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Introduction: Model problem
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Modelling and simulation of subsurface flow essential in
many applications, e.g. oil reservoir simulation

Darcy’s law for an incompressible fluid → elliptic partial
differential equations

−∇ · (k∇p) = f

Lack of data → uncertainty in model parameter k

Quantify uncertainty in model parameter through
stochastic modelling (→ k, p random fields)
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Introduction: Model problem

The end goal is usually to estimate the expected value of a quantity
of interest (QoI) φ(p) or φ(k, p).

I point values or local averages of the pressure p

I point values or local averages of the Darcy flow −k∇p
I outflow over parts of the boundary

I travel times of contaminant particles

We will work in the Bayesian framework, where we put a prior
distribution on k, and obtain a posterior distribution on k by
conditioning the prior on observed data.
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Introduction: Prior distribution

Typical simplified model for k is a log–normal random field,
k = exp[g], where g is a scalar, isotropic Gaussian field. E.g.

E[g(x)] = 0, E[g(x)g(y)] = σ2 exp[−|x− y|/λ].

Groundwater flow problems are typically characterised by:

I Low spatial regularity of the permeability k and the resulting pressure
field p

I High dimensionality of the stochastic space (possibly infinite
dimensional)

I Unboundedness of the log–normal distribution
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Introduction: Posterior distribution

In addition to presumed log–normal distribution, one usually has available
some data y ∈ Rm related to the outputs (e.g. pressure data).

Denote by µ0 the prior log–normal measure on k, and assume

y = O(p) + η,

where η is a realisation of the Gaussian random variable N (0, σ2ηIm).

Bayes’ Theorem:

dµy

dµ0
(k) =

1

Z
exp[−|y −O(p(k))|2

2σ2η
] =:

1

Z
exp[−Φ(p(k))]

Here,

Z =

∫
exp[−Φ(p(k))] = Eµ0 [exp[−Φ(p(k))]].
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Posterior Expectation as High Dimensional Integration
We are interested in computing Eµy [φ(p)]. Using Bayes’ Theorem, we can
write this as

Eµy [φ(p)] = Eµ0 [
1

Z
exp[−Φ(p)]φ(p)] =

Eµ0 [φ(p) exp[−Φ(p)]]

Eµ0 [exp[−Φ(p)]]
.

We have rewritten the posterior expectation as a ratio of two prior

expectations.

We can now approximate

Eµy [φ(p)] ≈ Q̂

Ẑ
,

where Q̂ is an estimator of Eµ0 [φ(p) exp[−Φ(p)]] =: Eµ0 [ψ(p)] := Q and

Ẑ is an estimator of Z.

Remark: If m is very large or σ2η is very small, the two prior expectations
will be difficult to evaluate.
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MC, QMC and MLMC [Niederreiter ’94], [Graham et al ’14]

The standard Monte Carlo (MC) estimator

Q̂MC
h,N =

1

N

N∑
i=1

ψ(p
(i)
h )

is an equal weighted average of N i.i.d samples ψ(p
(i)
h ), where ph

denotes a finite element discretisation of p with mesh width h.

The Quasi-Monte Carlo (QMC) estimator

Q̂QMC
h,N =

1

N

N∑
j=1

ψ(p
(j)
h )

is an equal weighted average of N deterministically chosen samples

ψ(p
(j)
h ), with ph as above.
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MC, QMC and MLMC [Giles, ’07], [Cliffe et al ’11]

The multilevel method works on a sequence of levels, s.t. h` = 1
2h`−1,

` = 0, 1, . . . , L. The finest mesh width is hL.

Linearity of expectation gives us

Eµ0 [ψ(phL)] = Eµ0 [ψ(ph0)] +
L∑
`=1

Eµ0
[
ψ(ph`)− ψ(ph`−1

)
]
.

The multilevel Monte Carlo (MLMC) estimator

Q̂ML
{h`,N`} :=

1

N0

N0∑
i=1

ψ(ph0
(i)) +

L∑
`=1

1

N`

N∑̀
i=1

ψ(ph`
(i))− ψ(ph`−1

(i)).

is a sum of L+ 1 independent MC estimators. The sequence {N`} is
decreasing, which means a significant portion of the computational effort
is shifted onto the coarse grids.
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Convergence and Complexity: Mean square error

We want to bound the mean square error (MSE)

e

(
Q̂

Ẑ

)2

= E

(Q
Z
− Q̂

Ẑ

)2
 .

