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Abstract

This paper studies the dominance-solvability (by iterated deletion of weakly dominated strategies)
of plurality rule voting games. For any number of alternatives and at least four voters, we find
sufficient conditions for the game to be dominance-solvable (DShattt be DS. These conditions
can be stated in terms of only one aspect of the game, the largest proportion of voters who agree
on which alternative is worst in a sequence of subsets of the original set of alternatives. When the
number of voters is large, “almost all” games can be classified as either DS or not DS. When the
electorate is sufficiently replicated, then if the game is DS, a Condorcet winner always exists, and
the outcome is the Condorcet winner.
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1. Introduction

Plurality voting is the dominant electoral rule in many democracies. Nevertheless,
its properties are still not well-understood. One major problem is that with plurality
voting, there are often incentives for voters to vote strategitdlle., not for their
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1 In practice, strategic (non-sincere) voting seems to be quite common where plurality rule voting is used.
For example, in parliamentary elections in the UK and Germany evidence suggests that candidates who were
perceived to be running third were deserted by their supporters (Cox, 1997, Chapter 4). Moreover there is some
experimental evidence that voters do vote strategically in three candidate elections (Forsythe et al., 1996).
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most preferred alternative). But then, with strategic voting, multiple voting equilibria
are pervasive. For example, consider the “canonical” plurality voting game where voters
vote simultaneously, preferences are common knowledge, and ties are broke ifairly.

is obvious that with at least three voteasly candidate may win in a Nash equilibrium:

if all other voters vote for this candidate, then it is a (weak) best response for any voter
to also vote for that candidate, as she cannot affect the outcome, however she votes.
The multiple equilibrium problem also ariSewhen agents have incomplete information
about some aspect of the structure of the game (Myatt, 1999; Myerson and Weber, 1993;
Myerson, 2002).

The reason this problem arises is that Nash equilibrium allamyspossible beliefs
on the part of voters, as long as they are consistent. For example, suppose that it is
common knowledge that a candidatés worst for all voters. Nevertheless, there is a Nash
equilibrium where every voter votes fobecause he believes that all other voters will vote
for z. The obvious response to this problem is to look for equilibrium refinements, such
as ruling out weakly dominated voting strategies (Besley and Coate, 1997). However, it
turns out that standard refinements have little bite in this canonical plurality rule game.
For example, De Sinopoli (2000) shows that with more than four voters, if an alternative
is not a strict Condorcet loser, there is a perfect Nash equilibrium where that alternative is
an outcome with probability at least 0.5. Moreover, there is by definition only one strict
Condorcet loser in any set of alternatives. It follows from this result that imposing the
weaker refinement of weakly undominated Nash equilibrium (as Besley and Coate do) can
rule out at most one alternative as a Nash outcome.

We take a different approach to this problem of multiplicity of Nash equilibria in
this paper. First, we argue below that eliminating weakly dominated strategies is very
reasonable in the plurality rule game; it simply amounts to no-one voting for her
worst-ranked alternativk But, there is nothing to stop voters going a step further and
recalculating which strategies are weakly dominated for them giverothet voters will
not use weakly dominated strategies. In other words, ifite@tively eliminate weakly
dominated strategies, it is possible that we could substantially narrow down the set of
possible outcomes in the plurality voting game. Indeed, it is possible that so many strategies
could be eliminated via iterated deletion that the remaining strategies can generate only one
outcome: that is, the plurality voting game coulddmeninance-solvable.

Our paper investigates the conditions under which the plurality rule voting game is
dominance solvable. The main contribution is to derive conditions that are sufficient for
the game to be dominance-solvable anatl to be dominance-solvable. Moreover, as the

2 |fthere areK alternatives with the most number of votes, then each of these alternatives is selected as winner
with probability /K (Myerson, 2002).

3 For example, Myerson (2002) studies “scoring” voting rules (of which plurality voting is a special case) in
an environment where there are three alternatives, each voter is equally likely to have three possible preference
orderings over these alternatives (in the base case), and the number of voters is a Poisson random variable. The
equilibrium is defined for the limiting case as the expected number of voters becomes large, and allows voters
to make small mistakes. Even in this setting, plurality rule generates multiple equilibria; there is an equilibrium
where any one of the three candidates can win with probability one.

4 Lemma 1 below shows that with more than three voters, the only voting strategy that is weakly dominated
is the one where the voter votes for her worst alternative.
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number of votersp, becomes large, these conditions are asymptotically necessary and
sufficient for dominance-solvability. The conditions are most easily stated in the case of
three alternative3when they involve just one summary statistic of the game, namely the
largest fraction of players that agree on which alternative is wgrst/hen this fraction is
greater than 23, the game islways dominance-solvable; when this fraction is less than or
equal to 23 — x,,, for somer, > 0, the game imever dominance-solvable. Moreover,

goes to zero asymptotically with i.e., the number of voters.

The intuition for the sufficiency condition is straightforward. First, voting for one’s
worst alternative is weakly dominated, so if a sufficient fraction of the voters agree on
which is worst, all voters can deduce that this alternative cannot win if voters do not vote for
weakly dominated alternatives. But if this alternative cannot win, a vote for it is “wasted,”
i.e., weakly dominate@herever it appears in a voter's preference ordering, so the game
is reduced to one of just two alternatives by iterated deletion, and two-alternative voting
games are always dominance-solvable.

The intuition behind the sufficient condition for the ganwt to be dominance-solvable
is more subtle. When sufficient disagreement on the worst alternative is allowed, the space
of weakly undominated strategy profiles is rich enough to ensure that for any ivoter
voting for her middle-ranked (or best) alternative is a unique best response (i.e., not weakly
dominated) tasome weakly undominated profile of voting strategies of the other players.
This means that iterated deletion cannot proceed beyond deleting the strategy of voting for
one's worst alternative.

Moreover, if we increase the number of voters without changing the distribution of
preferences across alternatives (replicating the electorate), for a large enough electorate,
we can find necessand sufficient conditions for the game to be dominance-solvable.
Finally, when the sufficient conditions for dominance-solvability hold, we show that the
only strategies that survive iterated deletion involxery voter voting for one of two
alternatives (a strong form of Duverger’'s Law, Cox (1997)), and moreover, every voter
votes “sincerely” over this pair, i.e., for her more-preferred alternative of the two.

A key question is the nature of the winning alternative(s) when the game is dominance-
solvable. Here, we show the following. When the number of voters is at least four,
dominance-solvability implies that a Condorcet Winner (CW) exists, and if the sufficient
conditions for dominance-solvability of the game also hold, then the solution is a CW.
Indeed, when the electorate is sufficiently replicated, a sharper result is possible: the
outcome isalways a CW whenever the game is dominance-solvable. However, with three
voters, even if the game is dominance-solvable, and a CW exists, the outcome may not be
the CW!

