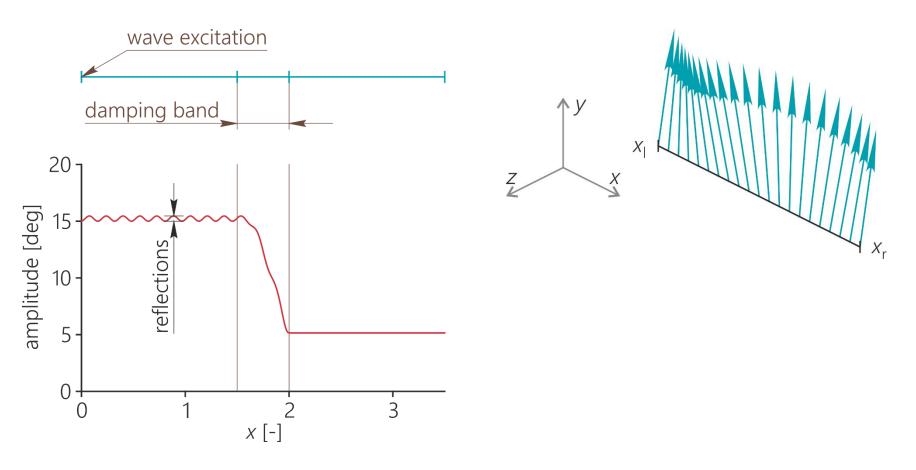
modify LLG equation, test in 1D continuum case

$$\frac{\partial}{\partial t}\vec{m} = -\beta_{\perp}\vec{m} \times \vec{H} - \alpha_{\perp}\vec{m} \times (\vec{m} \times \vec{H}) - \vec{m} \times (\vec{m} \times \vec{f})$$

$$\vec{f} = g(x) \, \vec{m}_{A} \sqrt{\left| \frac{\partial}{\partial t} \vec{m} \right|}$$

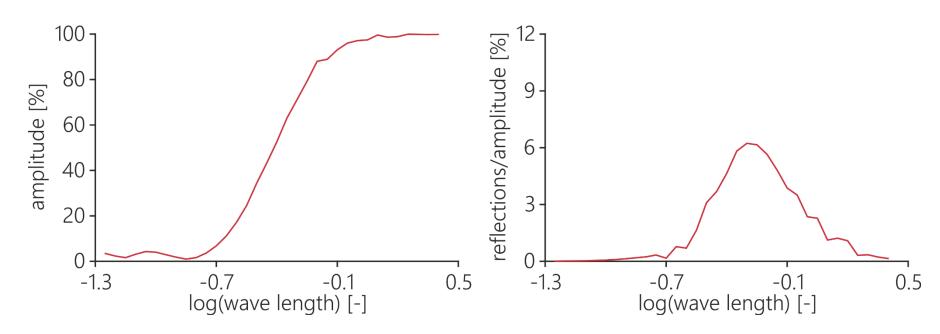


Spin waves



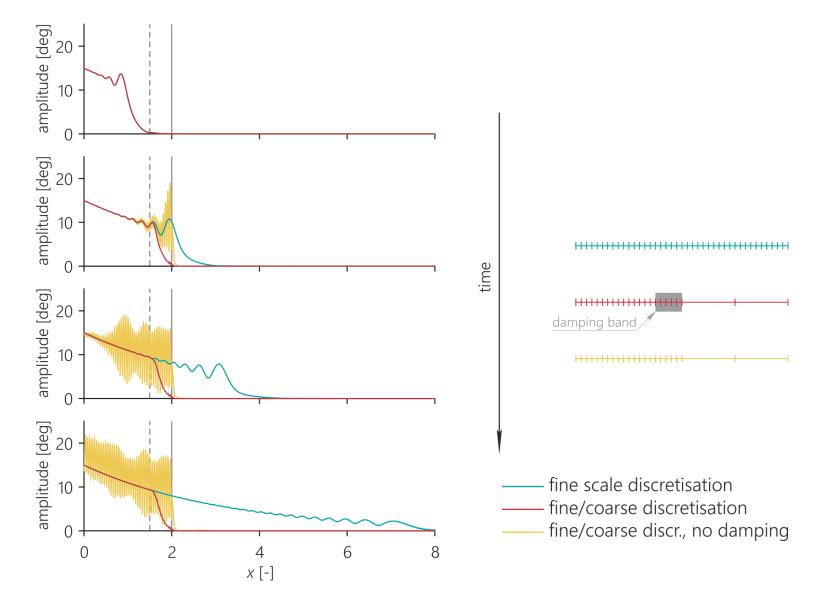
width of the damping band determines the scale of reflections from it

