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Abstract

This paper studies the dominance-solvability (by iterated deletion of weakly dominated stra
of plurality rule voting games. For any number of alternatives and at least four voters, w
sufficient conditions for the game to be dominance-solvable (DS) andnot to be DS. These condition
can be stated in terms of only one aspect of the game, the largest proportion of voters wh
on which alternative is worst in a sequence of subsets of the original set of alternatives. Wh
number of voters is large, “almost all” games can be classified as either DS or not DS. Wh
electorate is sufficiently replicated, then if the game is DS, a Condorcet winner always exis
the outcome is the Condorcet winner.
 2003 Elsevier Inc. All rights reserved.

JEL classification: C72; D72; D71
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1. Introduction

Plurality voting is the dominant electoral rule in many democracies. Neverthe
its properties are still not well-understood. One major problem is that with plur
voting, there are often incentives for voters to vote strategically1 (i.e., not for their

* Corresponding author.
E-mail addresses: a.dhillon@warwick.ac.uk (A. Dhillon), b.lockwood@warwick.ac.uk (B. Lockwood).

1 In practice, strategic (non-sincere) voting seems to be quite common where plurality rule voting is
For example, in parliamentary elections in the UK and Germany evidence suggests that candidates w
perceived to be running third were deserted by their supporters (Cox, 1997, Chapter 4). Moreover there
experimental evidence that voters do vote strategically in three candidate elections (Forsythe et al., 1996
0899-8256/$ – see front matter 2003 Elsevier Inc. All rights reserved.
doi:10.1016/S0899-8256(03)00050-2
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most preferred alternative). But then, with strategic voting, multiple voting equil
are pervasive. For example, consider the “canonical” plurality voting game where
vote simultaneously, preferences are common knowledge, and ties are broken fa2 It
is obvious that with at least three voters,any candidate may win in a Nash equilibrium
if all other voters vote for this candidate, then it is a (weak) best response for any
to also vote for that candidate, as she cannot affect the outcome, however she
The multiple equilibrium problem also arises3 when agents have incomplete informati
about some aspect of the structure of the game (Myatt, 1999; Myerson and Weber
Myerson, 2002).

The reason this problem arises is that Nash equilibrium allowsany possible beliefs
on the part of voters, as long as they are consistent. For example, suppose th
common knowledge that a candidate,z is worst for all voters. Nevertheless, there is a N
equilibrium where every voter votes forz because he believes that all other voters will v
for z. The obvious response to this problem is to look for equilibrium refinements,
as ruling out weakly dominated voting strategies (Besley and Coate, 1997). Howe
turns out that standard refinements have little bite in this canonical plurality rule g
For example, De Sinopoli (2000) shows that with more than four voters, if an altern
is not a strict Condorcet loser, there is a perfect Nash equilibrium where that alterna
an outcome with probability at least 0.5. Moreover, there is by definition only one
Condorcet loser in any set of alternatives. It follows from this result that imposing
weaker refinement of weakly undominated Nash equilibrium (as Besley and Coate d
rule out at most one alternative as a Nash outcome.

We take a different approach to this problem of multiplicity of Nash equilibria
this paper. First, we argue below that eliminating weakly dominated strategies is
reasonable in the plurality rule game; it simply amounts to no-one voting for
worst-ranked alternative.4 But, there is nothing to stop voters going a step further
recalculating which strategies are weakly dominated for them given thatother voters will
not use weakly dominated strategies. In other words, if weiteratively eliminate weakly
dominated strategies, it is possible that we could substantially narrow down the
possible outcomes in the plurality voting game. Indeed, it is possible that so many stra
could be eliminated via iterated deletion that the remaining strategies can generate o
outcome: that is, the plurality voting game could bedominance-solvable.

Our paper investigates the conditions under which the plurality rule voting gam
dominance solvable. The main contribution is to derive conditions that are sufficie
the game to be dominance-solvable andnot to be dominance-solvable. Moreover, as

2 If there areK alternatives with the most number of votes, then each of these alternatives is selected as
with probability 1/K (Myerson, 2002).

3 For example, Myerson (2002) studies “scoring” voting rules (of which plurality voting is a special ca
an environment where there are three alternatives, each voter is equally likely to have three possible pr
orderings over these alternatives (in the base case), and the number of voters is a Poisson random var
equilibrium is defined for the limiting case as the expected number of voters becomes large, and allow
to make small mistakes. Even in this setting, plurality rule generates multiple equilibria; there is an equi
where any one of the three candidates can win with probability one.

4 Lemma 1 below shows that with more than three voters, the only voting strategy that is weakly dom
is the one where the voter votes for her worst alternative.
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number of voters,n, becomes large, these conditions are asymptotically necessar
sufficient for dominance-solvability. The conditions are most easily stated in the ca
three alternatives,5 when they involve just one summary statistic of the game, namel
largest fraction of players that agree on which alternative is worst,q . When this fraction is
greater than 2/3, the game isalways dominance-solvable; when this fraction is less than
equal to 2/3− πn, for someπn > 0, the game isnever dominance-solvable. Moreover,πn

goes to zero asymptotically withn, i.e., the number of voters.
The intuition for the sufficiency condition is straightforward. First, voting for on

worst alternative is weakly dominated, so if a sufficient fraction of the voters agre
which is worst, all voters can deduce that this alternative cannot win if voters do not vo
weakly dominated alternatives. But if this alternative cannot win, a vote for it is “was
i.e., weakly dominatedwherever it appears in a voter’s preference ordering, so the g
is reduced to one of just two alternatives by iterated deletion, and two-alternative v
games are always dominance-solvable.

The intuition behind the sufficient condition for the gamenot to be dominance-solvab
is more subtle. When sufficient disagreement on the worst alternative is allowed, the
of weakly undominated strategy profiles is rich enough to ensure that for any voi,
voting for her middle-ranked (or best) alternative is a unique best response (i.e., not w
dominated) tosome weakly undominated profile of voting strategies of the other play
This means that iterated deletion cannot proceed beyond deleting the strategy of vo
one’s worst alternative.

Moreover, if we increase the number of voters without changing the distributio
preferences across alternatives (replicating the electorate), for a large enough ele
we can find necessaryand sufficient conditions for the game to be dominance-solva
Finally, when the sufficient conditions for dominance-solvability hold, we show tha
only strategies that survive iterated deletion involveevery voter voting for one of two
alternatives (a strong form of Duverger’s Law, Cox (1997)), and moreover, every
votes “sincerely” over this pair, i.e., for her more-preferred alternative of the two.

A key question is the nature of the winning alternative(s) when the game is domin
solvable. Here, we show the following. When the number of voters is at least
dominance-solvability implies that a Condorcet Winner (CW) exists, and if the suffi
conditions for dominance-solvability of the game also hold, then the solution is a
Indeed, when the electorate is sufficiently replicated, a sharper result is possib
outcome isalways a CW whenever the game is dominance-solvable. However, with
voters, even if the game is dominance-solvable, and a CW exists, the outcome may
the CW!