5 Inthe general case with voters andK alternatives, lefg be the largest fraction of players who agree on
which alternative (sayg) is worst. Whenz g is deleted from the feasible set, lgk_1 be the largest fraction
of players who agree on which remaining alternative (sgy 1) is worst, and so on. This procedure generates
a sequencek,qg_1,---,q3. Our sufficient condition for dominance-solvability is that each element in the
sequence be sufficiently larggj > (k — 1)/k. Our sufficient condition for non-dominance-solvability is that
there is an X I < K, such that for allk > /, g, is sufficiently large, bug; fails to be sufficiently large (i.e.,
q1 < (U —1/1) — nl, for somer] > 0). Moreover, as: — oo, 7, — 0.
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This paper builds on an established literature. It has long been recognized that iterated
deletion of weakly dominated strategies may be a powerful tool for predicting outcomes
in voting games. In a seminal contribution, Farquharson (1969) called this procedure
“sophisticated voting,” and he called a voting game “determinate” if sophisticated voting
led to a unique outcome. However, this procedure has recently received perhaps less
attention than it merits. This may be for two reasons. First, generallgrtiee of deletion
of weakly dominated strategies matters. We deal with this by assuming that voters have
strict preferences over alternatives; this is sufficient to ensure that order of deletion does
not affect the outcomes (Marx and Swinkels, 1997). Second, until recently, game theory has
lacked a “common knowledge” justificatibas to why players would not play iteratively
weakly dominated strategies: the recent work of Rajan (1998) fills that gap.

More recent related literatutés as follows. The only work of which we are aware on
refinements of Nash equilibrium with plurality voting is De Sinopoli (2000), as described
above. De Sinopoli and Turrini (2002) showed that iterated deletion of weakly dominated
strategies may be applied to eliminate some of the Nash equilibria in the citizen-candidate
model of Besley and Coate (1997). They show that in a four candidate example, that
iterated weak dominance eliminates all the Nash equilibria except for one. Dhillon and
Lockwood (2002), building on the results of their paper, show that this possibility is
restricted to the case of four (or more) candidate equilibria: for any political equilibrium
with up to three candidates, one can find another equilibrium with an identical outcome
where strategies at the voting stage are iteratively weakly undominated.

The layout of the paper is as follows. The model is outlined in Section 2. Our analysis of
the three alternative case is in Section 3, and the more general case in Section 4. Section 5
discusses some extensions and concludes.

2. Themode
2.1. Preliminaries

There is a setV = {1,...,n} of voters withn > 4 and a setX = {x1,...,xg} of
alternatives. The voting game is as follows. Each voter has one vote, which she can cast
for any one of the&X alternatives (i.e., no abstentions are allowed). The alternative with the
largest number of votes wins (plurality rule). If two or more alternatives have the greatest
number of votes, the tie-breaking rule is that every alternative in this set is selected with
equal probability. All voters vote simultaneously.

6 Itis well known that if the structure of the game and rationality of the players are common knowledge, then
players must play only those strategies that survive iterated deletstricify dominated strategies.

7 A more weakly related literature is as follows. Borgers (1992), Borgers and Janssen (1995) have results on
the dominance-solvability of Bertrand and Cournot games. For example, Borgers (1992) shows that in a model
of Bertrand price competition, under some conditions, the set of prices that survive iterated deletion is close to
the Walrasian price, and Borgers and Janssen (1995) have similar results for the Cournot case. More recently,
Mariotti (2000) has provided a class of games (called maximum games) which are dominance solvable.
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Let £ denote the set of lotteries (i.e., probability distributions) oXerBy the tie-
breaking rule just stated, the set of possible outcomes with plurality voting is the subset of
homogeneous lotteriesLy C L. Here,L € Ly iff for someY C X, every alternative irY
has probability 1#Y, and every alternative not il has probability zero. Votare N has
a preference ordering ovér, denoted-;, which is assumed to satisfy the von Neumann—
Morgenstern axioms, implying a utility representation with utility functignX — ).

This game can be written more formally in strategic form as follows W:et X be the
strategy set of, with generic element;. If v; = xi, voteri votes for alternativey. Letv
be the strategy profile = (v1, ..., v,). Let wg (v) be the number of votes for alternative
xi if the strategy profile i®. Also, let thewinset W (v) C X be defined as

W) = {xk eX ‘ wr(v) = w(v), x; € X}.

This is the set of alternatives that receive the most number of votes. Every alternative in
W (v) wins with equal probability.

So, given the assumptions on preferences, we can write the expected utiligsd
function of the strategy profile as

1
Eu;(v) = W Z ui(xp).
xreW(v)
This completes the description of the plurality rule game in strategic form. We denote
the game formally by™ = (u;, V;);eny Where of coursé/; = X, so sometimes we write
I' = (ui, X)ien . Finally, we will assumé:

(A1) Every voter has strict preferences ov&y, i.e., forallL, L’ € Ly, eitherL =; L’
orL' >; L.

An immediate implication of (A1) is that no player is indifferent between any two
different winsets, i.e., for all strategy profilasv’ if W(v) # W('), then Eu;(v) #
Eu;(v"), i € N. In Section 2.2 below, we show that this fact implies that the order of
deletion of weakly dominated strategies does not matter. Note that (A1) holds generically
as it only rules out a finite set of equalities.

The following notation will be useful. Leb(v_;) be a vector recording the total votes
for each alternative iX given a strategy profile_;, i.e., when individual is notincluded.
Also, let 2_; = {w(v—;) | v—; € V_;}. We suppress the dependenceawnbn v_; except
when needed by writing (v_;) = w—_;, and refer taw_; as avote distribution. Clearlyi’s
best response to_; depends only on the information in._; .

Finally, define an alternative € X to be aCondorcet winner (CW) if #{i € N |
x =iy} =#ieN|y>;x}, ally#x, and say that is astrict CW if all the inequalities
hold strictly, andveak otherwise. As we have assumed strict preferences, if the number of
voters,n, is odd, the CW is strict, i.e., unique, butrifis even, this is not necessarily the
case (Moulin, 1983, p. 29). In the former case, denote the unique C¥¥"hyand in the
latter case, denote the set of CWsX¥".

8 This form of (A1) is due to the neutral tie-breaking rule, which generates lotteries\ovéa deterministic
tie-breaking rule were used, then it would be sufficient to assume that preferences weee strict.



60 A. Dhillon, B. Lockwood / Games and Economic Behavior 46 (2004) 55-75

Two comments are in order at this point. First, we do not allow voters to abstain; this
is without loss of generality because abstention is always a weakly dominated strategy for
any voter (Brams, 1994), and so will be deleted at the first round of the iterated deletion
process. Second, we have assumed at least four voters: the case of three voters is somewhat
special, and is covered in detail in Dhillon and Lockwood (1999).

