

First principles design of new multiferroic materials

Nick Bristowe

Functional Materials Group, University of Kent, UK

WCPM/CSC, Warwick, May 15th 2017

Ferroelectricity vs ferromagnetism

Both are types of "ferroics"

Ferroelectricity – spontaneous polarization **P** (switchable with an electric field **E**)

Ferromagnetism – spontaneous magnetization M (switchable with a magnetic field H)

Classed by symmetry:

Eerenstein, Mathur & Scott Nature 442, 759 (2006)

Multiferroics

Multiferroic: material combining two or more ferroic parameters

Ferromagnetic:

Ferroelectric:

Magnetoelectric:

Possible applications:

- Magnetoelectric RAM: electric write / magnetic read
- 4-state memory

Research Activity

Scopus result for papers published with "multiferroic" OR "magnetoelectric" mentioned in any field

Perovskites

Wide range of properties

Due to coupling degrees of freedom

PbTiO₃
Pure FE ground state

CaTiO₃
Purely tilted ground state

PbTiO₃
Pure FE ground state

CaTiO₃
Purely tilted ground state

Proper phase transition (Landau)

$$f(T,P) = a_1 P^2 + a_{11} P^4$$
 $a_1 = \alpha (T - T_0)$

Competing FE and AFD lattice instabilities

Energy landscape

Tilting often wins!

$$E = \frac{1}{2}A_{0}P^{2} + \frac{1}{4}B_{0}P^{4} + C_{12}\phi_{1}^{2}\phi_{2}^{2}$$

$$+ \frac{1}{2}A_{1}\phi_{1}^{2} + \frac{1}{4}B_{1}\phi_{1}^{4} + C_{01}\phi_{1}^{2}P^{2}$$

$$+ \frac{1}{2}A_{2}\phi_{2}^{2} + \frac{1}{4}B_{2}\phi_{2}^{4} + C_{02}\phi_{2}^{2}P^{2}$$

FE and AFD usually competing through bi-quadratic coupling $(C_{01}, C_{02}>0)$

Other -

They often tilt instead

AFD (M-point) : φ⁺

Lufaso and Woodward Acta Cryst. B57 725 (2001)

a a a

They often tilt instead

AFD (M-point) : φ⁺

Lufaso and Woodward Acta Cryst. B57 725 (2001)

Detour: Why is *Pnma* most common?

Pnma most stable

Miao, Bristowe et al JPCM 26 035401 (2014)

Pnma most stable

Trilinear terms

$$\mathcal{F}(X_5^-, \phi_z^+, \phi_{xy}^-) \propto \lambda \phi_z^+ \phi_{xy}^- X_5^-$$

Miao, Bristowe et al JPCM 26 035401 (2014)

Can we cooperatively couple AFD with FE?

$$\mathcal{F}(X_5^-, \phi_z^+, \phi_{xy}^-) \propto \lambda \phi_z^+ \phi_{xy}^- X_5^-$$

Turn anti-polar *X* mode to polar mode?

Consider digital superlattice

Layers of A and A' in alternate (001) planes

can be grown layer-by-layer (e.g. PLD MBE)

or naturally ordered (e.g. double perovskites)

(the same concept will work on thicker superlattices, and other layered materials e.g. RP, DJ, Aurivilius)

Rotationally driven ferroelectricity

Only ingredient is *Pnma* type rotations and layering

Bousquet et al Nature 452 732 (2008), Fukushima et al PCCP 13 12186 (2011), Rondinelli et al Adv Materials 24 1961 (2012)

(Hybrid) Improper Ferroelectricity

Shift the well to lower energy through the coupling with other phonon modes

"Hybrid" = requires two independent order parameters belonging to a different subspaces

Hybrid improper ferroelectricity

$$E = \frac{1}{2}A_{0}P^{2} + \frac{1}{4}B_{0}P^{4} + C_{12}\phi_{1}^{2}\phi_{2}^{2}$$

$$+ \frac{1}{2}A_{1}\phi_{1}^{2} + \frac{1}{4}B_{1}\phi_{1}^{4} + C_{01}\phi_{1}^{2}P^{2}$$

$$+ \frac{1}{2}A_{2}\phi_{2}^{2} + \frac{1}{4}B_{2}\phi_{2}^{4} + C_{02}\phi_{2}^{2}P^{2}$$

$$+ \lambda\phi_{1}\phi_{2}P$$
Trilinear coupling term

- $\lambda \phi_1 \phi_2$ acts as an effective field shifting P well to lower energy
- Switching P requires reversing either ϕ_1 or ϕ_2 (and perhaps M)