5 In the general case withn voters andK alternatives, letqK be the largest fraction of players who agree
which alternative (sayzK) is worst. WhenzK is deleted from the feasible set, letqK−1 be the largest fraction
of players who agree on which remaining alternative (sayzK−1) is worst, and so on. This procedure genera
a sequenceqK,qK−1, . . . , q3. Our sufficient condition for dominance-solvability is that each element in
sequence be sufficiently large:qk > (k − 1)/k. Our sufficient condition for non-dominance-solvability is th
there is an 3� l � K , such that for allk > l, qk is sufficiently large, butql fails to be sufficiently large (i.e.
ql � ((l − 1)/l) − πl

n, for someπl
n > 0). Moreover, asn → ∞, πl

n → 0.
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This paper builds on an established literature. It has long been recognized that i
deletion of weakly dominated strategies may be a powerful tool for predicting outc
in voting games. In a seminal contribution, Farquharson (1969) called this proc
“sophisticated voting,” and he called a voting game “determinate” if sophisticated v
led to a unique outcome. However, this procedure has recently received perha
attention than it merits. This may be for two reasons. First, generally, theorder of deletion
of weakly dominated strategies matters. We deal with this by assuming that voter
strict preferences over alternatives; this is sufficient to ensure that order of deletio
not affect the outcomes (Marx and Swinkels, 1997). Second, until recently, game theo
lacked a “common knowledge” justification6 as to why players would not play iterative
weakly dominated strategies: the recent work of Rajan (1998) fills that gap.

More recent related literature7 is as follows. The only work of which we are aware
refinements of Nash equilibrium with plurality voting is De Sinopoli (2000), as descr
above. De Sinopoli and Turrini (2002) showed that iterated deletion of weakly domi
strategies may be applied to eliminate some of the Nash equilibria in the citizen-can
model of Besley and Coate (1997). They show that in a four candidate example
iterated weak dominance eliminates all the Nash equilibria except for one. Dhillo
Lockwood (2002), building on the results of their paper, show that this possibili
restricted to the case of four (or more) candidate equilibria: for any political equilib
with up to three candidates, one can find another equilibrium with an identical out
where strategies at the voting stage are iteratively weakly undominated.

The layout of the paper is as follows. The model is outlined in Section 2. Our analy
the three alternative case is in Section 3, and the more general case in Section 4. S
discusses some extensions and concludes.

2. The model

2.1. Preliminaries

There is a setN = {1, . . . , n} of voters withn � 4 and a setX = {x1, . . . , xK} of
alternatives. The voting game is as follows. Each voter has one vote, which she ca
for any one of theK alternatives (i.e., no abstentions are allowed). The alternative wit
largest number of votes wins (plurality rule). If two or more alternatives have the gre
number of votes, the tie-breaking rule is that every alternative in this set is selecte
equal probability. All voters vote simultaneously.

6 It is well known that if the structure of the game and rationality of the players are common knowledge
players must play only those strategies that survive iterated deletion ofstrictly dominated strategies.

7 A more weakly related literature is as follows. Borgers (1992), Borgers and Janssen (1995) have re
the dominance-solvability of Bertrand and Cournot games. For example, Borgers (1992) shows that in
of Bertrand price competition, under some conditions, the set of prices that survive iterated deletion is
the Walrasian price, and Borgers and Janssen (1995) have similar results for the Cournot case. More
Mariotti (2000) has provided a class of games (called maximum games) which are dominance solvable.
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Let L denote the set of lotteries (i.e., probability distributions) overX. By the tie-
breaking rule just stated, the set of possible outcomes with plurality voting is the sub
homogeneous lotteriesLH ⊂ L. Here,L ∈ LH iff for someY ⊆ X, every alternative inY
has probability 1/#Y, and every alternative not inY has probability zero. Voteri ∈ N has
a preference ordering overL, denoted�i , which is assumed to satisfy the von Neuman
Morgenstern axioms, implying a utility representation with utility functionui :X → �.

This game can be written more formally in strategic form as follows. LetVi = X be the
strategy set ofi, with generic elementvi . If vi = xk , voteri votes for alternativexk. Let v
be the strategy profilev = (v1, . . . , vn). Let ωk(v) be the number of votes for alternati
xk if the strategy profile isv. Also, let thewinset W(v) ⊂ X be defined as

W(v) = {
xk ∈ X

∣∣ ωk(v) � ωl(v), xl ∈ X
}
.

This is the set of alternatives that receive the most number of votes. Every alterna
W(v) wins with equal probability.

So, given the assumptions on preferences, we can write the expected utility ofi as a
function of the strategy profilev as

Eui(v) = 1

#W(v)

∑
xk∈W(v)

ui(xk).

This completes the description of the plurality rule game in strategic form. We d
the game formally byΓ = (ui,Vi)i∈N where of courseVi = X, so sometimes we writ
Γ = (ui,X)i∈N . Finally, we will assume:8

(A1) Every voter has strict preferences overLH , i.e., for allL,L′ ∈ LH , eitherL �i L
′

or L′ �i L.

An immediate implication of (A1) is that no player is indifferent between any
different winsets, i.e., for all strategy profilesv, v′ if W(v) �= W(v′), then Eui(v) �=
Eui(v

′), i ∈ N. In Section 2.2 below, we show that this fact implies that the orde
deletion of weakly dominated strategies does not matter. Note that (A1) holds gene
as it only rules out a finite set of equalities.

The following notation will be useful. Letω(v−i ) be a vector recording the total vot
for each alternative inX given a strategy profilev−i , i.e., when individuali is not included.
Also, let Ω−i = {ω(v−i ) | v−i ∈ V−i}. We suppress the dependence ofω on v−i except
when needed by writingω(v−i ) = ω−i , and refer toω−i as avote distribution. Clearly i ’s
best response tov−i depends only on the information inω−i .

Finally, define an alternativex ∈ X to be a Condorcet winner (CW) if #{i ∈ N |
x �i y} � #{i ∈ N | y �i x}, all y �= x, and say thatx is astrict CW if all the inequalities
hold strictly, andweak otherwise. As we have assumed strict preferences, if the numb
voters,n, is odd, the CW is strict, i.e., unique, but ifn is even, this is not necessarily th
case (Moulin, 1983, p. 29). In the former case, denote the unique CW byxcw, and in the
latter case, denote the set of CWs byXcw.

8 This form of (A1) is due to the neutral tie-breaking rule, which generates lotteries overX. If a deterministic
tie-breaking rule were used, then it would be sufficient to assume that preferences overX were strict.
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Two comments are in order at this point. First, we do not allow voters to abstain
is without loss of generality because abstention is always a weakly dominated strate
any voter (Brams, 1994), and so will be deleted at the first round of the iterated de
process. Second, we have assumed at least four voters: the case of three voters is s
special, and is covered in detail in Dhillon and Lockwood (1999).