In the log–normal case, it is not sufficient to bound the individual
mean square errors E[(Q− Q̂)2] and E[(Z − Ẑ)2].

We require a bound on E[(Q− Q̂)2] and E[(Z − Ẑ)p], for some
p > 2.

We split the error in two contributions: the discretisation error and
the sampling error.
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Convergence and Complexity: Discretisation error

Denote Qh := Eµ0 [ψ(ph)] and Zh := Eµ0 [exp[−Φ(ph)]]. Then

e

(
Q̂

Ẑ

)2

≤ 2

[
E

(Q̂
Ẑ
− Qh
Zh

)2


︸ ︷︷ ︸
Sampling error

+

(
Qh
Zh
− Q

Z

)2

︸ ︷︷ ︸
Discretisation error

]
.

Theorem (Scheichl, Stuart, T., in preparation)

Under a log-normal prior, k = exp[g], and suitable assumptions on O and
φ, we have ∣∣∣∣QhZh − Q

Z

∣∣∣∣ ≤ CFE h
s,

where the rate s is problem dependent.
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Convergence and Complexity: Sampling error

MC: Follows from results on moments of sample means of i.i.d.
random variables (X)

MLMC: Follows from results for MC, plus bounds on moments of
sum of independent estimators (independent of L) (X)

Lemma

Let {Yi}Li=0 be a sequence of independent, mean zero random variables.
Then for any p ∈ N

E

( L∑
i=0

Yi

)2p
 ≤ Cp( L∑

i=0

(
E
[
Y 2p
i

])1/p)p
,

where the constant Cp depends only on p.

QMC: Requires extension of current QMC theory to non–linear
functionals (X) and higher order moments of the worst-case error (7)
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Convergence and Complexity
Theorem (Scheichl, Stuart, T., in preparation)

Under a log-normal prior, k = exp[g], we have

e

(
Q̂MC
h,N

ẐMC
h,N

)2

≤ CMC

(
N−1 + h2s

)
,

e

(
Q̂ML
{h`,N`}

ẐML
{h`,N`}

)2

≤ CML

(
L∑
`=0

h2s`
N`

+ h2sL

)
,

where the convergence rate s is problem dependent.

If k = exp[g] + c, for
some c > 0, then we additionally have

e

(
Q̂QMC
h,N

ẐQMC
h,N

)2

≤ CQMC

(
N−2+δ + h2s

)
, for any δ > 0.

Same convergence rates as for the individual estimators Q̂ and Ẑ!
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Convergence and Complexity

The computational ε-cost is the number of FLOPS required to achieve a
MSE of O(ε2).

For the groundwater flow problem in d dimensions, we typically have
s = 1, and with an optimal linear solver, the computational ε-costs are
bounded by:

d MLMC QMC MC

1 O(ε−2) O(ε−2) O(ε−3)

2 O(ε−2) O(ε−3) O(ε−4)

3 O(ε−3) O(ε−4) O(ε−5)
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Numerical Results: Mean square error

2-dimensional flow cell model problem on (0, 1)2

k log-normal random field with exponential covariance function,
correlation length λ = 0.3, variance σ2 = 1

Observed data corresponds to local averages of the pressure p at 9
points, σ2η = 0.09

QoI is outflow over right boundary
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Numerical Results: Discretisation and sampling errors

Discretisation error

Reference slope h

Sampling error

MC and QMC
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Numerical Results: Sampling error

Sampling error MC

Reference slope N−1/2

Sampling error QMC

Reference slope N−1
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Conclusions

Posterior expectations can be written as the ratio of prior
expectations, and in this way approximated using QMC and MLMC
methods.

A convergence and complexity analysis of the resulting estimators
showed that the complexity of this approach is the same as
computing prior expectations.

Numerical investigations confirm the effectiveness of the QMC and
MLMC estimators for a typical model problem in subsurface flow.
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