Experimental signatures

Experimental demonstration of hybrid improper ferroelectricity and the presence of abundant charged walls in (Ca,Sr)₃Ti₂O₇ crystals

Yoon Seok Oh^{1,2†}, Xuan Luo³, Fei-Ting Huang^{1,2}, Yazhong Wang^{1,2} and Sang-Wook Cheong^{1,2,3★}

PRL **114,** 035701 (2015)

PHYSICAL REVIEW LETTERS

week ending 23 JANUARY 2015

Negative Thermal Expansion in Hybrid Improper Ferroelectric Ruddlesden-Popper Perovskites by Symmetry Trapping

M. S. Senn, ^{1,2,*} A. Bombardi, ¹ C. A. Murray, ¹ C. Vecchini, ³ A. Scherillo, ⁴ X. Luo, ⁵ and S. W. Cheong ^{5,6}

nature

Vol 452 10 April 2008 doi:10.1038/nature06817

LETTERS

Improper ferroelectricity in perovskite oxide artificial superlattices

Eric Bousquet¹*, Matthew Dawber²*†, Nicolas Stucki², Céline Lichtensteiger², Patrick Hermet¹, Stefano Gariglio², Jean-Marc Triscone² & Philippe Ghosez¹

Hybrid Improper Ferroelectricity

Typically in *layered* perovskites with a⁻a⁻c⁺ tilt pattern:

Alternative to tilts?

Tri-linear coupling of lattice modes:

Want R to strongly couple to electronic degrees of freedom:

Jahn-Teller distortion

Orthorhombic with two short, medium and long bond lengths

Jahn-Teller distortion

Alternative to tilts – Jahn-Teller distortion

Tri-linear coupling of lattice modes:

Alternative to tilts – Jahn-Teller distortion

Tri-linear coupling of lattice modes:

Potential applications: magnetoelectrics, electrochromic, MITs, transistors ??

Similar mechanism proposed in related MOFs for multiferroic magnetoelectric applications

- [1] Stroppa *et al.*, Adv. Mater. **25**, 2284 (2013)
- [2] Tian et al., Phys. Status Solidi RRL 9, 62 (2015)

Lattice-driven Jahn-Teller distortion

M_{IT} is allowed, and always appears, in *Pnma* perovskites [1,2]

Does not have to appear as an electronic instability!

Here we define a Jahn-Teller *distortion*: by the symmetry of the mode (Q_2) , whether it is electronically or lattice driven

- [1] Carpenter & Howard, Acta Cryst. B **65**, 134 (2009)
- [2] Miao, Bristowe, Xu, Verstraete & Ghosez, JPCM **26** 035401 (2014)

Highlight three P-JT couplings

Symmetry analysis supported by first principles calculations (PBEsol+U and/or B1WC)

1) Superlattices (d¹-d⁰) Titanates: ATiO₃-RTiO₃

$$E \propto \lambda M_{JT} \phi_{xy}^- P_{xy}$$

Bristowe, Varignon, Fontaine, Bousquet & Ghosez, Nat. Commun. **6**, 6677 (2015)

2) Superlattices (d²-d²) Vanadates: RVO₃-R'VO₃

$$E \propto \lambda M_{JT} P_z R_{JT}$$

Varignon, Bristowe, Bousquet & Ghosez, Sci Reports 5, 15364 (2015)

3) Epitaxial bulk (all d fillings) ferrites, titanates, manganites ...

$$E \propto \lambda M_{JT} P_{xy} A_{xy}$$

Varignon, Bristowe & Ghosez, Phys. Rev. Lett **116**, 057602 (2016)

Collaborators

Theoretical Materials Physics, University of Liege, BELGIUM

Julien Varignon Now at CNRS, Thales, France

Philippe Ghosez

Denis Fontaine

Eric Bousquet

Highlight three P-JT couplings

Symmetry analysis supported by first principles calculations (PBEsol+U and/or B1WC)

1) Superlattices (d¹-d⁰) Titanates: ATiO₃-RTiO₃

$$E \propto \lambda M_{JT} \phi_{xy}^- P_{xy}$$

Bristowe, Varignon, Fontaine, Bousquet & Ghosez, Nat. Commun. **6**, 6677 (2015)