2.2. Iterated deletion of weakly dominated strategies

By our assumption (A1), the transference of decision-maker indifference (
condition of Marx and Swinkels (1997) is satisfied in the gameΓ = (ui,X)i∈N . TDI
says that if a playeri is indifferent between two strategy profilesv, v′ differing in his own
strategy only, then all other playersj �= i are also indifferent betweenv, v′. This is satisfied
in our game because by (A1),i can be indifferent betweenv, v′ only if W(v) = W(v′), in
which case other players are indifferent also. Then, letV ∞, V̂ ∞ be two sets of strateg
profiles obtained by iterated deletion of weakly dominated strategies (with different o
of deletion) in the plurality voting game. By Corollary 1 of Marx and Swinkels (19
V ∞, V̂ ∞ only differ by the addition or removal of strategies that are (for any playei)
payoff equivalent to some other strategy (of playeri) in V ∞, V̂ ∞, respectively (Marx and
Swinkels, 1997, Definition 5). By (A1), payoff-equivalent strategies must give the s
outcome. So, the set of winsets generated byV ∞, V̂ ∞ is the same, i.e., ifW(S) = {W(v) |
v ∈ S}, thenW(V ∞) = W(V̂ ∞). In this sense, the order of deletion of weakly domina
strategies does not matter.

However, for expositional convenience, for the most part, we will assume an ord
deletion as in Moulin (1983). LetNWDi(Si, S−i ) ⊆ Vi be the set of strategies fori which
are not weakly dominated by anyv′

i ∈ Si, givenS−i ⊆ V−i . That is,vi ∈ NWDi(Si, S−i )

has the property that there is not anyv′
i ∈ Si with

ui

(
v′
i , v−i

)
� ui(vi, v−i ) ∀v−i ∈ S−i , (1)

where the inequality in (1) is strict for somev−i ∈ S−i . LetV 0
i = Vi , and define recursivel

V m
i = NWDi

(
V m−1
i , V m−1

−i

)
, i ∈ N, m = 1,2, . . . . (2)

Also, say that avi is weakly dominated relative to V m−1 if it is not in Vm
i . As X is

finite, this algorithm converges after a finite number of steps toV ∞, the set of iteratively
weakly undominated strategy profiles. The set ofiteratively weakly undominated winsets is
W(V ∞) = {W(v) | v ∈ V ∞}. The game is said to bedominance-solvable (DS) if W(V ∞)

contains a single element,W∞ which we refer to as thesolution winset. If alternative
x ∈ W∞, it is asolution outcome. We distinquish between a solution winset and a solu
outcome as the former, in general, may contain several alternatives.

2.3. Characterizing undominated strategies

The following useful preliminary result characterizes weakly dominated voting st
gies in the plurality voting game.
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Lemma 1. In the plurality voting game Γ = (ui,X)i∈N, voting for one’s worst alternative
is the only weakly dominated strategy.

This generalizes existing results, which show that in the plurality rule game, the st
of voting for one’s worst alternative is always weakly dominated, and the strategy of v
for one’s best alternative is never weakly dominated (Brams, 1994). This result, alon
all others, is proved in the Appendix. The intuition for the result is simply9 that the set of
preference profiles is rich enough so that wheni votes forany alternative inX except his
worst-ranked, we can find av−i ∈ V−i such that this strategy fori is a unique best respon
to v−i .

3. Results for three alternatives

The case of three alternatives is of course special, but in this case, our resu
presented in a simple and intuitive way, which helps prepare for discussion of the g
many-alternative case in the next section. Moreover, comparative studies of voting s
tend to work with the three-alternative case as it is simplest case that serves to differ
alternative systems (e.g., majority voting, plurality voting, approval voting)—see
example, Myerson and Weber (1993), Myerson (2002)—and it is also the simples
where strategic voting may occur. In practice, some important political contests typ
have three candidates or less, e.g., presidential elections in the US (Levin and Na
1995).

3.1. Sufficient conditions for dominance-solvability and non-dominance solvability

Let the set of alternatives beX = {x, y, z}. Let Nx,Ny,Nz be the sets of voters tha
rankx, y or z respectively as worst, and letnx,ny, nz be the numbers of voters in each s
Also, defineq = maxa∈X na/n; this is the largest fraction of voters who agree on wh
alternative is worst, and letb = argmaxa∈X na be the alternative that most rank worst. S
b is easily remembered as denoting a “bottom-ranked” alternative.

Now define a critical value ofq as:

qn =




1− 1

n
− 1

n

[
n+ 1

3

]
, n odd,

1− 1

n

[
n+ 2

3

]
, n even,

(3)

where[x] denotes the smallest integer greater than or equal tox. Note thatqn < 2/3, and
limn→∞ qn = 2/3. Finally, say that in gameΓ = (ui,X)i∈N , preferences arepolarized
over alternative x ∈ X if there is anM ⊂ N such that alli ∈ M rank x highest, and
i ∈ N/M rankx lowest. Preferences over alternativex arenon-polarized otherwise.

9 This requires the assumption of at least four players: the case of three voters and three alternatives,
a voter’s middle-ranked alternative is weakly dominated or not depends on cardinal preferences (Dhil
Lockwood, 1999).
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We then have the following result, which follows directly from Theorems 1 and 2 be
settingK = 3.

Proposition 1. Assume that K = 3. If (i) q > 2/3, or (ii) q = 2/3, and preferences are
not polarized over b, the game is dominance-solvable. If q � qn, then the game is not
dominance-solvable.

The intuition for this result is as described in the introduction. However, it is prob
worth saying more about the somewhat less intuitive condition for non-domin
solvability,q � qn. A sufficient condition for non-dominance solvability is that for eve
i ∈ N, we can find a vote distributioñω−i such that:

(i) i ’s unique best response toω−i is to vote for her second-ranked alternative;
(ii) ω̃−i does not have anyj �= i voting for her worst alternative.

Condition (i) ensures that no voter’s second-ranked alternative is weakly domin
implying that iterated deletion stops after the first round; condition (ii) ensures tha
construction of thẽω−i are internally consistent, i.e., do not involve any voter voting fo
weakly dominated alternative. Conditions (i) and (ii) place a number of linear restric
on the ω̃−i; a sufficient condition for them all to be satisfied isq � qn. The proof of
Theorem 2 gives the details.

The first question that one might ask at this stage is whether the sufficient cond
for dominance-solvability in Proposition 1 are also necessary. The example below an
this question negatively, by presenting a game which is not classified as either domi
solvable or not by Proposition 1, and showing that it is dominance-solvable.

Example 1. The ordinal preferences of five voters are as follows:

1,2,3: x � y � z,

4: x � z � y,

5: z � x � y.

Note thatqn = 2/5, q = 3/5, so,q = qn + 1/n < 2/3. Also, preferences are not polariz
overb = y so the game is not classified by Proposition 1. We will show that the gam
dominance-solvable.