2.2. lterated deletion of weakly dominated strategies

By our assumption (Al), the transference of decision-maker indifference (TDI)
condition of Marx and Swinkels (1997) is satisfied in the game= (i;, X);en. TDI
says that if a player is indifferent between two strategy profilesv’ differing in his own
strategy only, then all other playefs# i are also indifferent betwean v’. This is satisfied
in our game because by (AX)can be indifferent between v’ only if W(v) = W('), in
which case other players are indifferent also. ThenVI&t, V> be two sets of strategy
profiles obtained by iterated deletion of weakly dominated strategies (with different orders
of deletion) in the plurality voting game. By Corollary 1 of Marx and Swinkels (1997),
Ve,V only differ by the addition or removal of strategies that are (for any player
payoff equivalent to some other strategy (of plagen V°, Ve, respectively (Marx and
Swinkels, 1997, Definition 5). By (Al), payoff-equivalent strategies must give the same
outcome. So, the set of winsets generated’By;, V° is the same, i.e., iW(S) ={W() |
v e S}, thenW(V™®) = W(\7°°). In this sense, the order of deletion of weakly dominated
strategies does not matter.

However, for expositional convenience, for the most part, we will assume an order of
deletion as in Moulin (1983). LeWW D; (S;, S—;) € V; be the set of strategies fomwhich
are not weakly dominated by any € S;, givenS_; C V_;. Thatis,v; e NWD;(S;, S—;)
has the property that there is not arjye S; with

ui (v, v—i) > u;i(vi,v—;) Vv € S, 1)
where the inequality in (1) is strict for some; € S_;. Let Vl.0 = V;, and define recursively
V= NWD; (V"L v, ieN, m=1,2,.... )

Also, say that av; is weakly dominated relative to V™1 if it is not in V" As X is
finite, this algorithm converges after a finite number of stepgta the set of iteratively
weakly undominated strategy profiles. The sdteftively weakly undominated winsetsis
W((V>®) ={W(v) | v e V*°}. The game is said to bdominance-solvable (DS) if W (V°)
contains a single elemeniy > which we refer to as theolution winset. If alternative

x € W, itis asolution outcome. We distinquish between a solution winset and a solution
outcome as the former, in general, may contain several alternatives.

2.3. Characterizing undominated strategies

The following useful preliminary result characterizes weakly dominated voting strate-
gies in the plurality voting game.
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Lemma 1. Inthe plurality voting game I = (u;, X);en, voting for one’ sworst alternative
isthe only weakly dominated strategy.

This generalizes existing results, which show that in the plurality rule game, the strategy
of voting for one’s worst alternative is always weakly dominated, and the strategy of voting
for one’s best alternative is never weakly dominated (Brams, 1994). This result, along with
all others, is proved in the Appendix. The intuition for the result is sifitiat the set of
preference profiles is rich enough so that whemtes forany alternative inX except his
worst-ranked, we can findwa; € V_; such that this strategy féris a unique best response
tov_;.

3. Resultsfor threealternatives

The case of three alternatives is of course special, but in this case, our results can
presented in a simple and intuitive way, which helps prepare for discussion of the general
many-alternative case in the next section. Moreover, comparative studies of voting systems
tend to work with the three-alternative case as it is simplest case that serves to differentiate
alternative systems (e.g., majority voting, plurality voting, approval voting)—see, for
example, Myerson and Weber (1993), Myerson (2002)—and it is also the simplest case
where strategic voting may occur. In practice, some important political contests typically
have three candidates or less, e.g., presidential elections in the US (Levin and Nalebuff,
1995).

3.1. Sufficient conditions for dominance-solvability and non-dominance solvability

Let the set of alternatives b€ = {x, y, z}. Let N,, N,, N; be the sets of voters that
rankx, y or z respectively as worst, and let, n,, n, be the numbers of voters in each set.
Also, defineq = max,cx nq/n; this is the largest fraction of voters who agree on which
alternative is worst, and lét= arg maxcx n, be the alternative that most rank worst. So,
b is easily remembered as denoting a “bottom-ranked” alternative.

Now define a critical value aof as:

1 1 1
1----[” } n odd
n n
qn = 1|:n+2i| (3)
1-—- , n even
n 3

where[x] denotes the smallest integer greater than or equal Mote thaty, < 2/3, and
lim,- o0 gn = 2/3. Finally, say that in gamé™ = (u;, X);cn, preferences arpolarized
over alternative x € X if there is anM C N such that alli € M rank x highest, and
i € N/M rankx lowest. Preferences over alternativarenon-polarized otherwise.

9 This requires the assumption of at least four players: the case of three voters and three alternatives, whether
a voter’'s middle-ranked alternative is weakly dominated or not depends on cardinal preferences (Dhillon and
Lockwood, 1999).
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We then have the following result, which follows directly from Theorems 1 and 2 below,
settingK = 3.

Proposition 1. Assume that K = 3. If (i) ¢ > 2/3, or (ii) ¢ = 2/3, and preferences are
not polarized over b, the game is dominance-solvable. If ¢ < ¢,, then the game is not
dominance-solvable.

The intuition for this result is as described in the introduction. However, it is probably
worth saying more about the somewhat less intuitive condition for non-dominance
solvability, ¢ < g,. A sufficient condition for non-dominance solvability is that for every
i € N, we can find a vote distributio_; such that:

(i) i's unique best responsedn ; is to vote for her second-ranked alternative;
(i) w_; does not have any# i voting for her worst alternative.

Condition (i) ensures that no voter's second-ranked alternative is weakly dominated,
implying that iterated deletion stops after the first round; condition (ii) ensures that the
construction of thés_; are internally consistent, i.e., do not involve any voter voting for a
weakly dominated alternative. Conditions (i) and (ii) place a number of linear restrictions
on thew_;; a sufficient condition for them all to be satisfiedds< ¢,. The proof of
Theorem 2 gives the details.

The first question that one might ask at this stage is whether the sufficient conditions
for dominance-solvability in Proposition 1 are also necessary. The example below answers
this question negatively, by presenting a game which is not classified as either dominance-
solvable or not by Proposition 1, and showing that it is dominance-solvable.

Example 1. The ordinal preferences of five voters are as follows:

1,2,3: x>y>z,
4: x>z>y,
5 z>x>y.

Note thatg, = 2/5,¢9 = 3/5, s0,q = g, + 1/n < 2/3. Also, preferences are not polarized
overb = y so the game is not classified by Proposition 1. We will show that the game is
dominance-solvable.

