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Introduction

Density Functional Theory (DFT) has become the most widespread
technique to study materials in a quantum-mehanical framework

It can provide a favourable trade-off between accuracy and
computation

It is commonly implemented using approximations to make it more
manageable:

simplify physics, e. g., Born-Oppenheimer approximation
numerical approximations, e.g., pseudopotentials, PAW, ...

One approximation is necessary:

Exchange-Correlation Functional (unknown in general)
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Density Functional Theory

Approximates the ground state energy of a material system with
charge density n.

Minimisation of the energy functional EDFT [n] for a given system

EDFT [n] =

∫
n(r)v(r) dr + T0[n] + U[n] + E xc [n]

=Eb[n] + E xc [n] = Eb[n] + E x [n] + E c [n]

E xc [n] not known... Need to specify an approximation

1R. Jones et al. (1989), R. Jones (2015)
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Density Functional Theory: Kohn-Sham method

Kohn and Sham (1965) introduced a methodology to solve the
equations: most common formulation nowadays

Solve a self-consistent problem using independent electrons in an
effective potential:[

− 1
2∇

2 + veff (r)
]
ψi (r) = εiψi (r)

veff (r) = v(r) +
∫ n(r′)
|r−r′| dr′ + δE xc [n]

δn(r)

n(r) =
∑

i |ψi (r)|2
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DFT: Exchange-correlation energies

How to approximate E xc [n]?

We can write E xc [n] =
∫
nεxc (n; r) dr

nεxc (n; r): XC energy density

εxc (n; r) = εxc [n(r)]: LDA
εxc (n; r) = εxc [n(r),∇n(r)]: GGA
εxc (n; r) = εxc [n(r),∇n(r), τ(r)]: meta-GGA(
τ(r) = 2

∑′

i
1
2 |∇ψi (r)|2

)
We can add exact exchange: E x [n] = −1

2

∑
i

∫ ψ∗i (r)ψi (r
′)

|r−r′| drdr′

But still need to approximate the correlation energy...

1J. P. Perdew et al. (2001)
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DFT: Exchange-correlation energies

The double integral in the exact exchange makes it much more costly

We chose the meta-GGA framework to build our approximation,

E xc [n] =

∫
nεxc (n(r),∇n(r), τ(r)) dr

We will focus on exchange energy only,

E xc [n] = E c [n] +

∫
nεx (n(r),∇n(r), τ(r)) dr
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DFT: Exchange energy

We can transform the dependence on ∇n(r) and τ(r) into two
dimensionless parameters s and α:

s =
|∇n|

2(3π2)1/3n4/3
; α =

τ − τW

τUEG
,

τW = |∇n|2 /8n: Weizsäcker kinetic energy density
τUEG = 3

10 (3π2)2/3n5/3: UEG kinetic energy density

Also, we can group all non-local contributions in the exchange
enhancement factor F x (s, α),

E x [n] =

∫
nεx (n,∇n, τ) dr =

∫
nεx

UEG (n)F x (s, α) dr

Manuel Aldegunde (WCPM) WCPM Seminar Series October 27, 2015 9 / 51



Linear model for the enhancement factor

To specify a model for the exchange energy we just need to specify a
model for the enhancement factor

We specify a linear model

F x (s, α) =
∑

i

ξx
i φi (s, α) = (ξx )Tφ(s, α)

φi (s, α): basis functions
ξx

i : linear model coefficients
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Linear model for the exchange energy

Given this model, the exchange energy becomes a linear model

E x [n; ξx ] =
M∑

i=1

ξx
i

∫
nεx

UEG (n)φi (s, α) dr

=
M−1∑
i=0

ξx
i E

x [n; êi ] = (ξx )T Ex [n; ê]

E x [n; êi ] =
∫
nεx

UEG (n)φi (s, α) dr is the “basis exchange energy”,
which is obtained if we use ξx = êi , i.e., only basis φi with ξi = 1,
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Linear model for the exchange energy

How do we choose the basis functions φi (s, α)?