First, note that after the first round of deletion, by Lemma 1,V 1
i = {x, y}, i = 1, . . . ,3,

V 1
i = {x, z}, i = 4,5. We show (in the reduced game) that for voter 4,v4 = z is weakly

dominated byv4 = x. Suppose to the contrary that there exists aω−4 ∈ Ω1−4 such thatz
is a unique best response toω−4. This requires that 4 must be able to affect the outco
by votingz, given someω−4 ∈ Ω1−4. The only such vote distributions areω−4 = (2,1,1),
(1,2,1), and(2,2,0). But it is clear that voter 4 does better voting forx in response to
each of these, a contradiction. (For example, if he votes forx rather thanz against(2,1,1),
the outcome isx rather than a homogeneous lottery over{x, z}, which voter 4 obviously
prefers.)
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So, at the end of the second round of deletion,z can get at most one vote i.e., fro
voter 5, and so cannot win, in which casev5 = z is weakly dominated for voter 5. The gam
is then reduced to one where each player can vote for (at most) one of two alternativx, y

and is thus dominance-solvable, withx being the solution outcome.

The next example clarifies the role of the non-polarization condition by showing t
is needed for dominance-solvability whenq = 2/3.

Example 2. The ordinal preferences of the six voters are as follows:

1,2,3,4: x � y � z,

5,6: z � x � y.

Also, voters 1–4 prefer their second-ranked alternative,y, to a homogeneous lottery ov
{x, y, z}. Note thatq = 4/6 = 2/3, and preferences overz are polarized, so this game
not classified by Proposition 1. In fact, the game is not dominance-solvable. To sho
we prove that for any voter, it is a weakly undominated strategy relative toV 1 to vote for
her second-ranked alternative. A similar argument (left to the reader) then shows th
a weakly undominated strategy relative toV 1 to vote for her first-ranked alternative. The
two statements together then imply that iterated deletion stops at the first round.

By Lemma 1,V 1
i = {x, y}, i = 1, . . . ,4, V 1

i = {x, z}, i = 5,6. DefineΩ1−i = {ω(v−i ) |
v−i ∈ V 1−i}. We show that for every voteri, there exists̃ω−i ∈ Ω1−i such that her second
ranked alternative is a unique best response toω̃−i . Specifically, fori = 1, . . . ,4, y is a
unique best response tõω−i = (1,2,2). To see this, note that ifi responds to(1,2,2) with
y, the outcome isy, but if i responds withx, the outcome is the homogeneous lottery o
{x, y, z}. Also, for i = 5,6, x is a unique best response tõω−i = (2,3,0). Finally, it is
easily checked that̃ω−i ∈ Ω1−i , all i = 1, . . . ,6.

Another question is how “close” Proposition 1 comes to classifying all game
dominance-solvable or not for a fixed profile of voter preferences. One way of loo
at this is to note that Proposition 1 can classify the game as dominance-solvable
except when

(i) whenq = 2/3 and preferences overb are polarized;
(ii) qn + 1/n = q < 2/3;
(iii) qn + 1/n < q < 2/3.

It is possible to show that (iii) never occurs,10 so we see that there areat most two values
(out of n possible values) ofq such that the game cannot be classified as domina
solvable or not. If we hold the distribution of preferences across voters constann
increases, we can prove a sharper result, namely we can providenecessary and sufficient
conditions for games with more than a critical number of voters to be DS: the ge
statement of this result is given in Theorem 3 below.

10 See Corollary 1 of Dhillon and Lockwood (1999).
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3.2. Dominance-solvability and Condorcet winners

We now turn to a characterization of the solution outcome in the event that the ga
dominance-solvable, and in particular how this outcome relates to the CW, whenev
latter exists. First, there is the question of whether dominance-solvability implies exis
of a Condorcet winner, or vice-versa. Here, from Proposition 1, as the game is domi
solvable,q > qn, i.e.,q � qn + 1/n. It is easy to check11 thatqn + 1/n > 0.5. So, if the
game is dominance-solvable, there is a Condorcet loser. Consequently, asK = 3, by a well-
known result there is a Condorcet winner.12 On the other hand, it is clear that the reve
implication is not true. For example, the game in Example 2 is not dominance-sol
but there is clearly a Condorcet winner, namelyx. We can summarize our discussion
follows:

Proposition 2. If the game is dominance-solvable, a Condorcet winner exists.

The next, and key, question is whether the solution outcome is a Condorcet winne
event that the game is dominance-solvable. As stated in Theorem 1 below, if oursufficient
conditions for dominance-solvability are satisfied, then this is the case. That is, in th
of three alternatives, we have the following result.

Proposition 3. If (i) q > 2/3, or (ii) q = 2/3, and preferences are not polarized over b,
any solution outcome is a CW, i.e., W∞ ⊂ Xcw .

However, what if the game is dominance-solvable, but the sufficient condition
dominance-solvability donot hold? This is a possibility, as Example 2 shows. In t
example, the solution outcome,x, is again the CW. We conjecture, but have not been
to prove, that this is true generally: that is,every solution outcome must be a Condorc
winner. We certainly have an asymptotic result of this kind, i.e., Theorem 3 below.
says that if the electorate is replicated sufficiently often, and if the game is domin
solvable, the outcome is a Condorcet winner.

However, it should be emphasized that the above results and conjecture only a
the case of four or more voters. With only three voters, it is possible to have a v
game which is dominance-solvable, but where the solution isnot the CW, as the following
example shows. As the example indicates, this arises because Lemma 1 does not h
three voters, and in particular, more strategies can be ruled out as weakly dominate
first round of iteration.

11 In the odd case,qn + 1/n > 0.5 if 0.5n > [(n + 1)/3]. As [(n + 1)/3] < (n + 1)/3+ 1, it is sufficient that
0.5n > (n+ 1)/3+ 1. This holds forn � 9. Finally, in the casesn = 5,7, qn + 1/n = 3/5, 4/7, respectively. The
proof in the even case is similar.

12 If n = 3, it is not even the case that dominance-solvability requires the existence of a Condorcet win
Example 4 of Dhillon and Lockwood (1999) shows.
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Example 3. Ordinal preferences over the three alternatives are as follows.

1: x � z � y,

2: z � x � y,

3: y � z � x.

The unique CW isz. Say that a voter hasdominated middle alternative (DMA) preferences
if he prefers an equal-probability lottery over the three alternatives to his second-r
alternative. It is easy to show13 that the strategy of voting for one’s second-rank
alternative is weakly dominated if and only if that voter has DMA preferences
Lemma 1 above does not apply to the case of three voters). Assume now that only
1 and 3 have DMA preferences. Then, by the result just stated,V 1

1 = {x},V 1
3 = {y}.

Moreover, as voter 2 has non-DMA preferences, his unique best response tov−2 = (x, y)

is v2 = x. So the game is DS, andW∞ = {x} �= {z}.

4. General results

We now consider the case of an arbitrary numberK � 3 of alternatives. For anyY ⊂ X,
defineΓ = (ui , Y )i∈N to be the plurality game defined in Section 1 above, with a fixed
of n players, but a setY ⊂ X of alternatives. The preferences of players are the restric
of the preferences over the setX, to the subsetY. For any such game, letQ(Y) be the
largest set of voters who agree on a worst alternative inY , and define

q(Y ) = #Q(Y)

n
. (4)

This fraction plays a crucial role in what follows. Denote the worst alternative inY for
voters inQ(Y) by b(Y ). Without loss of generality, we will restrict our attention to gam
whereb(Y ) is a Condorcet loser, i.e.,q(Y ) > 0.5, soQ(Y) is unique.