First, note that after the first round of deletion, by Lemma’ii,: {x,yLi=1...,3,
Vl.l ={x,z}, i =4,5. We show (in the reduced game) that for votenw4 = z is weakly
dominated byws = x. Suppose to the contrary that there exists_a € Q}4 such that
is a unique best responseda 4. This requires that 4 must be able to affect the outcome
by votingz, given someav_4 € .{2}4. The only such vote distributions a#e 4 = (2, 1, 1),
(1,2,1), and (2, 2,0). But it is clear that voter 4 does better voting foiin response to
each of these, a contradiction. (For example, if he votes father thary against2, 1, 1),
the outcome isc rather than a homogeneous lottery oyierz}, which voter 4 obviously
prefers.)
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So, at the end of the second round of deletiplcan get at most one vote i.e., from
voter 5, and so cannot win, in which case= z is weakly dominated for voter 5. The game
is then reduced to one where each player can vote for (at most) one of two altermatives
and is thus dominance-solvable, wittbeing the solution outcome.

The next example clarifies the role of the non-polarization condition by showing that it
is needed for dominance-solvability when= 2/3.

Example 2. The ordinal preferences of the six voters are as follows:

1,2,3,4 x>y>z,
56 z>x>y.

Also, voters 1-4 prefer their second-ranked alternativep a homogeneous lottery over

{x,y,z}. Note thaty = 4/6 = 2/3, and preferences overare polarized, so this game is

not classified by Proposition 1. In fact, the game is not dominance-solvable. To show this,

we prove that for any voter, it is a weakly undominated strategy relative'tm vote for

her second-ranked alternative. A similar argument (left to the reader) then shows that it is

a weakly undominated strategy relativeltd to vote for her first-ranked alternative. These

two statements together then imply that iterated deletion stops at the first round.
ByLemmalV!={x,y},i=1...,4,Vl={x,z},i =5,6. Define2!, = {w(v_;) |

v_; € V_li}. We show that for every voter there existéo_; € QL such that her second-

ranked alternative is a unique best response_tp Specifically, fori =1,...,4, y is a

unique best responsedn; = (1, 2, 2). To see this, note that ifresponds td@1, 2, 2) with

y, the outcome iy, but if i responds with, the outcome is the homogeneous lottery over

{x,vy,z}. Also, fori =5, 6, x is a unique best responsedn; = (2, 3, 0). Finally, it is

easily checked that_; € 21, alli=1,...,6.

Another question is how “close” Proposition 1 comes to classifying all games as
dominance-solvable or not for a fixed profile of voter preferences. One way of looking
at this is to note that Proposition 1 can classify the game as dominance-solvable or not
except when

(i) wheng =2/3 and preferences ovérare polarized,;
(i) gn+1/n=q <2/3;
(i) gn+1/n<q<2/3

It is possible to show that (iii) never occut$so we see that there aaemost two values

(out of n possible values) of such that the game cannot be classified as dominance-
solvable or not. If we hold the distribution of preferences across voters constant as
increases, we can prove a sharper result, namely we can prdessary and sufficient
conditions for games with more than a critical number of voters to be DS: the general
statement of this result is given in Theorem 3 below.

10 see Corollary 1 of Dhillon and Lockwood (1999).
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3.2. Dominance-solvability and Condorcet winners

We now turn to a characterization of the solution outcome in the event that the game is
dominance-solvable, and in particular how this outcome relates to the CW, whenever the
latter exists. First, there is the question of whether dominance-solvability implies existence
of a Condorcet winner, or vice-versa. Here, from Proposition 1, as the game is dominance-
solvable,g > gy, i.e.,q > ¢, + 1/n. Itis easy to check thatg, + 1/n > 0.5. So, if the
game is dominance-solvable, there is a Condorcetloser. Consequektly; &by a well-
known result there is a Condorcet windé1On the other hand, it is clear that the reverse
implication is not true. For example, the game in Example 2 is not dominance-solvable,
but there is clearly a Condorcet winner, namelyWe can summarize our discussion as
follows:

Proposition 2. If the game is dominance-solvable, a Condorcet winner exists.

The next, and key, question is whether the solution outcome is a Condorcet winner in the
event that the game is dominance-solvable. As stated in Theorem 1 belowsifffozient
conditions for dominance-solvability are satisfied, then this is the case. That is, in the case
of three alternatives, we have the following result.

Proposition 3. If (i) ¢ > 2/3, or (i) ¢ = 2/3, and preferences are not polarized over b,
any solution outcomeisa CW, i.e.,, W™ C X,

However, what if the game is dominance-solvable, but the sufficient conditions for
dominance-solvability dawot hold? This is a possibility, as Example 2 shows. In that
example, the solution outcome, is again the CW. We conjecture, but have not been able
to prove, that this is true generally: that every solution outcome must be a Condorcet
winner. We certainly have an asymptotic result of this kind, i.e., Theorem 3 below. This
says that if the electorate is replicated sufficiently often, and if the game is dominance-
solvable, the outcome is a Condorcet winner.

However, it should be emphasized that the above results and conjecture only apply to
the case of four or more voters. With only three voters, it is possible to have a voting
game which is dominance-solvable, but where the solutiootithe CW, as the following
example shows. As the example indicates, this arises because Lemma 1 does not hold with
three voters, and in particular, more strategies can be ruled out as weakly dominated at the
first round of iteration.

11 |n the odd casey, + 1/n > 0.5 if 0.5n > [(n + 1)/3]. As [(n + 1)/3] < (n + 1)/3+ 1, it is sufficient that
0.57 > (n+1)/3+ 1. This holds fom > 9. Finally, in the cases =5,7, g, + 1/n = 3/5, 4/7, respectively. The
proof in the even case is similar.

121t 4 = 3, it is not even the case that dominance-solvability requires the existence of a Condorcet winner, as
Example 4 of Dhillon and Lockwood (1999) shows.
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Example 3. Ordinal preferences over the three alternatives are as follows.

1 x>z>y,
2. 7>=x>Yy,
3 y=z>x.

The unique CW ig. Say that a voter hadominated middle alter native (DMA) preferences

if he prefers an equal-probability lottery over the three alternatives to his second-ranked
alternative. It is easy to shdw that the strategy of voting for one’s second-ranked
alternative is weakly dominated if and only if that voter has DMA preferences (so,
Lemma 1 above does not apply to the case of three voters). Assume now that only voters
1 and 3 have DMA preferences. Then, by the result just statdo= {x}, Vi = {y}.
Moreover, as voter 2 has non-DMA preferences, his unique best responsgo(x, y)

is v2 = x. So the game is DS, anifl™® = {x} # {z}.