Amplitude-frequency

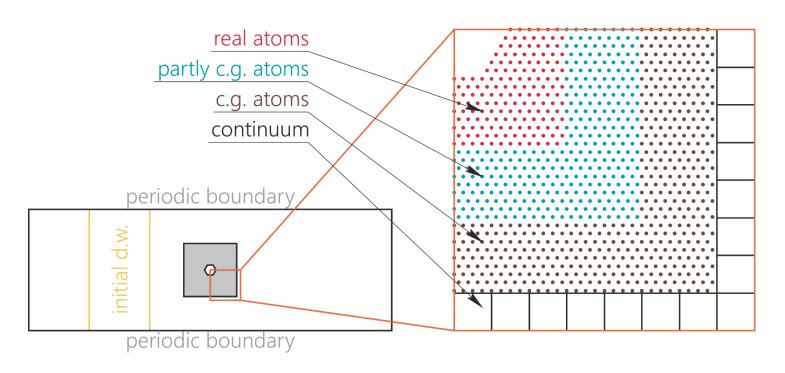


- uniform fine scale
- attenuation of small wave lengths, low-pass filter
- finite error due to reflections from the damping band
- the size of averaging window determines the cutoff wave length

Spin waves, 1D example

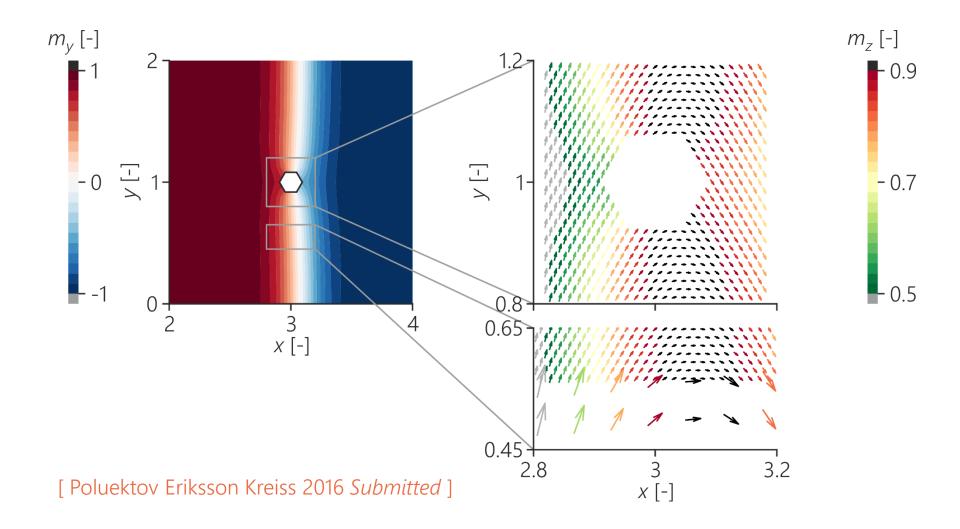


Material with the void



- magnetic field-induced movement of the domain wall
- layer of numerically-damped atoms
- non-refined mesh at the interface

Domain wall around the void



Magnetism, finite temperatures

Finite temperatures

additional noise term

$$\frac{\partial}{\partial t}\vec{m}_i = -\beta_{\perp}\vec{m}_i \times \vec{H}_i - \alpha_{\perp}\vec{m}_i \times \left(\vec{m}_i \times \vec{H}_i\right)$$