Let X ≡ XK, and define the following sets recursively:

Xl−1 = Xl/
{
b(Xl)

}
, l = K, . . . ,2. (5)

Each set is obtained from the previous one by deleting the alternative in the previo
that is worst-ranked by the most players, and the initial set is justX. These sets are unique
defined for any sequence of games where for each game, at least a simple majorit
on the worst alternative (there exists a Condorcet loser). Note that #Xl = l. We now have
our general sufficient conditions for dominance-solvability.

13 Consider for example voter 1. The only possible profiles where 1 is pivotal (i.e., changes the outcom
his vote) are where voters 2 and 3 vote for different alternatives, i.e.,ω−1 = (1,1,0), (1,0,1) or (0,1,1). In all
other (non-pivotal) profiles, all strategies of voter 1 give him the same payoff. Thusx is as good asz in all the
non-pivotal profiles, but on the pivotal profiles we have: if 1 votes forx against these profiles, he gets outco
x,x,H , respectively, whereH is the equal-probability lottery over all alternatives. If he votes forz against these
profiles, he gets outcomeH,z, z, respectively. If 1 has DMA preferences, he strictly prefers the outcome ar
from voting forx in every case: hencez is dominated byx. If his preference is the opposite, then the strategyz is
a unique best response to profile(0,1,1), hence undominated.
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Theorem 1. Assume that for all l = 3, . . . ,K, either (i) q(Xl) > (l − 1)/ l, or (ii)
q(Xl) = (l −1)/ l, and preferences are not polarized over b(Xl) in game Γ = (ui,Xl)i∈N .

Then the game Γ = (ui,X)i∈N is dominance solvable. Moreover, the solution winset W∞
is that alternative in X2 which is preferred to the other by a strict majority of voters, or X2
if equal numbers of voters prefer each alternative in X2. Also, whenever (i) or (ii) hold,
then

(a) if n is odd, a unique CW xcw exists, and W∞ = {xcw};
(b) if n is even, at least one Condorcet winner exists (i.e., Xcw �= ∅) and W∞ ⊂ Xcw.

The conditions require that for the sequence of sets of alternatives(XK,XK−1, . . . ,X3),
there is sufficient agreement amongst the voters about which alternative is worst. Mo
the solution outcome is generated by sincere voting over the set of the two-el
alternatives,X2, that remains when the alternatives ranked worst by the most voters
been sequentially deleted.

Three further remarks are appropriate at this point. First, if the game is DS, the
only iteratively undominated strategies involve voting for one of two alternatives inX2.
This is consistent with Duverger’s Law, which asserts that “plurality rule tends to pro
a two-party system” (Cox, 1997). Second, our sufficient conditions for DS are quite s
in that they imply the existence of a Condorcet winner, but they have the attractive f
that any alternative in the solution outcomeW∞ is always a CW. Third, the sufficienc
conditions are quite strong. For example, ifK = 4, we need that at least 3/4 of the voters
agree on which alternative is worst, and once that alternative has been deleted from
2/3 of voters must agree which of the remaining three alternatives are worst.

We now present sufficient conditions for the gameΓ (ui,X)i∈N not to be DS, and a
characterization ofW(V ∞), the set of iteratively weakly undominated outcomes in
case. Consider the sequence of sets (5) above, and the associated sequence of
{q(Xl)}Kl=3. Also, for any game withl alternatives, define the critical fractions:

ql
n =




qn in Eq. (3), l = 3,

1− 1

n
− 1

n

[
n+ 3l − 8

l

]
, l > 3, n odd,

1− 1

n

[
n+ 3l − 7

l

]
, l > 3, n even,

(6)

where [x] denotes the smallest integer larger thanx. Note thatql
n < (l − 1)/ l, and

limn→∞ ql
n = (l − 1)/ l. Obviously,q3

n in (6) is equal toqn in (3). Then we have:

Theorem 2. If there exists an l ∈ {3,4, . . . ,K} such that (i) q(Xk) > (k − 1)/k, all k > l;
(ii) q(Xl) < ql

n, or q(Xl) = ql
n + 1/n, and preferences over b(Xl) are polarized, then the

game Γ = (ui,X)i∈N is not DS. In this case, the set of iteratively undominated winsets is
W(V ∞) = {W(v) | vi ∈ Xl/bi}, where bi is voter i’s bottom-ranked alternative in Xl .

Note from Theorem 2 that we are also able to characterize the set of iteratively w
undominated winsets even if the game is not dominance-solvable.
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Theorems 1 and 2 together provide conditions under which a game is class
as dominance-solvable or not.14 If we hold the distribution of preferences across vot
constant asn increases, we can prove a sharper result, namely we can providenecessary
and sufficient conditions for games with more than a critical number of voters to be
This can be formalized as follows. LetΓn = (ui,X)i∈N be the plurality voting game
with a fixed numbern � 3 players. Note that in any such game, there areK! possible
strict preference orderings over theK alternatives. Letφn

l , l = 1, . . . ,K!, be the fractions
of players inΓn who have thelth possible preference ordering. So a distribution
preferences onX across players is characterized byφn = {φn

l }K !
l=1. Define them-replica

game Γn,m = (ui,X)nmi=1, m = 1,2, . . . , to be a game withnm voters but withφnm = φn,
all m, i.e., where the different “types” of voters inΓn are replicated by the factorm.

The key feature of them-replica game is that the distribution of preference profiles in
population of players does not change asn changes.

For any preference distributionφ, and set of alternativesY ⊂ X, defineq(φ,Y ) as in
(4) to be the largest fraction of voters who agree on the worst alternative inY . Also, recall
the definition of the sequence of subsets of alternativesXK,XK−1, . . . ,X3 defined in (5)
above. We make the following assumption aboutΓn which rules out some “non-generic
cases.

(A2) q(φn,Xl) �= (l − 1)/ l, l = 3, . . . ,K.

Then, we have the following result.

Theorem 3. Consider any game Γn for which (A2) holds. Then there is an m0 such that
for all m>m0, Γn,m is dominance-solvable iff q(φn,Xl) > (l − 1)/ l, l = 3, . . . ,K .

In other words, if the replicated electorate is large enough, and condition (A2) h
then the game canalways be classified as DS or not DS. An obvious corollary
Theorems 1 and 3 is the following:

Corollary 2. Consider any game Γn for which (A2) holds. Then there is an m0 such that if
m>m0, and Γn,m is dominance-solvable, at least one Condorcet winner exists (Xcw �= ∅)
and any solution outcome is a Condorcet winner, i.e., W∞ ⊂ Xcw.

This is the most general statement of the relationship between dominance-solv
and Condorcet winners.

