Modelling crystal nucleation and growth
David Quigley
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Overview

« Why study nucleation?

« Strategies for atomistic nucleation

« How quantitative can we be and under what circumstances?
» Polytypes and stacking disorder in ice nuclei

* Nucleation via metastable phases - ice O
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Motivation

Science News

Cholesterol Crystals Linked To Cardiovascular Attacks

ScienceDaily (Apr. 2, 2009) — For the first time
ever, a Michigan State University researcher has
shown cholesterol crystals can disrupt plaque in a
patient’s cardiovascular system, causing a heart
attack or stroke.

[Vedre et al Atherosclerosis, March 2009, Abela et al American Journal of Cardiology, April 2009]
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Mollusc shells

Nudelman et al
Faraday Discuss.
136, 9-25 (2007)

Columns of calcite



https://www.youtube.com/watch?v=0JtBZGXd5zo

Classical nucleation theory (CNT)

4 ' Energy benefit (bulk) : ~ =========

Energy penalty (surface) : ========-
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Classical nucleation theory (CNT)

Nucleation rates connect directly to experiment

k=pmZD,exp|—AG"/kgT]

D,, Diffusivity of 71
L1 Density of liquid

7/, Zeldovich factor, related to curvature at barrier top

For spherical nuclei

Z = /1Aul ] (67kpT)
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Strategies for computer simulation

Use classical nucleation theory (CNT)

AG ksl
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Use biased sampling (MD/MC) method to measure AG (n)

Fit ¢y and A to resulting curve to calculate n* and 7

Simulate at n* and compute D,, from MSD of n
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Size of largest cluster

Requires specialist codes, but structure of critical
nucleus extracted from the MD/MC

Useful when barrier is high and dynamics are slow
and diffusive

Reinhardt, A. & Doye, J. P. K. J. Chem. Phys., 2012, 136, 054501
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Strategies for computer simulation
Use classical nucleation theory (CNT)

Run swarms of standard MD trajectories with seed nuclei of size ),
Compute mean drift velocity (q (n) /dt at each n

Identify n* as 7, with zero mean drift
Compute D,, from gradient of ((6n)*)at n*
Fit oy and Apto CNT AG (n)using

a M w0 DN PE

d{n) D, dG(n)
dt N ]{TBT dn

Requires assumption of particular nucleus
structure, but only off-the-shelf MD codes

Useful when barrier is high, and dynamics are slow

and diffusive
Knottetal. J. A. C. S., 2012, 134, 19544
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Strategies for computer simulation

Brute force molecular dynamics simulation

Grucl(t) = 1 —exp (—(t/7)%)
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Useful when barrier is low and dynamics are fast

B. Vorselaars and DQ, in preparation 2015
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Strategies for computer simulation

Use a transition path sampling method

1. Count the rate at which some small 7, is reached
2. Use specialist methods (FFS/TIS) to sample pathways crossing 7

3. Determine fraction of these pathways which reach solid phase

P [ [ [ [ [
60 "-~a :
40'_ W | Various attempts to implement as wrapper to
! LN . ] standard MD packages, however how best to
z 20 i . compute 72 is an issue
= ® Simulation results .\\ .
-- Fitted based on CNT X
Un A Butorin 1972 ™ N
< Kramer 1999 LY |
v Taborek 1985 9 . . . .
208 Stockel 2005 W Useful when barrier is high and dynamics are fast
' | enough to sample a large number of trajectories
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Li et al PCCP., 2011, 13, 19807
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Modelling water

4008 J. Phys. Chem. B 2009, 113, 40084016

Water Modeled As an Intermediate Element between Carbon and Silicon®

Valeria Molinero* and Emily B. Moore
Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112

Received: June 13, 2008; Revised Manuscript Received: September 4, 2008
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Nucleation simulations with mW

Homogeneous ice nucleation from supercooled water

Tianshu Li,*“ Davide Donadio,” Giovanna Russo® and Giulia Galli

Received Ist July 2011, Accepted 27th September 2011
DOI: 10.1039/clcp22167a

Homogeneous ice nucleation from supercooled water was studied in the temperature range of
220-240 K through combining the forward flux sampling method (Allen er al.. J. Chem. Phys.,
2006, 124, 024102) with molecular dynamics simulations (FFS/MD), based on a recently
developed coarse-grained water model (mW) (Molinero er al., J. Phys. Chem. B, 2009, 113, 4008).

Is it cubic? Ice crystallization from deeply supercooled water

Emily B. Moore and Valeria Molinero*

Received 20th June 2011, Accepted 29th September 2011
DOI: 10.1039/c1cp22022¢

Ice crystallized below 200 K has the diffraction pattern of a faulty cubic ice, and not of the most
stable hexagonal ice polymorph. The origin and structure of this faulty cubic ice, presumed to
form in the atmosphere, has long been a puzzle. Here we use large-scale molecular dynamics

Free energy landscapes for homogeneous nucleation of ice
for a monatomic water model
Aleks Reinhardt and Jonathan P. K. Doye?®

Physical and Theoretical Chemistry Laboratory, Deparmment of Chemistry, University of Oxford,
Oxford OX1 3QZ, United Kingdom

(Received 30 September 2011; accepted 26 December 2011; published online 1 February 2012)