4, General results

We now consider the case of an arbitrary numkiee 3 of alternatives. Forany C X,
definel” = (u;, Y);en to be the plurality game defined in Section 1 above, with a fixed set
of n players, but a set C X of alternatives. The preferences of players are the restriction
of the preferences over the skt to the subset. For any such game, le®(Y) be the
largest set of voters who agree on a worst alternativé iand define

g =20, (4)

n

This fraction plays a crucial role in what follows. Denote the worst alternativé for
voters inQ(Y) by b(Y). Without loss of generality, we will restrict our attention to games
whereb(Y) is a Condorcet loser, i.eg(Y) > 0.5, soQ(Y) is unique.

Let X = Xk, and define the following sets recursively:

Xi—1=X/{b(Xp}, 1=K,...,2 (5)

Each set is obtained from the previous one by deleting the alternative in the previous set
that is worst-ranked by the most players, and the initial set isjuthese sets are uniquely
defined for any sequence of games where for each game, at least a simple majority agree
on the worst alternative (there exists a Condorcet loser). Note that#. We now have

our general sufficient conditions for dominance-solvability.

13 consider for example voter 1. The only possible profiles where 1 is pivotal (i.e., changes the outcome with
his vote) are where voters 2 and 3 vote for different alternativespi.e.,= (1,1, 0), (1,0,1) or (0,1, 1). In all
other (non-pivotal) profiles, all strategies of voter 1 give him the same payoff. Tlwias good as in all the
non-pivotal profiles, but on the pivotal profiles we have: if 1 votesdf@gainst these profiles, he gets outcome
x,x, H, respectively, wheré/ is the equal-probability lottery over all alternatives. If he votesfagainst these
profiles, he gets outcom#, z, z, respectively. If 1 has DMA preferences, he strictly prefers the outcome arising
from voting forx in every case: henceis dominated byt. If his preference is the opposite, then the strategy
a unigue best response to profile 1, 1), hence undominated.
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Theorem 1. Assume that for all I = 3,..., K, ether (i) g(X;) > (I — 1)/1, or (i)
q(X;) = (I —1)/1,and preferencesare not polarized over b(X;) ingame I' = (u;, X;)ien-
Thenthegame I' = (u;, X);en isdominance solvable. Moreover, the solution winset W
isthat alternativein X» which is preferred to the other by a strict majority of voters, or X»
if equal numbers of voters prefer each alternative in X». Also, whenever (i) or (ii) hold,
then

(a) if n isodd, a unique CW x“% exists, and W = {x*};
(b) if n iseven, at least one Condorcet winner exists (i.e., X #£ @) and W™ C X¥.

The conditions require that for the sequence of sets of alternafiyesX g1, ..., X3),
there is sufficient agreement amongst the voters about which alternative is worst. Moreover,
the solution outcome is generated by sincere voting over the set of the two-element
alternatives X», that remains when the alternatives ranked worst by the most voters have
been sequentially deleted.

Three further remarks are appropriate at this point. First, if the game is DS, then the
only iteratively undominated strategies involve voting for one of two alternativeé&in
This is consistent with Duverger’s Law, which asserts that “plurality rule tends to produce
a two-party system” (Cox, 1997). Second, our sufficient conditions for DS are quite strong
in that they imply the existence of a Condorcet winner, but they have the attractive feature
that any alternative in the solution outcof&® is always a CW. Third, the sufficiency
conditions are quite strong. For exampleKif= 4, we need that at leasy/8 of the voters
agree on which alternative is worst, and once that alternative has been deleted from the set,
2/3 of voters must agree which of the remaining three alternatives are worst.

We now present sufficient conditions for the gaié:;, X),cx not to be DS, and a
characterization o/ (V°°), the set of iteratively weakly undominated outcomes in this
case. Consider the sequence of sets (5) above, and the associated sequence of fractions
{q(X,)},K:?,. Also, for any game witl alternatives, define the critical fractions:

qn In EQ. (3), =3,
1 1 3-8
, 1____[’”7}, />3, nodd
q, = non [ (6)
1 A-7
1——[%}, >3, neven
n

where [x] denotes the smallest integer larger thanNote thatg! < (I — 1)/1, and
liMy—oo g = —1)/1. Obviously,q,? in (6) is equal tag, in (3). Then we have:

Theorem 2. If thereexistsan ! € {3,4, ..., K} such that (i) ¢(Xz) > (k — 1) /k, all k > [;
(i)) ¢(X1) < g, or ¢(X;) =g + 1/n, and preferences over b(X,) are polarized, then the
game I' = (u;, X);en isnot DS. In this case, the set of iteratively undominated winsetsis
W((V®)={W(v) | v; € X;/b;}, where b; isvoter i’sbottom-ranked alternativein X;.

Note from Theorem 2 that we are also able to characterize the set of iteratively weakly
undominated winsets even if the game is not dominance-solvable.
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Theorems 1 and 2 together provide conditions under which a game is classifiable
as dominance-solvable or nbtIf we hold the distribution of preferences across voters
constant a increases, we can prove a sharper result, namely we can pruagessary
and sufficient conditions for games with more than a critical number of voters to be DS.
This can be formalized as follows. Ldf, = (u;, X);cy be the plurality voting game
with a fixed numbemn > 3 players Note that in any such game, there d@ possible
strict preference orderings over tikealternatives. Lep;', [ =1, ..., K!, be the fractions
of players inI;, who have the/th possible preference ordering. So a distribution of
preferences oiX across players is characterized ¢y = {¢l”}l’(:’1. Define them-replica
game I}, = (u;, X)!"™,, m=1,2,..., to be a game witlwm voters but with¢"" = ¢",
all m, i.e., where the different “types” of voters ifi, are replicated by the facton.

The key feature of the:-replica game is that the distribution of preference profiles in the
population of players does not change:ashanges.

For any preference distributiap, and set of alternativeB c X, defineg(¢, Y) as in
(4) to be the largest fraction of voters who agree on the worst alternatieAtso, recall
the definition of the sequence of subsets of alternatkigsXx 1, ..., X3 defined in (5)
above. We make the following assumption abd}itwhich rules out some “non-generic”
cases.

(A2) q(¢", X)) #(1—-1/1,1=3,...,K.

Then, we have the following result.

Theorem 3. Consider any game I, for which (A2) holds. Then there is an mg such that
for all m > mo, I, iSsdominance-solvableiff ¢ (¢", X;) > (- 1)/1,1=3,..., K.

In other words, if the replicated electorate is large enough, and condition (A2) holds,
then the game camlways be classified as DS or not DS. An obvious corollary of
Theorems 1 and 3 is the following:

Corollary 2. Consider any game I, for which (A2) holds. Then thereis an mg such that if
m > mo, and I, ,, isdominance-solvable, at least one Condorcet winner exists (X" # )
and any solution outcome is a Condorcet winner, i.e.,, W c X,

This is the most general statement of the relationship between dominance-solvability
and Condorcet winners.