14 These conditions leave few games unclassified. Indeed, it can be shown that for anyk ∈ {3,4, . . . ,K}, there
is at mostone possible value ofq(Xk), namelyqk

n + 1/n, for which qk
n < q(Xk) < (k − 1)/k. Consequently,

from inspection of Theorems 1 and 2, there are at mosttwo possible values of eachq(Xl) for which the game
cannot always be classified as DS or not,qk

n +1/n and(k−1)/k. That is to say, ifq(Xk) �= qk
n +1/n, (k−1)/k,

k ∈ {3,4, . . . ,K}, then the game canalways be classified.
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5. Extensions and conclusions

5.1. Some extensions

First, we have ruled out indifference over elements ofX, and also certain lotterie
over X, by (A1). When voters are indifferent over outcomes, in general, the ord
deletion of dominated strategies matters. There are two alternatives here. One is t
assumptions sufficient to ensure that the Marx and Swinkels (1997) Transferen
Decision Maker Indifference (TDI) condition is satisfied (as discussed in Section 2.2
assumption15 which implies TDI in our model is that if somei ∈ N is indifferent between
winsetsW(Y),W(Z), Y,Z ⊂ X, then so are allj ∈ N . With this assumption, all voters a
indifferent between the same subset of alternatives.

The second is to accept that the order matters, and focus on the outcome with
“plausible” order of deletion. The order of iteration we used to prove Theorems 2
3 is of some interest. Iterated deletion is applied to the gameΓ = (ui ,X)i∈N until the
alternative ranked worst by the highest number of voters (sayb) and only that alternative
is deleted from all strategy sets, so the game is reduced toΓ = (ui,X/b)i∈N , and so on.
This procedure is known as theCoombs social choice function (Moulin, 1983, p. 24). If
we want to apply this order of deletion with indifference, the problem is thatb may not be
uniquely defined. But, given some tie-breaking rule, we may be able to proceed as b

A second extension would be to consider different scoring rules, other than plu
voting, to see whether well-known scoring rules can be “ranked” in terms of the str
of the conditions required to make them dominance-solvable. This is the subject
current research. One other simple extension of plurality voting that can be studied
the methods of this paper is plurality voting with arunoff : with this rule, if no alternative
gets more than 50% of the vote, then there is a second round when voters vote o
the two alternatives with most votes.16 With only two alternatives at the second sta
there will be no strategic voting, so every voter rationally anticipates the same win
the second stage. So, one can write down expected payoffs just as functions of firs
votes, and analyse the resulting game using the methods of this paper.

5.2. Conclusions

This paper has presented conditions sufficient for a plurality voting game t
dominance-solvable, and sufficient for it not to be dominance-solvable. These con
can be stated in terms of only one sequence of statistics of the game, the largest pro
of voters who agree on which alternative is worst in a sequence of subsets of the o

15 This assumption is satisfied, for example, in a citizen-candidate voting game where voters are ofK � n

types, and every voter has strict preferences over different types, satisfying (A1), and is indifferent betw
candidates of a given type. Then any voter is only indifferent betweenL(Y),L(Z) if Z can be obtained fromY
by deleting candidates of some type and replacing them by others of the same type, in which case all v
indifferent.

16 To break ties, we need to assume that if the winsetW(v) has more than two members, two are selec
randomly.
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set of alternatives, where each subset is derived from the previous one by delet
alternative that most voters rank as worst in the previous subset. When the num
voters is large, “almost all” games can be classified as either dominance-solvable
dominance-solvable. If the game is dominance-solvable, the outcome is usually b
always the Condorcet winner, whenever it exists.
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Appendix

Proof of Lemma 1. Suppose w.l.o.g. that voteri ’s preferences are:x1 �i x2 �i · · · �i

xj �i xj+1 �i · · · �i xK . So, it is sufficient to show that for anyj < K, there exists som

ω
j
−i ∈ Ω−i such thatvi = xj is a unique best response toωj

−i; for then,vi = xj cannot be
weakly dominated.

Let ω
j
−i = (ω

j

1,ω
j

2, . . . ,ω
j
K) where ω

j
l is the number of votes (excludingi ’s) for

alternativexl. If n is odd, constructωj
−i so thatωj

j = ω
j

j+1 = (n − 1)/2, ω
j
l = 0,

∀l �= j, j +1. Asn > 3, note thatωj

j ,ω
j

j+1 >ω
j

l +1,∀l �= j, j +1. So, ifi playsxj against

ω
j

−i , the outcome isxj , if i playsxj+1 againstωj

−i , the outcome isxj+1, and finally if i

playsxl, l �= j, j + 1 againstωj
−i , the outcome isxj or xj+1 with equal probability. Asi

strictly prefers the first outcome to the second or third,xj is a unique best response toω
j
−i ,

as claimed.
If n is even, constructωj

−i so thatωj
j = n/2− 1,ωj

j+1 = n/2,ωj
l = 0,∀l �= j, j + 1. As

n > 3, note thatωj
j ,ω

j

j+1 > ω
j
l , ∀l �= j, j + 1. So, if i playsxj againstωj

−i , the outcome

is xj or xj+1 with equal probability. Ifi playsxj+1 or xl , l �= j, j + 1, againstωj

−i , the
outcome isxj+1. As i strictly prefers the first outcome to the second,xj is a unique bes

response toωj
−i , as claimed. ✷

Proof of Theorem 1. Let Y ⊂ X, and define

Ti(Y ) =
{
Y/b(Y ), i ∈ Q(Y),

Y, i /∈ Q(Y),

and alsoT (Y ) =×i∈N Ti(Y ). Let y = #Y. We can now state and prove three additio
lemmas.
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Lemma A.1. In the game Γ = (ui, Y )i∈N , if q(Y ) > (y − 1)/y , then vi = b(Y ) is weakly
dominated for all i ∈ N/Q(Y ) relative to T (Y ).

Proof. (i) First, we show thatb(Y ) /∈ W(v) for all v ∈ T (Y ). Suppose to the contrary th
b(Y ) ∈ W(v) for somev ∈ T (Y ). Thenb(Y ) must get at least as many votes as all ot
alternatives inY . But b(Y ) can get at mostn(1 − q(Y )) votes, asnq(Y ) players have
deletedb(Y ) from their strategy sets. So, as no alternative gets more votes thanb(Y ), and
there arey alternatives, the total number of votes cast is at mostT = yn(1− q(Y )). Now,
if q(Y ) > (y − 1)/y, yn(1− q(Y )) < n, soT < n, a contradiction since we do not allo
abstentions.

(ii) Fix a profile of votesv−i ∈×j �=i Tj (Y ). Given this profile, anyi ∈ N/Q(Y ) can
always do weakly better by voting for her most preferred alternative inY/b(Y )—saysi—
rather than forb(Y ). This is because a vote forb(Y ) can never affect the winset by part (
so a switch fromb(Y ) to si by i will either:

(i) not affect the outcome, or
(ii) add si to the winset, or
(iii) eliminate all alternatives other thansi from the winset.

In cases (ii) and (iii),i strictly gains. ✷
Lemma A.2. In the game Γ = (ui, Y )i∈N , if q(Y ) = (y − 1)/y , and preferences are non-
polarized, then vi = b(Y ) is weakly dominated for some i ∈ N/Q(Y ) relative to T (Y ).