2) Superlattices (d²-d²) Vanadates: RVO₃-R'VO₃

$$E \propto \lambda M_{JT} P_z R_{JT}$$

Varignon, Bristowe, Bousquet & Ghosez, Sci Reports 5, 15364 (2015)

3) Epitaxial bulk (all d fillings) ferrites, titanates, manganites ...

$$E \propto \lambda M_{JT} P_{xy} A_{xy}$$

Varignon, Bristowe & Ghosez, Phys. Rev. Lett **116**, 057602 (2016)

ATiO₃-RTiO₃ superlattice

$$A^{2+}$$
 = Sr, Ba, (Ca)

$$Ti^{3.5+} = Ti$$

R³⁺ = La, Pr, Sm Y, Tm, (Lu)

Ground-state

(In all cases!)

- Monoclinic P2₁ symmetry
- Insulating
- Ferroelectric
- Ferromagnetic

Symmetry adapted mode analysis

R, A			\overline{Q}			P	Δ	ΔE
	Φ_z^+	Φ_{xy}^-	P_{xy}	В	M_{JT}			
Sm, Sr	0.96	1.19	0.56	0.10	0.04	14.9	0.46	20.1
Y, Sr	1.10	1.30	0.66	0.11	0.04	16.7	0.57	18.0
Tm, Sr	1.18	1.36	0.72	0.11	0.03	18.2	0.63	16.4
Sm, Ba	0.75	0.96	0.48	0.13	0.07	18.6	0.50	18.5
Y, Ba	0.95	1.08	0.59	0.14	0.07	21.2	0.60	13.9
Tm, Ba	1.05	1.16	0.65	0.16	0.07	23.4	0.66	10.5

 $(a^0a^0c^+)(a^-a^-c^0)$

Pnma-like (a⁻a⁻c⁺) ground state

$$E = \lambda \phi_{xy}^{-} \phi_{z}^{+} P_{xy}$$

Ferroelectric:
Amplification of P
through dissimilar Z*

System remains insulating

R, A			Q			P	Δ	ΔE
	Φ_z^+	Φ_{xy}^-	P_{xy}	В	M_{JT}			
Sm, Sr	0.96	1.19	0.56	0.10	0.04	14.9	0.46	20.1
Y, Sr	1.10	1.30	0.66	0.11	0.04	16.7	0.57	18.0
Tm, Sr	1.18	1.36	0.72	0.11	0.03	18.2	0.63	16.4
Sm, Ba	0.75	0.96	0.48	0.13	0.07	18.6	0.50	18.5
Y, Ba	0.95	1.08	0.59	0.14	0.07	21.2	0.60	13.9
Tm, Ba	1.05	1.16	0.65	0.16	0.07	23.4	0.66	10.5

System remains insulating

Charge ordered (d¹- d⁰) state associated with a Breathing distortion

Lifts the degeneracy between neighboring Ti sites

Electronic structure – charge+ orbital ordering

- Spin-polarized split-off d¹ band
- Not the ideal d¹-d⁰ occupancy
- d^1 site: orbital ordering $d_{xz} d_{yz}$
- d⁰ site : orbital mixing

Origin of orbital ordering

M_{JT} distortion allowed by symmetry (equivalent to the coupling in *Pnma*)

$$\mathscr{F} \propto P_{xy} \phi_z^+ \phi_{xy}^- + P_{xy} M_{JT} \phi_{xy}^-$$

R, A			\overline{Q}			P	Δ	ΔE
	Φ_z^+	Φ_{xy}^-	P_{xy}	B	M_{JT}			
Sm, Sr	0.96	1.19	0.56	0.10	0.04	14.9	0.46	20.1
Y, Sr	1.10	1.30	0.66	0.11	0.04	16.7	0.57	18.0
Tm, Sr	1.18	1.36	0.72	0.11	0.03	18.2	0.63	16.4
Sm, Ba	0.75	0.96	0.48	0.13	0.07	18.6	0.50	18.5
Y, Ba	0.95	1.08	0.59	0.14	0.07	21.2	0.60	13.9
Tm, Ba	1.05	1.16	0.65	0.16	0.07	23.4	0.66	10.5