14 These conditions leave few games unclassified. Indeed, it can be shown that fos §Biy4, . . ., K}, there
is at mostone possible value ofy (Xy), namelyq,’g + 1/n, for which q,’§ < q(Xy) < (k —1)/k. Consequently,
from inspection of Theorems 1 and 2, there are at rwstpossible values of eaci(X;) for which the game
cannot always be classified as DS or rgft:+ 1/ and(k — 1)/ k. That s to say, it} (Xz) # ¢X +1/n, (k—1)/k,
ke{3,4,..., K}, then the game caaways be classified.
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5. Extensionsand conclusions
5.1. Some extensions

First, we have ruled out indifference over elementsXgfand also certain lotteries
over X, by (Al). When voters are indifferent over outcomes, in general, the order of
deletion of dominated strategies matters. There are two alternatives here. One is to make
assumptions sufficient to ensure that the Marx and Swinkels (1997) Transference of
Decision Maker Indifference (TDI) condition is satisfied (as discussed in Section 2.2). An
assumptiof which implies TDI in our model is that if somiec N is indifferent between
winsetsW (Y), W(Z), Y, Z C X, then so are alf € N. With this assumption, all voters are
indifferent between the same subset of alternatives.

The second is to accept that the order matters, and focus on the outcome with some
“plausible” order of deletion. The order of iteration we used to prove Theorems 2 and
3 is of some interest. Iterated deletion is applied to the gdme (u;, X);cy until the
alternative ranked worst by the highest number of voters §3@and only that alternative,
is deleted from all strategy sets, so the game is reducétto(u;, X /b);cn, and so on.

This procedure is known as tiig&oombs social choice function (Moulin, 1983, p. 24). If
we want to apply this order of deletion with indifference, the problem isihaty not be
uniquely defined. But, given some tie-breaking rule, we may be able to proceed as before.

A second extension would be to consider different scoring rules, other than plurality
voting, to see whether well-known scoring rules can be “ranked” in terms of the strength
of the conditions required to make them dominance-solvable. This is the subject of our
current research. One other simple extension of plurality voting that can be studied using
the methods of this paper is plurality voting withranoff : with this rule, if no alternative
gets more than 50% of the vote, then there is a second round when voters vote only for
the two alternatives with most voté8 With only two alternatives at the second stage,
there will be no strategic voting, so every voter rationally anticipates the same winner at
the second stage. So, one can write down expected payoffs just as functions of first-round
votes, and analyse the resulting game using the methods of this paper.

5.2. Conclusions

This paper has presented conditions sufficient for a plurality voting game to be
dominance-solvable, and sufficient for it not to be dominance-solvable. These conditions
can be stated in terms of only one sequence of statistics of the game, the largest proportion
of voters who agree on which alternative is worst in a sequence of subsets of the original

15 This assumption is satisfied, for example, in a citizen-candidate voting game where voterskare rof
types, and every voter has strict preferences over different types, satisfying (A1), and is indifferent between two
candidates of a given type. Then any voter is only indifferent betwe@n, L(Z) if Z can be obtained froni
by deleting candidates of some type and replacing them by others of the same type, in which case all voters are
indifferent.

16 To break ties, we need to assume that if the wil&&b) has more than two members, two are selected
randomly.
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set of alternatives, where each subset is derived from the previous one by deleting the
alternative that most voters rank as worst in the previous subset. When the number of
voters is large, “almost all” games can be classified as either dominance-solvable or not
dominance-solvable. If the game is dominance-solvable, the outcome is usually but not
always the Condorcet winner, whenever it exists.

Acknowledgments

We thank Tilman Borgers, Martin Cripps, Jean-Francois Mertens, Myrna Wooders, and

two referees and an associate editor for very valuable advice. We also thank seminar

participants at the ESRC Game Theory Workshop at UCL, The CORE-Franqui Summer
School in Political Economy, the International Conference of Game Theory at SUNY,
Stony Brook, Queen Mary College, University of London, The Indian Statistical Institute,
and the Universities of Nottingham, Southampton, and York for comments.

Appendix

Proof of Lemma 1. Suppose w.l.0.g. that votéis preferences arety >; x2 =; --- >;
Xj>ixj41>; --- > Xg. SO, it is sufficient to show that for any< K, there exists some
w’_i € £2_; such that; = x; is a unique best responsedxii; for then,v; = x; cannot be
weakly dominated. ‘
Let o', = (0], @}, ..., w§) where @{ is the number of votes (excludings) for
alternativex;. If n is odd, construcw’; so thatw} = wj,; = (n — 1)/2, o/ =0,

Vi #j,j+1.Asn > 3, note thatof,wjﬂ > a)lj+1,‘v’l # j, j+1.So, ifi playsx; against

w’_, the outcome is;, if i pIanyj+1 againstw’;i, the outcome isc; 1, and finally ifi
playsx;, [ #j,j+1 againstoil., the outcome is;; or x ;41 with equal probability. As
strictly prefers the first outcome to the second or thirdis a unique best responsed
as claimed. . . . .

If n is even, construab’; so thaiw] =n/2 — 1,w§+1 =n/2,0] =0,Vl# j, j+ 1. As
n > 3, note thatco:;, w;Jrl > a){', vl # j, j+1.So, ifi playsx; againstw{l., the ogtcome
is x; or x;41 with equal probability. Ifi playsx;11 orx;, I # j, j+1, againstuil., the
outcome isx; 1. As i strictly prefers the first outcome to the secomgljs a unique best
response te’ ., as claimed. O

Proof of Theorem 1. LetY C X, and define
Y/b(Y), ieQ(Y),
Y, i¢0(Y),

and alsoT (Y) = X._, T; (Y). Let y = #Y. We can now state and prove three additional
lemmas.

T,~<Y)={

ieN



70 A. Dhillon, B. Lockwood / Games and Economic Behavior 46 (2004) 55-75

LemmaA.l Inthegame I" = (u;, Y)ien, if g(Y) > (y — 1) /y, then v; = b(Y) isweakly
dominatedfor all i € N/Q(Y) relativeto T (Y).

Proof. (i) First, we show thab(Y) ¢ W (v) for all v € T (Y). Suppose to the contrary that
b(Y) € W(v) for somev € T(Y). Thenb(Y) must get at least as many votes as all other
alternatives inY. But »(Y) can get at most(1 — ¢(Y)) votes, asig(Y) players have
deletedh(Y) from their strategy sets. So, as no alternative gets more vote {lfanand
there arey alternatives, the total number of votes cast is at nMiost yn(1 — ¢(Y)). Now,

if g¥)>(y—-21/y,yn(1—¢q()) <n,soT < n, a contradiction since we do not allow
abstentions.