Proof. (i) First we prove that ifb(Y ) ∈ W(v) for somev ∈ T (Y ), then,all alternatives
must be inW(v). For suppose not; letx �= b(Y ) and x /∈ W(v). So, there are at mos
y − 1 alternatives inW(v), and asb(Y ) ∈ W(v), all of these alternatives can get n
more votes thanb(Y ). Moreover,b(Y ) can get at mostn(1 − q(Y )) votes, by definition
of q(Y ) and the fact thatv ∈ T (Y ). Thus, the total number of votes cast is at m
T = (y − 1)n(1 − q(Y )) + n(1 − q(Y )) − 1 wheren(1 − q(Y )) − 1 is the most votes
thatx can get and not be inW(v). Now, asq(Y ) = (y − 1)/y, T = n − 1, a contradiction
since we do not allow abstentions.

(ii) As the game is non-polarized,b(Y ) is not ranked best inY by somei /∈ Q(Y).
From part (i), given any vote profile of the other votersv−i ∈×j �=i Tj (Y ), there are two
possibilities for this voteri: either whenvi = b(Y ), b(Y ) /∈ W(v), in which case he doe
weakly better by voting for his most preferred alternative, by the argument in the pro
Lemma A.1,or whenvi = b(Y ), b(Y ) ∈ W(v), in which case all alternatives have equ
numbers of votes, in which case, he could do strictly better by voting for his most pre
alternative. So, choice ofvi = b(Y ) is weakly dominated as claimed.✷
Lemma A.3. In the game Γ = (ui, Y )i∈N if (i) q(Y ) > (y−1)/y, or (ii) q(Y ) = (y−1)/y
and preferences are non-polarized, then this game can be reduced to the game Γ =
(ui, Y/b(Y ))i∈N by iteratively deleting weakly dominated strategies.
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Proof. (i) Assume first that condition (i) of the lemma holds. Then, from Lemma 1,b(Y )

is weakly dominated relative toV = Yn for all players inQ(Y), and so can be deleted fro
their strategy sets to getV 1 = T (Y ). Then, from Lemma A.1,b(Y ) is weakly dominated
relative toT (Y ) for all players inN/Q(Y ). So, we can deleteb(Y ) from the strategy set
of all i ∈ N/Q(Y ) to getV 2 = (Y/b(Y ))n after two rounds of deletion, as required.

(ii) Now assume that condition (ii) of the lemma holds. Again, from Lemma 1,b(Y ) is
weakly dominated relative toV = Yn for all players inQ(Y), and so can be deleted to g
V 1 = T (Y ). Now from Lemma A.2,b(Y ) is weakly dominated relative toT (Y ) for some
i ∈ N/Q(Y ). So, we can deleteb(Y ) from the strategy set of thisi ∈ N/Q(Y ) to give a set
of strategy profilesV 2 = (V 2

i , V
2−i ) = (Y/b(Y ),×j �=i Tj (Y )). But then by the argument o

Lemma A.1,b(Y ) /∈ W(v), v ∈ V 2, asb(Y ) can now get at mostn(1−q(Y ))−1 votes. So,
b(Y ) is weakly dominated forall players relative toV 2 and thus can be deleted from a
the remaining players’ strategy sets to getV 3 = (Y/b(Y ))n after three rounds of deletion
as required. ✷

We can now return to the proof of Theorem 1. Under condition (i) or (ii) in
theorem, by Lemma A.3,Γ = (ui,Xl)i∈N can be reduced toΓ = (ui,Xl−1)i∈N by iterated
deletion of weakly dominated strategies. So, iterating,Γ = (ui,Xl)i∈N can be reduced t
Γ = (ui,X2)i∈N where each player has only two strategies. In the gameΓ = (ui ,X2)i∈N,

the only undominated strategy is to vote sincerely, and so the game is dominance-so
with an outcome as described in the theorem.

To prove the last part, letX2 = {x, y}. First suppose thatn is odd. Then w.l.o.g., suppos
x beatsy in a majority vote, soW∞ = {x}. Then,x must be a CW. For suppose not. Then
x must be ranked worse than somew /∈ X2 by a majority of voters, and thus must be
X/X2, contrary to assumption.

Now suppose thatn is even. Then, either the above argument applies (i.e.,W∞ = {x},
wherex is a CW), or equal numbers of voters preferx to y and vice versa, in which cas
W∞ = {x, y}. Again,x, y must both be CWs. For suppose not. Then, one or both ofx, y

must be ranked worse than somew /∈ X2 by a majority of voters, and thus must be
X/X2, contrary to assumption.✷
Proof of Theorem 2. Let l be the firstk ∈ {3,4, . . . ,K} for which q(Xk) � qk

n . Then, by
the proof of Theorem 1, the gameΓ = (ui,X)i∈N can be reduced toΓ = (ui,Xl)i∈N by
iterated deletion of weakly dominated strategies. Letbi bei ’s bottom-ranked alternative i
Xl . Then, by Lemma 1,vi = bi is weakly dominated inΓ = (ui,Xl)i∈N , so we can delet
bi from playeri ’s strategy set to getTi = Xl/bi , i ∈ N. We now show that novi ∈ Ti is
weakly dominated relative toT =×i Ti : this implies thatT is a full reduction of V by
weak dominance (Marx and Swinkels, 1997, Definition 3) and hence by Corollary 1
Marx and Swinkels, the set of iteratively undominated winsets isW = {W(v) | vi ∈ Ti ,
i ∈ N}, which proves the theorem, given thatTi = Xl/bi.

W.l.o.g., letXl = {x1, . . . , xl}, and letN(xm) = {i ∈ N | bi = xm}, 1� m � l. So,

Ti = Xl/xm, i ∈ N(xm). (A.1)
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It now suffices to show that for everyi ∈ N , there existsv−i ∈ T−i such that it is a
unique best response fori to vote for any alternativex ∈ Ti . For then, no alternative inTi

can be weakly dominated fori.
W.l.o.g., leti ∈ N(xl), soTi = {x1, x2, . . . , xl−1}, and assume thatx1 �i x2 �i · · · �i

xj �i xj+1 �i · · · �i xl−1. Also, letω−i = (ω1,ω2, . . . ,ωl) be a vote distribution overXl ,
whereωj is the number of votes for alternativexj , andΩ−i (T ) = {ω(v−i ) | v−i ∈ T−i}.
So, we need to show that there existsω−i ∈ Ω−i (T ) such that it is a unique best respon
for i to vote for any alternativex1, . . . , xl−1. Note two properties of a vote distributionω−i

that must hold if it is to belong toΩ−i (T ). First, the total number of votes must add up
n− 1:

l∑
k=1

ωk = n− 1. (A.2)

Second,ωk must be no greater than the number of voters (excludingi) who donot rankxk
worst inXl , i.e., for whomxk ∈ Ti. Inspection of (A.1) implies that this requires

ωl �
∑
k �=l

nk, ωj �
∑
k �=j

nk − 1, j �= l, (A.3)

wherenk = #N(xk).