Follow selection in Wellendorff et al.
Physically based: inspired in previous non-empirical functionals
(PBEsol, MS)
Complete basis: 2D Legendre Polynomials

2D Legendre polynomials: argument in [-1, 1]

Rational transformations from s, α to the interval [-1, 1]

PBEsol → ts(s) =
2s2

q + s2
− 1

MS → tα(α) =
(1− α2)3

1 + α3 + α6

1J. Wellendorff et al. (2014)
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Linear model for the exchange energy

The final exchange enhancement model is

F x (s, α) =
Ms∑
i

Mα∑
j

ξx
ijPi (ts(s))Pj (tα(α))

The final exchange energy model is therefore

E x [n; ξx ] =
Ms∑
i

Mα∑
j

ξx
ij

∫
nεx

UEG (n)Pi (ts(s))Pj (tα(α)) dr

How to obtain the coefficients?
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Bayesian linear regression

We want to account for uncertainty in the model

Classical least squares fitting gives a point estimate, not appropriate
A Bayesian model will give us probability distributions for the
coefficients

Uncertainty from a limited data set for the regression
Uncertainty from an inadequate model

p(ξ, β | t) ∝ L(t | x, ξ,β)p(ξ, β)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

1

0

1

2

Example: Bayesian lin-

ear regression and ordi-

nary least squares fit us-

ing a 10th order polyno-

mial

1C. Bishop (2006)
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Example: Bayesian linear regression and ordinary least squares fit
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Some definitions

t = (t1, t2, . . . , tN)T : given data (experimental, simulation, mix)

n = (n1, n2, . . . , nN)T : input points (densities for DFT)

L(t | n, model): likelihood function

N (x | µ, v): normal distribution on x with mean µ and variance v

G(x | α, β): gamma distribution on x with parameters α and β

St(x | µ, λ, ν): Student t-distribution on x with parameters µ, λ and
ν
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Assumptions

The observed data t follow on average our model and have a noise ε
(includes model inaccuracy),

ti = (ξx )T Ex [n; ê] + εi

The noise is assumed Gaussian with precision β = 1/v = 1/σ2 and
uncorrelated, so that

ti ∼ N (t | (ξx )T Ex [n; ê], β−1)

The likelihood function is, therefore,

L(t | n, ξ, β) =
N∏

i=1

N (ti | ξT Ex [ni ; ê], β−1)

We choose conjugate priors for ξ and β
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Priors

Incorporate prior beliefs into the model

Depend on extra parameters: hyperparameters

Conjugate priors keep the posterior propability distribution in the
same family as the prior probability distribution

Prior on ξ: p(ξ | β,m0,S0) = N (ξ | m0, β
−1S0)

Prior on β: p(β | a0, b0) = G(β | a0, b0)

Joint prior: p(ξ, β) = p(ξ | β)p(β) = N (ξ | m0, β
−1S0)G(β | a0, b0)
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Posterior

Probability of a set of parameters given the data

Proportional to the prior distribution of parameters

Proportional to the likelihood of the data

p(ξ, β | t) =
L(t | x, ξ,β)p(ξ, β)∫
L(t | x, ξ,β)p(ξ, β) dξ dβ

=N (ξ | mN , β
−1SN)G(β | aN , bN)
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Posterior

The parameters of the posterior depend on those of the prior and the
data,

S−1N = S−10 + ΦT Φ; mN = SN

[
S−10 m0 + ΦT t

]
aN = a0 + N/2

bN = b0 +
1

2

(
mT

0 S−10 m0 −mT
N S−1N mN + tT t

)
Φ is the design matrix

Φ =

E x [n∗1; ê0] · · · E x [n∗1; êM−1]
...

. . .
...

E x [n∗N ; ê0] · · · E x [n∗N ; êM−1]

 =

Ex [n∗1; ê]T

...
Ex [n∗N ; ê]T


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
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energies”
Columns: For a given basis function, its value for every data point
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Predictive distribution

Once we have our probability distributions for model parameters,
what can we say about new data points?

Prediction averaged over all possible parameters

Predictions given with probability distributions

p(t̃ | ñ, t) =

∫
p(t̃ | ñ, ξ, β)p(ξ, β | t) dξ dβ

=

∫
N (t̃ | ξT Ex [ñ; ê], β−1)N (ξ | mN , β

−1SN )G(β | aN , bN ) dξ dβ

= St(t̃ | µ, λ, ν).
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Predictive distribution

The Student t-distribution St(t̃ | µ, λ, ν) has parameters

µ = Ex [ñ; ê]T mN

λ =
aN

bN

(
1 + Ex [ñ; ê]T SNEx [ñ; ê]

)−1
ν = 2aN .