(i) Fix a profile of votesv_; € X i Ti(Y). Given this profile, any € N/Q(Y) can
always do weakly better by voting f]or her most preferred alternativg/in(Y )—says;—
rather than fob(Y). This is because a vote fé(Y) can never affect the winset by part (i),
so a switch fromb(Y) to s; by i will either:

() not affect the outcome, or
(i) adds; to the winset, or
(iii) eliminate all alternatives other than from the winset.

In cases (ii) and (iii)j strictly gains. O

LemmaA.2. Inthegame I' = (u;, Y)ien, if ¢(Y) = (y — 1)/y, and preferences are non-
polarized, then v; = b(Y) isweakly dominated for somei € N/Q(Y) relativeto T'(Y).

Proof. (i) First we prove that ifo(Y) € W(v) for somev € T(Y), then,all alternatives
must be inW (v). For suppose not; let # b(Y) andx ¢ W(v). So, there are at most
y — 1 alternatives inW (v), and asbh(Y) € W(v), all of these alternatives can get no
more votes thaw(Y). Moreover,b(Y) can get at most(1 — ¢(Y)) votes, by definition
of ¢(Y) and the fact thabv € T(Y). Thus, the total number of votes cast is at most
T=U-n(l-—q))+nl—-q)) —1wheren(l—q(Y)) — 1 is the most votes
thatx can get and not be iW (v). Now, asq(Y) = (y — 1)/y, T =n — 1, a contradiction
since we do not allow abstentions.

(i) As the game is non-polarize@,(Y) is not ranked best ity by somei ¢ Q(Y).
From part (i), given any vote profile of the other voters e Xz T;(Y), there are two
possibilities for this voter: either whenv; = b(Y), b(Y) ¢ W(v), in which case he does
weakly better by voting for his most preferred alternative, by the argument in the proof of
Lemma A.1,or whenv; = b(Y), b(Y) € W(v), in which case all alternatives have equal
numbers of votes, in which case, he could do strictly better by voting for his most preferred
alternative. So, choice of = b(Y) is weakly dominated as claimedO

LemmaA.3.Inthegame I" = (u;, Y)ien if () g(Y) > (y—=1)/y,or (i) g(¥)=(y—21)/y
and preferences are non-polarized, then this game can be reduced to the game I' =
(u;, Y/b(Y));en by iteratively deleting weakly dominated strategies.
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Proof. (i) Assume first that condition (i) of the lemma holds. Then, from Lemmia(t)

is weakly dominated relative tg = Y for all players inQ(Y), and so can be deleted from
their strategy sets to gét' = 7'(Y). Then, from Lemma A.15(Y) is weakly dominated
relative toT (Y) for all players inN/Q(Y). So, we can delete(Y) from the strategy sets
ofalli e N/Q(Y) to getVZ = (Y/b(Y))" after two rounds of deletion, as required.

(i) Now assume that condition (ii) of the lemma holds. Again, from Lemmé(Y) is
weakly dominated relative t& = Y for all players inQ(Y), and so can be deleted to get
vi=T(Y). Now from Lemma A.2)(Y) is weakly dominated relative t6(Y) for some
i e N/Q(Y). So, we can delete(Y) from the strategy set of thise N/Q(Y) to give a set
of strategy profile§’2 = (V2, V2,) = (Y/b(Y), X Tj(Y)). But then by the argument of
LemmaA.1p(Y) ¢ W(v), v € V2, ash(Y) can now get at most(1— ¢ (Y)) — 1 votes. So,
b(Y) is weakly dominated foall players relative td/? and thus can be deleted from all
the remaining players’ strategy sets to §&t= (Y/b(Y))" after three rounds of deletion,
as required. O

We can now return to the proof of Theorem 1. Under condition (i) or (ii) in the
theorem, by LemmaA.3; = (u;, X;);cy canbereducedtb = (u;, X;—1);cn by iterated
deletion of weakly dominated strategies. So, iteratifigs (u;, X;)icy Can be reduced to
I' = (u;, X,);ey Where each player has only two strategies. In the gArae(u;, X,);cn,
the only undominated strategy is to vote sincerely, and so the game is dominance-solvable,
with an outcome as described in the theorem.

To prove the last part, lef2 = {x, y}. First suppose thatis odd. Then w.l.0.g., suppose
x beatsy in a majority vote, sdV*° = {x}. Then,x must be a CWFor suppose not. Then,

x must be ranked worse than somez X, by a majority of voters, and thus must be in
X/ X2, contrary to assumption.

Now suppose that is even. Then, either the above argument applies W&, = {x},
wherex is a CW), or equal numbers of voters prefeto y and vice versa, in which case
W = {x, y}. Again, x, y must both be CWsFor suppose not. Then, one or bothxofy
must be ranked worse than some¢ X, by a majority of voters, and thus must be in
X/ X>, contrary to assumption.O

Proof of Theorem 2. Let! be the firstk € {3,4, ..., K} for which ¢(Xy) < ¢*. Then, by
the proof of Theorem 1, the ganié= (u;, X);cn can be reduced t&' = (u;, X;);en by
iterated deletion of weakly dominated strategies.f:éiei’s bottom-ranked alternative in
X;. Then, by Lemma ly; = b; is weakly dominated il = (u;, X;);en, SO We can delete
b; from playeri’s strategy set to gef; = X;/b;, i € N. We now show that ne; € T; is
weakly dominated relative t& = X; 7;: this implies that7" is afull reduction of V by
weak dominance (Marx and Swinkels, 1997, Definition 3) and hence by Corollary 1 of
Marx and Swinkels, the set of iteratively undominated winset®#is- {W(v) | v; € T;,
i € N}, which proves the theorem, given that= X;/b;.

W.lo.g., letX; ={x1,...,x;},and letN(x,,) ={i e N | b; = x5}, 1 <m < [. So,

Ti =Xi/Xm, 1€Nxm). (A.1)
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It now suffices to show that for evelye N, there existev_; € T—; such that it is a
unique best response foto vote for any alternative € 7;. For then, no alternative if;
can be weakly dominated for

W.lLo.g., leti € N(x;), soT; = {x1, x2,...,x;-1}, and assume thaty >; x2 >; --- >;
Xj>iXjq1>i - > xi—1. Also, letw_; = (w1, w2, ..., w;) be a vote distribution ovex;,
wherew; is the number of votes for alternativg, and$2_; (T) = {w(v—;) | v—; € T_;}.
So, we need to show that there exists € £2_;(T) such that it is a unique best response
for i to vote for any alternatives, ..., x;—1. Note two properties of a vote distributian_;
that must hold if it is to belong t&2_; (T'). First, the total number of votes must add up to
n—1:

l
Y oy=n-1 (A.2)
k=1

Secondw; must be no greater than the number of voters (excludimgho donot rankx;
worst in Xy, i.e., for whomx; € 7;. Inspection of (A.1) implies that this requires

wléznk, w,/éznk—l, J#L (A.3)
k#l k#j

wheren; = #N (xi).