Case 1 (n odd). We know from the proof of Lemma 1 thatvi = xj , j < l, is a unique bes
response inTi to ω−i = (ω1,ω2, . . . ,ωl) if

ωj = ωj+1 >ωk + 1, k �= j, j + 1. (A.4)

So, it suffices to show that we can find̃ω−i ∈ Ω−i (T ) where (A.2)–(A.4) are satisfied. W
construct̃ω−i as follows. First, setωj = ωj+1 = ω, where:

ω =




[
n+ 1

3

]
if l = 3,[

n+ 3l − 8

l

]
if l > 3,

(A.5)

where [x] is the smallest integer greater than or equal tox. Let t = (n − 1) − 2ω be
the number of remaining votes.17 Note that we can always writet = s(l − 2) + r, � 0,
0 � r < l − 2, wheres, r are integers. Now, distribute the remainingt votes over the
remainingl − 2 alternatives as evenly as possible. That is, ifr = 0, s � 0, give every
remaining alternatives votes; if r > 0 and give every remaining alternatives votes and
an additional vote tor of the l − 2 remaining alternatives. Clearly,̃ω−i satisfies (A.2) by
construction.

17 It is easy to show thatt � 0. For this, we requiren − 1 � 2[(n + 3l − 8)/l] = 6 + 2[(n − 8)/l]. Now the
right-hand side of this inequality is largest whenl = 3, so we only needn � 6 + 2[(n − 8)/3]. It can easily be
checked that this holds forn � 6, the case ofn = 5 can be checked separately. Similarly, whenl = 3, we can
show thatn − 1� 2[(n + 1)/3] for n � 9, the casesn = 5,7, can be checked separately.
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Also, ω̃−i satisfies (A.4). To see this, note first that the maximum number of vote
any of the remaining alternativesωk , k �= j , j + 1 is s if r = 0, ands + 1 if r > 0. Also,
s = (t − r)/(l − 2). But then, noting that ifl = 2, r ≡ 0, (A.4) requires simply that[

n + 1

3

]
>

t

l − 2
+ 1 if l = 3, (A.6)

[
n + 3l − 8

l

]
>

t − r

l − 2
+ 2 if l > 3, l − 2> r � 1. (A.7)

Using the definition oft, the inequality (A.6) requires[
n + 1

3

]
>

n− 1− 2[(n+ 1)/3]
l − 2

+ 1

which, using[x] � x, certainly holds. Also, the inequality (A.7) requires[
n + 3l − 8

l

]
>

n − 2− 2[(n+ 3l − 8)/ l]
l − 2

+ 2

which, again, using[x] � x, certainly holds forl > 2.
It remains to check that̃ω−i satisfies (A.3). From (A.4), a sufficient condition for (A.

to be satisfied is that

ω �
∑
k �=j

nk − 1. (A.8)

Now let nk � θn, ∀k. Note that as
∑l

k=1nk = n, nk � θn implies
∑

k �=j nk � (1 − θ)n,

for anyj . Then (A.8) is certainly satisfied if the following holds:

ω � (1− θ)n− 1. (A.9)

Now let ql
n be the largest value ofθ such that (A.9) holds. So,ql

n satisfies (A.9) with
equality, i.e.,ql

n = 1 − 1/n − ω/n. Substituting outω from (A.5), we get the expressio
(3) for l = 3, and the expression (6) forl > 3, for the case ofn odd.

Case 2 (n even). Here, the argument is the same, except we now chooseω̃−i ∈ T−i such
that (A.10) below, rather than (A.4) is satisfied;

ωj = ωj+1 − 1>ωk, k �= j, j + 1. (A.10)

For then, if (A.10) holds, by Lemma 1,vi = xj , j < l, is a unique best response byi
to ω̃−i ∈ T−i . The required vote distributioñω−i is constructed as follows. First, we s
ωj+1 = ω, ωj = ω − 1, where

ω =




[
n+ 2

3

]
if l = 3,[

n+ 3l − 7
]

if l > 3.

(A.11)
l
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Also, distribute the remainingt = n − 2ω votes over the remainingl − 2 alternatives as
evenly as possible,18 as before.

Clearly, ω̃−i satisfies (A.2) by construction. Also,̃ω−i satisfies (A.4). To see this
note by the argument in the odd case, that the maximum number of votes for a
the remaining alternativesωk , k �= j, j + 1, is s if r = 0, and s + 1 if r > 0, where
s = (t − r)/(l − 2). But then, noting that ifl = 2, r ≡ 0, (A.4) requires simply that[

n + 2

3

]
− 1>

t

l − 2
if l = 3, (A.12)[

n + 3l − 7

l

]
− 1>

t − r

l − 2
+ 1 if l > 3, l − 2> r � 1, (A.13)

wheret = s(l − 2)+ r, as before. Using the definition oft, (A.12) requires[
n + 2

3

]
− 1> n − 2

[
n + 2

3

]
+ 1,

which, using[x] � x, certainly holds. Noting that the RHS of (A.13) is maximized wh
r = 1, the inequality (A.13) requires[

n + 3l − 7

l

]
>

n − 2[(n+ 3l − 7)/ l]
l − 2

+ 2,

which, again using[x] � x, certainly holds forl > 3. Finally, (A.3) is certainly satisfied
by ω̃−i if

ωj+1 �
∑
k �=j

nk,

which, from (A.11), reduces to

ω � (1− θ)n, (A.14)

wherenk � θn, ∀k. Now let ql
n be the largest value ofθ such that (A.14) holds. So,ql

n

satisfies (A.14) with equality. Solving this expression forql
n,and using (A.11), we get th

expression in (6) for the case ofn even, and the expression in (3) forn even andl = 3. ✷
Proof of Theorem 3. (Sufficiency) If q(φn,Xl) > (l − 1)/ l, l = 3, . . . ,K, obviously
q(φnm,Xl) > (l−1)/ l, l = 3, . . . ,K, m � 1, soΓn,m is DS for allm � 1 from Theorem 1

(Necessity) Assume thatn is odd. The proof for the even case is similar. If it isnot the
case thatq(φn,Xl) > (l − 1)/ l, l = 3, . . . ,K, then, by Lemma A.3, then there is som
l ∈ {3, . . . ,K} such that

q(φn,Xl) <
l − 1

l
, q(φn,Xk) >

k − 1

k
, k > l. (A.15)

18 It can be checked, as for the odd case thatt � 0, since this is true iffn−2� 2ω, i.e.,n−2� 4+2[(n−7)/3].
The RHS is maximized whenl = 3, thus it is sufficient to show thatn − 2 � 4 + 2[(n − 7)/3]. The latter holds
for n � 6, and the casen = 4 can be checked separately.
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But then asql
n < (l − 1)/ l, and limn→∞ ql

n = (l − 1)/ l, there exists am0 such that

q(φnm,Xl) = q(φn,Xl) � ql
nm, m � m0. (A.16)

So, we conclude from (A.15), (A.16) that

q(φnm,Xl) � ql
nm, q(φnm,Xk) � k − 1

k
, k > l,

for all m � m0. So, by Theorem 2,Γn,m is not DS for allm � m0. ✷
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