We simulate the homogeneous nucleation of ice from supercooled liquid water at 220 K in the
isobaric-isothermal ensemble using the MW monatomic water potential. Monte Carlo simulations
using umbrella sampling are performed in order to determine the nucleation free energy barrier.
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Forward Flux Sampling from 220K to 240K

Critical nuclei contain ~ 50% cubic

Brute force molecular dynamics at 180K

Critical nuclei ~ 66% cubic

Umbrella sampling Monte Carlo at 220K

Critical nuclei “predominantly cubic”




Ice 1 has two polytypes

Hexagonal ice 1h Cubic ice 1c

Layers stack as ABABABA..... Layers stack as ABCABCABC...
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Growing ice from supercooled water

Temperature (Kelvin)

& B RSN A S

S | N S a e sd
& B £ 04 ¢ 4 BRI R 5 5o -0a Tn S -00 T N
§ i IR Vo oYY S
¥ & AT E-BESE % 20 20 20 20 2 S SR EN

\ } \ )

Y Y
Malkin et al. P.N.A.S. (2012) Hexagonal Ice

Ice homogeneously nucleated at low temperatures is stacking disordered.
NOT cubic OR hexagonal but a mixture.
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Stacking fault statistics in nuclel

« Stacking model

L—-1

H = Z AgNl(l — 6L,R)

1=2

Ag = free energy difference per
molecule between cubic
and hexagonal ice.

N, = molecules per layer.

- Eg.L=5
Sequence Energy Entropy
ABABA 0 0

ABCBC | Nidg | kiIn(2)
ABACA

ABCAC | 2N, 4g | KIn(2)
ABCBA

ABCAB | 3N,4g 0

(Removing sequences identical under
cyclic permutations of labels or reversal)
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AG and classical nucleation theory

0 50+
I « Expectation of % cubic molecules
—20 40
. —40; TR o 2 Points show CNT estimate of critical
1 3 nucleus size using:
—60} 20
-80} 10 ~9
Vsl — 33 mJ m
-100 0
: so+ AHfys = 6.01kImol ™
—-20¢ 40
g —40} {30 ;;’ o
L o Units:
-80| . 1K 10 J mol* = 0.0001 eV per H,0O
AG =50 J mol ~0.006 kgT per H,O (200K)
~10077650 200 300 400 500 0
N
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Lattice switching Monte Carlo
30 ' | ' | ' | ' |

DG/ Jmol™

« 200K, 64 molecule unit cells

P(m)

o 200-400 times faster than TIP4P

4t - cubic
32 - (diamond)
30 I 1 ] 1 ] 1 ] 1 ] 1 ] 1 ]
6
MC sweep /10 (lonsdalite)
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Finite size effects at 200K

N
o

N a,b,c/ A AG/ Jmol™* i /4
(cubic) (hexagonal) 30 /'/'
48| 13.2, 8.77, 12.4 | 7.16, 15.2, 13.2 14.37(5) » - ','
64| 8.77, 17.5, 12.4 | 14.3, 15.2, 8.77 5.8(2) 'B 20 /,/
96| 17.5, 13.2, 124 | 14.3, 15.2, 13.2 -0.46(2) = - >
16| 8.77, 8.77, 6.20| 7.16, 7.60, 8.77 -18.6(4) — 10| *
128 17.5, 17.5, 12.4| 14.3, 152, 17.5 -0.35(7) o e T
64| 12.4, 12.4, 124 14.3, 152, 8.77 37.2(1) 8 of R
216| 18.6, 18.6, 18.6,| 21.5, 22.8, 13.2 11.2(2) I Rl
48| 13.2, 877, 12.4| 143, 7.60, 13.2 -2.7(5) -10 Tt~e
384| 26.4, 17.5, 24.8| 28.7, 152, 26.3 2.0(3) 20 e , g
0 0.02 0.04 0.06

AG = 0.4 to 2.6 Jmol? in thermodynamic limit

c.f. published estimate 0 =# 30 J mol-!
(Moore and Molinero PCCP 2011)
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Temperature dependence

« N=384

— T=180K
— T=240K

T (K) AG |/ J molt

. 200 4.15(2)

P(m)

240 |
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Comparison of stacking energetics
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IEIE ARTICLES
materlals PUBLISHED ONLINE 18 MAY 2014 | DOI: 10.1038/ NMAT3977

New metastable form of ice and itsrole in the
homogeneous crystallization of water

John Russo™t, Havio Romano®2t and Hajime Tanaka™
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Is ice O real?

a (A) b (A) c(A) AE (meV)
TIP4P 6.04 6.04 10.94 7.21
mw 5.93 5.93 10.74 7.58
PBE 6.00 6.00 10.85 12.8
PBESOL+D3 5.70 5.71 10.30 15.3
PBE0O+D3 6.03 5.94 10.67 12.5
PBEO 6.00 5.83 10.55 10.1
DMC 17 £ 5
400
| Slater, B. & DQ

— —— Crystal nucleation: Zeroing in on ice
| 1 — | | -
] | Nat. Mater,, 2014, 13, 670-671

DQ; Alfe, D. & Slater, B.
J. Chem. Phys., 2014, 141, 161102
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Summary

* Quantitative (if inaccurate) calculation of nucleation rates from molecular simulation is
becoming possible for ‘real’ systems..

« .. provided (very) cheap models are available.
« Unlikely to be be predictive for some time, but trends should be accessible.
* Quantifying sources of error likely to be very challenging.

« Existing simulations do open up new guestions!
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