Origin of orbital ordering

M_{JT} distortions produces the C-type orbital ordering

$$\mathscr{F} \propto P_{xy} \phi_z^+ \phi_{xy}^- + P_{xy} M_{JT} \phi_{xy}^-$$

FM due to intrasite Hund's

M_{JT} crucial for FM

If we artificially suppress AFD motions and hence M_{JT}

$$E \propto \lambda M_{JT} \phi_{xy}^- P_{xy}$$

- No orbital ordering: d_{xy} occupancy everywhere
- AFM GS

Highlight three P-JT couplings

Symmetry analysis supported by first principles calculations (PBEsol+U and/or B1WC)

1) Superlattices (d¹-d⁰) Titanates: ATiO₃-RTiO₃

$$E \propto \lambda M_{JT} \phi_{xy}^- P_{xy}$$

Bristowe, Varignon, Fontaine, Bousquet & Ghosez, Nat. Commun. **6**, 6677 (2015)

2) Superlattices (d²-d²) Vanadates: RVO₃-R'VO₃

$$E \propto \lambda M_{JT} P_z R_{JT}$$

Varignon, Bristowe, Bousquet & Ghosez, Sci Reports 5, 15364 (2015)

3) Epitaxial bulk (all d fillings) ferrites, titanates, manganites ...

$$E \propto \lambda M_{JT} P_{xy} A_{xy}$$

Varignon, Bristowe & Ghosez, Phys. Rev. Lett **116**, 057602 (2016)

RVO₃

Rare-earth vanadates *Pnma* at room T, and with decreasing T appearance of:

- C and G type orbital orderings
- G and C type AFM orderings
- Structural phase transition to P2₁/c for C-AFM

RVO₃-R'VO₃ Superlattices

Ground state:

	AFMG Pb2₁m	AFMC Pb
YVO/LaVO	0 meV	+7.76 meV
PrVO/YVO	0 meV	-0.87 meV
PrVO/LaVO	0 meV	-3.72 meV
	("Pnma")	("P2 ₁ /c")

P4/mmm ref

("Pm3m")

Symmetry mode analysis of ground states (Å)

		Ф _{ху} -	Ф _z +	Ф_г	R_{JT}	M_{JT}	P _z	P _{xy}
YVO/LaVO	Pb2 ₁ m AFMG	1.58	1.14			0.12		0.77
PrVO/YVO	Pb AFMC	1.61	1.16	0.01	0.10	0.04	0.01	0.81
PrVO/LaVO	Pb AFMC	1.36	0.94	0.01	0.10	0.01	0.00(4)	0.59

 $(a^{-}a^{-}c^{0})$ $(a^{0}a^{0}c^{+})$

"Pnma"-like tilt pattern

R'VO₃-RVO₃ couplings

(RVO₃)₁/(R'VO₃)₁ superlattice expansion

$$\Phi_{xy}^{-} \Phi_{z}^{+} \Phi_{z}^{-} \mathbf{P}_{xy} \mathbf{P}_{z} M_{jt} R_{jt}$$

$$\begin{bmatrix} 2 \\ \mathbf{\mathcal{F}} \\ \mathbf{\nabla} \end{bmatrix}$$

$$\mathbf{\nabla} \mathbf{P}_{xy} \Phi_{z}^{+} \Phi_{xy}^{-} + \mathbf{P}_{xy} M_{jt} \Phi_{xy}^{-}$$

$$+ \mathbf{P}_{z} \Phi_{z}^{+} \Phi_{z}^{-} + \mathbf{P}_{z} M_{jt} R_{jt}$$

$$\begin{bmatrix} 1 \end{bmatrix}$$

- *Pb2*₁*m* (*Pnma* in bulk)
- $Pb (P2_1/c \text{ in bulk})$

New trilinear coupling identified

Out-of-plane polarization coupled to Jahn-Teller!

- [1] Bousquet et al, Nature **452** (2008)
- [2] Fukushima et al, Phys. Chem. Chem. Phys 13 (2011); Rondinelli et al, Adv. Materials 24 (2012)

Magnetoelectric application?

Electric field driven magnetic transition?