Its mean, variance and mode are

E[t̃] = µ; ν > 1

cov[t̃] =
ν

ν − 2
λ−1 =

1 + Ex [ñ; ê]T SNEx [ñ; ê]

mode[β]
; ν > 2

mode[t̃] = µ
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Predictive distribution

Its mean, variance and mode are

E[t̃] = µ; ν > 1

cov[t̃] =
ν

ν − 2
λ−1 =

1 + Ex [ñ; ê]T SNEx [ñ; ê]

mode[β]
; ν > 2

mode[t̃] = µ

The variance of the prediction depends on the data point
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Predictive distribution

If we make several predictions, they are correlated,

p(t̃ | ñ, t) =

∫
p(t̃ | ñ, ξ, β)p(ξ, β | t) dξ dβ = St(t̃ | µ,Λ, ν)

The mean and covariance are

E[̃t] = Φ̃mN ; cov[t̃] =
I + Φ̃SNΦ̃

T

mode[β]

Φ̃ is analogous to the design matrix where the rows are the points of
the predictions
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Hyperparameters: Evidence approximation

One last point to be solved

How do we obtain the hyperparameters?

We chose the evidence approximation: maximise the log of the
marginal likelihood (evidence function)

log p(t | m0,S0, a0, b0) =

=log

∫
p(t | ξ, β,m0,S0, a0, b0)p(ξ, β | m0,S0, a0, b0)dξdβ

=E(m0,S0, a0, b0) =
1

2
log
|SN |
|S0|

− N

2
log(2π) + log

Γ(aN)

Γ(a0)
+

+ a0 log(b0)− aN log(bN)
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Hyperparameters: Evidence approximation
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Hyperparameters: Evidence approximation

For a model with M parameters, m0, S−10 , a0 and b0 have ∼ M2

parameters

Using m0 = 0 and S−10 = αI, we only have three hyperparameters
and we can easily find a maximum of the evidence function (Bayesian
ridge regression)

Using S−10 = diag(α0, . . . , αM−1), we have M + 2 hyperparameters
(Relevance Vector Machine)

Induces sparsity (some of the αi go to infinity)
Only keeps relevant terms: automatic model selection

1M. E. Tipping (2001), C. Bishop (2006)
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Hyperparameters: Evidence approximation

Algorithm 1 Hyperparameter optimisation for the RVM.

1: S−10 = diag(α0, . . . , αM−1), m0 = 0.
2: Initialize αi from random numbers r ∈ (0, 1010).
3: repeat
4: repeat
5: for all i = 0, 1, . . . ,M − 1 do
6: Update αi as αnew

i = 1
[SN ]ii+

aN
bN

[mN ]2i
.

7: Update SN , mN .
8: end for
9: until ∆αi < 10−5% or αi > 1010

10: Update a0, b0 with a Newton iteration.
11: Update SN , mN .
12: until ∆α,∆a0,∆b0 < 10−4%
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Relevance Vector Machine: Example

Generate data from f (x) = sin(2πx) + ε

ε ∼ N (ε | 0, 0.12)

Use 10 sine basis functions, sin(kπx); k = 0, 1, ..., 9

Fitted mN = [0, 0.003, 1.006,−0.016, 0, 0, 0, 0, 0, 0],
mode[σN ] = 0.097

Only three coefficients remain
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Training data

The exchange energy cannot be measured

Absolute energies cannot be measured

How to train the model?

Easy to get from DFT simulations
Experimentally available

Atomisation/cohesive energies

Given a system M = AnA
BnB

. . .,

Eat =
1

N

(∑
I

nIEI − EM

)
; I = A,B, . . .
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Atomisation energies

Decomposing energies into components...

Eat =
1

N

(∑
I

nI (Eb
I + E x

I + E c
I )− (Eb

M + E x
M + E c

M)

)
= Eb

at + E x
at + E c

at ,

Using our exchange energy model...

The design matrix becomes...
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Atomisation energies

Decomposing energies into components...

Using our exchange energy model...