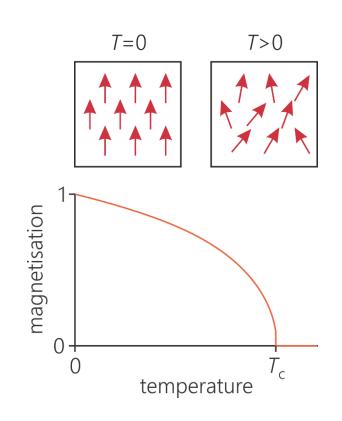
$$\vec{H}_i = [\text{deterministic terms}] + \vec{h}_i$$

$$\langle h_{i\rho}(t) \rangle = 0$$
, $\langle h_{i\rho}(t) h_{j\nu}(s) \rangle = 2D\delta_{ij}\delta_{\rho\nu}\delta(t-s)$

$$D = k_{\rm B} T \frac{\alpha_{\rm L}}{\beta_{\rm L} \mu \gamma}$$

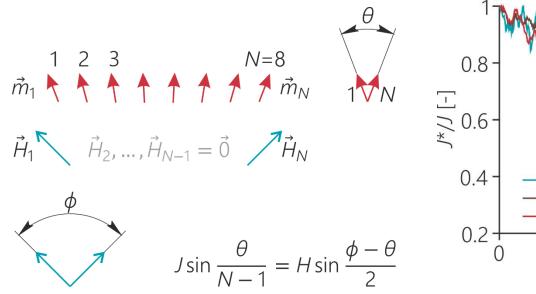
- volume-average
- assumption: deterministic continuum description is applicable
 - other models (stochastic PDEs) are available

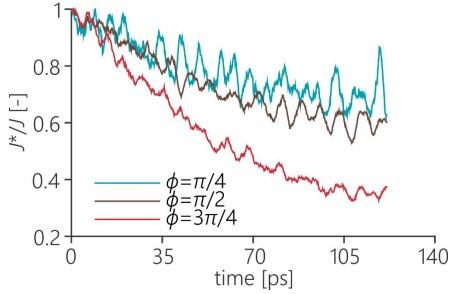
$$\vec{m} = \vec{m}^* s$$
, $s = s(T)$, $|\vec{m}^*| = 1$



Nonlinear effective exchange

- this assumption is not always correct, example: chain of 8 spins
- replace spins at T>0, which have exchange constant J, with spins at T=0, which have exchange constant J^*

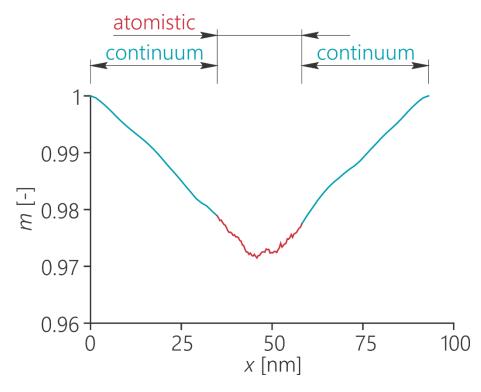




[Arjmand Poluektov Kreiss 2016 In Preparation]

Controlling magnetisation length

- unphysical wave propagation out of the atomistic region
 - damping band filters out waves which cannot be represented in the continuum region (by design)
 - ensemble averaging reduces m(x)
- continuum description relies on constant m(x)
- example: Dirichlet boundary conditions for the continuum



Conclusions

- local/nonlocal mismatch at the atomistic-continuum interface
 - transition region with partly coarse-grained atoms
- damping zone at the interface eliminates wave reflections
 - finite width (depends on desired accuracy)
- severe limitations at finite temperatures

Open problems

- long-range (dipole) interaction
- PML-type damping zone
- eliminate the mismatch between continuum and atomistic descriptions
 - T = 0
 - something similar to Cauchy-Born rule in mechanics
- HMM-type multiscale approach for finite-temperature spin dynamics
- deterministic continuum description for finite-temperature dynamics that avoids assumptions regarding magnetisation length (?)