Case 1 (n odd). We know from the proof of Lemma 1 that =x;, j </, is a unique best
response if; t0 w—_; = (w1, w2, ..., wy) if

wj=wjy1>wr+1, k#Fj,j+1 (A.4)

So, it suffices to show that we can fiaid; € £2_; (T) where (A.2)—(A.4) are satisfied. We
constructs_; as follows. First, seb; = w;;1 = w, Where:

[”+1} if /=3,

w= 3 (A.5)

[Ziiif}iﬂ>a

where [x] is the smallest integer greater than or equakidets = (n — 1) — 2w be

the number of remaining voté$.Note that we can always write= s(/ — 2) +r, > 0,

0<r <1 -2, wheres,r are integers. Now, distribute the remainingotes over the
remaining/ — 2 alternatives as evenly as possible. That is; # 0, s > 0, give every
remaining alternative votes; ifr > 0 and give every remaining alternativevotes and
an additional vote t@ of the/ — 2 remaining alternatives. Clearly, ; satisfies (A.2) by
construction.

17 1t is easy to show that > 0. For this, we require — 1 > 2[(n + 3/ — 8)/1] = 6 + 2[(n — 8)/1]. Now the
right-hand side of this inequality is largest wheg: 3, so we only need > 6 + 2[(n — 8)/3]. It can easily be
checked that this holds for > 6, the case ok =5 can be checked separately. Similarly, whiea 3, we can
show that: — 1> 2[(n + 1)/3] for n > 9, the cases =5, 7, can be checked separately.
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Also, @_; satisfies (A.4). To see this, note first that the maximum number of votes for
any of the remaining alternatives,, k # j, j + 1iss if r =0, ands + 1 if » > 0. Also,
s = (t —r)/( —2). Butthen, noting that if = 2, » = 0, (A.4) requires simply that

n+1 t .
oy = A,
|: 3 :|>l—2+ if =3, (A.6)
3-8 t—
[”+l }>z ;+2 if1>31-2>r>1 (A7)

Using the definition of, the inequality (A.6) requires
|:n + 1i| n—1-2[(n+1)/3]
>

1
3 -2 +

which, using[x] > x, certainly holds. Also, the inequality (A.7) requires

|:n+1§l—8:| - n—2—2[l(n_—;31—8)/l] Lo

which, again, usingx] > x, certainly holds for > 2.
It remains to check thad_; satisfies (A.3). From (A.4), a sufficient condition for (A.3)
to be satisfied is that

o < an -1 (A.8)
k#j

Now letn; < 6n, ¥k. Note that asy"s_; nx = n, ny < n implies Yk = (1= 0)n,
for any j. Then (A.8) is certainly satisfied if the following holds:

o< (1-60)n-1 (A.9)

Now let ¢/ be the largest value af such that (A.9) holds. Saj! satisfies (A.9) with
equality, i.e.,q,l, =1-1/n — w/n. Substituting outs from (A.5), we get the expression
(3) for! = 3, and the expression (6) for- 3, for the case of: odd.

Case 2 (n even). Here, the argument is the same, except we now ch@ose T_; such
that (A.10) below, rather than (A.4) is satisfied;

wj=wjy1—1>wr, k#j j+1 (A.10)

For then, if (A.10) holds, by Lemma 1; = x;, j <, is a unique best response by
to w_; € T—;. The required vote distributiof_; is constructed as follows. First, we set
wjr1 =w,w; = — 1, where

[”:2} if1=3,
= (A.11)
[w} if | > 3.

/
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Also, distribute the remaining= n — 2w votes over the remaining— 2 alternatives as
evenly as possibl& as before.

Clearly, @_; satisfies (A.2) by construction. Als@_; satisfies (A.4). To see this,
note by the argument in the odd case, that the maximum number of votes for any of
the remaining alternativesy, k # j,j + 1, iss if r =0, ands + 1 if r > 0, where
s =@ —r)/( —2).Butthen, noting that if =2, » =0, (A.4) requires simply that

(n+2 t :

1>— ifl= A.12
3 :| >l—2 if [ =3, ( )
(n+3l—7 —
Hf}—l>;—;+l ifl>3,1—-2>r>1, (A.13)

wheret =s(l — 2) + r, as before. Using the definition of (A.12) requires
(n+2 2
”; ]—1>n—2[”;r ]+1,

which, using[x] > x, certainly holds. Noting that the RHS of (A.13) is maximized when
r =1, the inequality (A.13) requires

|:n+3l—7:| _n=2Aw+3-7)/0)

2
l 1-2 e
which, again usingx] > x, certainly holds for > 3. Finally, (A.3) is certainly satisfied
by @_; if

wjt+1 < an,

kj
which, from (A.11), reduces to

w<1-0n, (A.14)

wheren; < 0n, Yk. Now letg! be the largest value @f such that (A.14) holds. Sg;,
satisfies (A.14) with equality. Solving this expressiond@rand using (A.11), we get the
expression in (6) for the case mfeven, and the expression in (3) foevenand =3. O

Proof of Theorem 3. (Sufficiency) If g(¢", X;) > (I — 1)/I, 1 =3,..., K, obviously
q@" XN >1-1/1,1=3,...,K,m>1,80[, is DSforallm > 1from Theorem 1.

(Necessity) Assume thatis odd. The proof for the even case is similar. If ing the
case thay (¢", X;) > (I — 1)/1,1=3,..., K, then, by Lemma A.3, then there is some
[ €{3,..., K} suchthat

-1 k—1
61(¢",X1)<T, q(¢”,Xk)>T, k>1. (A.15)

18 |t can be checked, as for the odd case tha, since this is true ifi —2 > 2w, i.e.,n —2 > 4+ 2[(n—T7)/3].
The RHS is maximized wheh= 3, thus it is sufficient to show that— 2 > 4 + 2[(n — 7)/3]. The latter holds
for n > 6, and the case = 4 can be checked separately.
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But then asq,ﬂ <(—-1)/1,and lim,— q,l, = (I — 1)/1, there exists a1 such that

q@"" . X)) =q(@". X)) <@l m =mo. (A.16)
So, we conclude from (A.15), (A.16) that

k—1
q@", X)) <ql,. g™ Xi) > — k=1L

for all m > mo. So, by Theorem 2[, ,,, is not DS for allm > mg. O
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