E x
at = ξT 1

N

[∑
I

nI E
x [ni ; ê]− Ex [nM ; ê]

]

The design matrix becomes...
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Atomisation energies

Decomposing energies into components...

Using our exchange energy model...

The design matrix becomes...

Φ =


1
N (
∑

I∈s1
nI E

x [ni ; ê]− Ex [ns1 ; ê])T

1
N (
∑

I∈s2
nI E

x [ni ; ê]− Ex [ns2 ; ê])T

...
1
N (
∑

I∈sN
nI E

x [ni ; ê]− Ex [nsN
; ê])T



Manuel Aldegunde (WCPM) WCPM Seminar Series October 27, 2015 31 / 51



Atomisation energies

What is my data vector t?

No access to exchange energy directly

But Eb
at and E c

at do not depend on our model...

t =


E exp

at (s1)− Eb
at [n1]− E c

at [n1]
E exp

at (s2)− Eb
at [n2]− E c

at [n2]
...

E exp
at (sN)− Eb

at [nN ]− E c
at [nN ]


We have all we need for the regression
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Indirect measurements

What if we want to add other data?

Linear on the energy?

Not linear?

Example: equilibrium volume (V0), bulk modulus and pressure
derivative (B0, B1) → E (V ) through equation of state

From experimental V0, B0, B1 we can also obtain cohesive energies of
the strained material

1A. B. Alchagirov et al. (2001)
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What if we want to add other data?
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Non-analytically tractable posterior otherwise
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Indirect measurements

Example: equilibrium volume (V0), bulk modulus and pressure
derivative (B0, B1) → E (V ) through equation of state

E (V ) = a + b
V

1/3
0

V 1/3
+ c

V
2/3
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V 2/3
+ d

V0

V
= γTφ(V )
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Example: equilibrium volume (V0), bulk modulus and pressure
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E (V ) = a + b
V

1/3
0

V 1/3
+ c

V
2/3
0

V 2/3
+ d

V0

V
= γTφ(V )

where 
1 1 1 1
3 2 1 0

18 10 4 0
108 50 16 0

γ =


−E0

0
9V0B0

27V0B0B1


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Data sets

Elementary solids

20 cubic solids: 13 training + 7 testing
Extended using bulk properties (4 strains each)

Molecules

G2/97 data set (small molecules): 120 training + 28 testing
Larger molecules from G3/99 only for testing
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Model

Linear model with 10× 10 terms

F x (s, α) =
9∑

i=0

9∑
j=0

ξx
ijPi (ts(s))Pj (tα(α))

DFT simulations run

Using PBE functional
Cut-off energy of 800 eV
Monkhorst-Pack mesh (16× 16× 16)
Relaxing with a maximum force criterion of 0.05 eV/Å
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Results

RVM kept 14 terms of the expansion
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Results

Enhancement factor with 1 and 2 σ intervals
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Atomisation energies

Prediction of atomisation energies in the 7 test solids

K Ca V Cu C Al Fe-FM
0

1

2

3

4
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7

8

9
C

o
h
e
si

v
e
 E

n
e
rg

y
 [

e
V

]

Error in predictions for solids and molecules

XC functional Error G2/97-test G2/97 EL20-test EL20

This work
MAE 0.116 0.103 0.243 0.0975
MARE 3.27 1.46 8.56 5.62

PBE
MAE 0.703 0.238
MARE 5.09 6.88
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Atomisation energies

Prediction of atomisation energies in the 7 test solids

Error in predictions for solids and molecules

XC functional Error G2/97-test G2/97 EL20-test EL20

This work
MAE 0.116 0.103 0.243 0.0975
MARE 3.27 1.46 8.56 5.62

PBE
MAE 0.703 0.238
MARE 5.09 6.88

Table: Mean absolute error (in eV) and mean absolute relative error (in %)
of the predictions of atomisation energies using the average model for the
training sets containing molecules (G2/97) and solids (EL20).
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Atomisation energies

Prediction of atomisation energies in the 7 test solids

Error in predictions for solids and molecules

XC functional Error G2/97-test G2/97 EL20-test EL20

This work
MAE 0.116 0.103 0.243 0.0975
MARE 3.27 1.46 8.56 5.62

PBE
MAE 0.703 0.238
MARE 5.09 6.88

G2/97 MAE better than TPSS (0.28 eV), BEEF-vdW (0.16 eV),
B3LYP (0.14 eV) or PBE0 (0.21 eV)
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Correlation functional

We assumed a fixed correlation energy functional

What’s the impact of our choice?