YVO/LaVO: $\Delta E(AFMG-AFMC) = -7.76 \text{ meV}$

Ground-state: Pb2₁m ("Pnma") – AFMG phase:

Electric field driven magnetic transition

Finite electric field method (transition at 0.55 V / bilayer)

E-field directly controls R_{JT} distortion amplitude! In turn, this induces M transition

Highlight three P-JT couplings

Symmetry analysis supported by first principles calculations (PBEsol+U and/or B1WC)

1) Superlattices (d¹-d⁰) Titanates: ATiO₃-RTiO₃

$$E \propto \lambda M_{JT} \phi_{xy}^- P_{xy}$$

Bristowe, Varignon, Fontaine, Bousquet & Ghosez, Nat. Commun. **6**, 6677 (2015)

2) Superlattices (d²-d²) Vanadates: RVO₃-R'VO₃

$$E \propto \lambda M_{JT} P_z R_{JT}$$

Varignon, Bristowe, Bousquet & Ghosez, Sci Reports 5, 15364 (2015)

3) Epitaxial bulk (all d fillings) ferrites, titanates, manganites ...

$$E \propto \lambda M_{JT} P_{xy} A_{xy}$$

Varignon, Bristowe & Ghosez, Phys. Rev. Lett **116**, 057602 (2016)

Can couplings appear in general bulk ABO₃?

Strain engineering?

Can couplings appear in general bulk ABO₃?

Strain engineering?

Unusual Pmc21 phase (equivalently $Pb2_1m$) under tensile strain:

Ground state for BiFeO₃, PbTiO₃, BaMnO₃, EuTiO₃, CaTiO₃ (+?) at about 5% [1]

"Orbital ordering" observed for BiFeO₃ [1] (though no Jahn-Teller distortion mentioned)

Tri-linear coupling found [2]: (but not involving Jahn-Teller?)

[1] Yang et al., Phys. Rev. Lett. **109** 057602 (2012)

[2] Yang et al., Phys. Rev. Lett. **112** 057202 (2014)

Reinvestigate Pmc21 phase

Truly general? Test on a range of d-fillings

		d ⁰	d ³	d ⁵	d ⁴
		SrTiO ₃	BaMnO ₃	BiFeO ₃ *	YMnO ₃ *
Strain	(%)	+7.35 [61]	+6.1 [61]	+5.8 [61]	+4.0 [61]
Magnetism		NM	FM	AFMG	AFMG
$P(\Gamma_5^-)$	(Å)	0.615	0.421	0.346	0.753
3	$(\mu \text{C cm}^{-2})$	76	45	29	7 [62]
$M_{JT}(M_3^+)$	(Å)	0.232	0.190	0.644	0.737
$A (M_5^+)$	(Å)	0.558	0.217	1.072	0.940
$\phi_z^+ \ (M_2^+)$	$(\mathring{\mathrm{A}})$	0.640	0.059	1.668	1.733
Gap	(eV)	3.02	0.28	1.88	1.88

* Also develop Φ_{xy}

4th mode found: M_{JT} Very large!

Invariants analysis

$$E \propto \lambda A_{xy} \phi_z^+ P_{xy} + \lambda A_{xy} M_{JT} P_{xy}$$

E-field control of gap via JT

YMnO₃ largest effect since it is JT active

On-going/Future research in my group

Emergent phenomena at perovskite interfaces:

Andrew Warwick

Khang Le

Strain engineering structural phases

Jordan Cowell

Photoferroicity in layered hybrid perovskites

Emergent ferroic orders at domain walls

Methodology

"Effective potential" for lattice dynamics

Wojdel et al., JPCM 25 305401 (2013)

Energy changes around reference structure due to distortions:

$$E_{\text{eff}}(\{\boldsymbol{u}_i\}, \boldsymbol{\eta}) = E_{\text{p}}(\{\boldsymbol{u}_i\}) + E_{\text{s}}(\boldsymbol{\eta}) + E_{\text{sp}}(\{\boldsymbol{u}_i\}, \boldsymbol{\eta})$$

(1) Energy change from atomic displacements (p: phonons), with:

$$E_{\mathrm{p}}(\{\boldsymbol{u}_i\}) = E_{\mathrm{har}}(\{\boldsymbol{u}_i\}) + E_{\mathrm{anh}}(\{\boldsymbol{u}_i\})$$

(2) Energy change due to strain only

(3) Strain-phonon coupling term

Finite T: SrRuO₃

Finite E: PbTiO₃-SrTiO₃

Thanks for your attention

Philippe Ghosez

Eric Bousquet

Julien Varignon

Denis Fontaine