Errors:

C functional Error G2/97-test G2/97 EL20-test EL20

PBE
MAE 0.116 0.103 0.243 0.0975
MARE 3.27 1.46 8.56 5.62

PBEsol
MAE 0.116 0.108 0.204 0.172
MARE 2.91 1.55 6.12 4.98

vPBE
MAE 0.110 0.107 0.226 0.184
MARE 2.72 1.41 6.45 5.17

TPSS
MAE 0.108 0.104 0.227 0.190
MARE 2.68 1.42 6.85 5.53
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Correlation functional

We assumed a fixed correlation energy functional
What’s the impact of our choice?
Coefficients with PBEsol (left) and vPBE (right) correlations:
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Test set

SL20 test set including

13 elemental solids
I-VII, II-VI, III-V and IV-IV compounds
7 of them in the training set (elemental solids)
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Uncertainty propagation from DFT

Bulk properties are not obtained directly from DFT simulations

How to propagate the uncertainty?

We use a nested Monte Carlo approach

Sample model coefficients from the posterior distribution
Fit the EOS to the values from this X energy (Bayesian fit)
Sample coefficients from the fitting to calculate V0, B0, B1
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Uncertainty propagation from DFT

Algorithm 2 Calculation of uncertainty for V0 and B0.

1: Input: system s with unit cell (x1, x2, x3).
2: Input: Nmax

1 , Nmax
2 , the maximum iterations.

3: for 5 strains 0.95 ≤ σi ≤ 1.05 do
4: Strain unit cell by σi : xα → σi xα, α = 1, 2, 3.
5: Self-consistent simulation of strained system.
6: Keep the self-consistent electron density n∗i = n(σi ).
7: end for
8: N1 = 0
9: repeat

10: Sample ξN1
, βN1

.
11: Non self-consistent simulation with ξN1

, βN1
and n∗i .

12: N2 = 0
13: repeat
14: Sample γN2

.
15: Calculate V0, B0.
16: until N2 = Nmax

2
17: N1 = N1 + 1
18: until N1 = Nmax

1
19: Collect statistics on calculated V0, B0.
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Results

Equilibrium lattice constants for SL20 materials

Li Na Ca Sr Ba Al Cu Rh Pd Ag C Si Ge SiC GaAs LiF LiCl NaF NaCl MgO
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Results

Equilibrium bulk moduli for SL20 materials

Li Na Ca Sr Ba Al Cu Rh Pd Ag C Si Ge SiC GaAs LiF LiCl NaF NaCl MgO
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Results

What if the DFT results have another error sources?

For example, assume a numerical error with Gaussian distribution and
standard deviation 10 mV
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Results

Equilibrium lattice constants for SL20 materials
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Summary

Bayesian framework to obtain an exchange energy functional

Use of a linear model
Coefficients of the model are random variables
Basis functions are fixed

Use of a relevance vector machine to find hyperparameters

Obtained exchange energy from a simulation has an uncertainty

This uncertainty can be propagated to other derived quantities
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Summary

Bayesian framework to obtain an exchange energy functional

Use of a relevance vector machine to find hyperparameters

Automatic selection of relevant basis functions (model selection)

Obtained exchange energy from a simulation has an uncertainty

This uncertainty can be propagated to other derived quantities
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Summary

Bayesian framework to obtain an exchange energy functional

Use of a relevance vector machine to find hyperparameters

Obtained exchange energy from a simulation has an uncertainty

Limited data in the training (can be reduced to zero asymptotically
with more data)
Limited model space, meta-GGA (cannot be reduced to zero
asymptotically with more expansion terms)

This uncertainty can be propagated to other derived quantities
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Summary

Bayesian framework to obtain an exchange energy functional

Use of a relevance vector machine to find hyperparameters

Obtained exchange energy from a simulation has an uncertainty

This uncertainty can be propagated to other derived quantities

Bulk properties (shown)
Band diagrams, phonon properties, transport coefficients, enrgy
barriers, etc.
Further models based on DFT results (e.g., cluster expansion for alloy
modelling)
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