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Preemption games are widely used to model economic problems such as patent races. We in-
troduce private information into these games and allow for this information to stochastically change
over time. This reflectse.g. how R&D competitors improve their innovations over time and keep
these innovations secret before patenting them. The analysis initially appears intractable because of
the complexity of the equilibrium updating of beliefs on opponents’ information. However, we demon-
strate the existence of a class of equilibria and calculate these equilibria in closed form. We find that
the expected durations in these equilibria are longer than when players’ information is public but,
in some cases, shorter than in the collusive outcome. Hence, R&D secrecy slows down innovation
disclosure.
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1. INTRODUCTION

The analysis of timing decisions is of prime importance in economic theory. For example, the
timing of patent applications determines the rate of disclosure of innovations, and hence welfare
assessments of R&D activities and policies. Such economic problems are typically represented
as “preemption games”: models where each agent’s strategic decision is when to end the game,
and there is a first-mover advantage in the pay-offs. One important, but previously neglected,
feature of these timing problemspsivate informationthe agents’ pay-off-relevant characteris-

tics (which we define as their states) may be only privately known and may stochastically change
over time. For example, R&D competitors improve their innovations over time and keep them
secret before filing for a patenthis paper calculates equilibria in preemption games where
players’ private information states stochastically increase over .tile contrast our results

with the analysis of timing games with symmetric information. We find that equilibrium du-
rations are longer when information is private. We then contrast our equilibria to the collusive
outcome when players are in a team that aggregates private information and maximizes joint
pay-offs. When each player’s state influences only her own pay-off, we find that private infor-
mation equilibrium durations are shorter than in the collusive outcome. In the context of patent
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races, we conclude that secrecy slows down innovation disclosure, possibly to the advantage of
R&D competitors.

Incorporating into the analysis of preemption games, the realistic feature that players’ private
information states change over time generates novel conceptual obsfd®esalculation of
equilibrium beliefs, and hence the calculation of the equilibrium, appears intractab&only
available information to a player is that the opponent has not yet ended the game. How should
a player update her equilibrium beliefs of the opponent’s state and hence of the risk of being
preempted? How should higher-order beliefs affect one’s chbitks®, how should equilibrium
beliefs evolve over time? If the opponent is still in the game at a late time, should a player believe
that the opponent is likely to remain longer or should she believe that she is coming close to end
the game?

We provide definitive answers to these questions in a stylized continuous-time framework. In
any instant, each player’s state is the sum of past state increments that arrive according to iden-
tical independent Poisson processes. Conditional on arrival, the value of the state increment is
randomly drawn from distributions that are identical and independent across players. Under mild
assumptions on the players’ pay-offge show existence of equilibria where each agent ends the
game when her state is above a time-decreasing threshold, and we derive in closed form the or-
dinary differential equation that determines the equilibrium threshdhte equilibrium beliefs
have the following properties. Because the players do not know each other’s states, they use cal-
endar time to make inferences on how close the opponent is to ending the game, and hence on
the risk of preemption. Over time, each player becomes more afraid that the opponent will soon
end the game and becomes more willing to end the game for lower states and pay-offs. To illus-
trate the substantive meaning of our equilibrium, considgra patent race where an innovation
“isinthe air”:i.e.more than one firm is working on it. As time advances, the competitors become
more and more concerned with the risk of preemption and less willing to wait for additional re-
sults before applying for a patent.

Having calculated the closed form of the differential equation determining the time-
decreasing equilibrium thresholds, we can perform several comparative statics exercises in appli-
cations such as patent races. We find the surprising policy predictiosttbagthening patent
rights may slow down innovation disclosu®tronger patents increase both the commercial
value of current research and the option value of waiting for additional results that improve
current innovations. When research is sufficiently costly compared to the development of in-
novations, it turns out that strengthening patent rights increases the option value for waiting
more than the value of current research, thereby inducing firms to procrastinate patent
applications.

In order to highlight the implications of private information in preemption games, we com-
pare the time-decreasing threshold equilibrium of our games with the equilibrium of analogous
preemption games with public information. Under some regularity assumptions, we fitllethat
expected equilibrium durations are shorter when information is pulMicen the players’ states
are common knowledge, the equilibrium unravels. For fear of being preempted, each player be-
comes willing to end the game at low states. In turn, this makes the opponent even more afraid
of preemption and willing to end the game at even lower states. When the opponent’s state is pri-
vate information, the players do not know whether the opponent’s state is close to the stopping

1. Note that a player may be willing to delay ending the game only because she believes that there is no risk of
preemption. This belief may be induced by the belief that the opponent believes that there is no risk of preemption and
hence is willing to delay ending the game.
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threshold or not. This reduces the fear of preemption and stops the equilibrium from unrav-
elling. In the context of patent races, this result implies 8erecy slows down the speed of
technological disclosuréVhen innovation results are more likely to leak out, research firms
may become more afraid of preemption and eager to patent innovations of smaller economic
significance?

Finally, we study the problem of a team that aggregates players’ private information and
that maximizes the team’s joint pay-off. We find that, as the time spent in the game grows
large, competing players become willing to end the game at states for which the team plan-
ner would instruct them to continue. Our results are sharper in the case where each agent’s
state influences only her own pay-off (the private value case). In any time-decreasing thresh-
old equilibrium, the players stop the game too early relative to the collusive outcome. Intu-
itively, when pay-offs are shared among the players, there is no risk of preemption, and hence
game durations are longer than when players compete. In the context of R&D races, this re-
sult implies thatwhen there are no competition externalities in the innovation market, se-
crecy is advantageous to R&D competitoss, it brings duration times closer to the collusive
outcome.

This paper is presented as follows. After the literature review, Se8twasents our general
model of preemption games with private information. Time-decreasing threshold equilibria are
calculated in Sectioand compared to equilibria of games with public information in Sedion
The team problem is studied in Secti@rSectiory relates our results specifically to patent races.
Section8 concludes. Most proofs are in the appendix.

2. LITERATURE REVIEW

Preemption games have been studied widely. Among the earliest games ever studied is “Duel”
(seee.g.Karlin, 1959). In this simple preemption game, two duellists shoot at each other with
accuracy increasing over time. This model has evident military and economic applicatmns,
Binmore(2004) motivates his study as a model of patent races. Possibly, the simplest preemption
game is the centipede game, introducedmgentha(1982). In each round, one of two players
may either contribute one dollar to the opponent’s account or collect the sum accrued in her
account and end the game. A referee adds one dollar to the account for each dollar contributed.
The equilibrium unravels completely. For fear of being preempted by the opponent, each player
closes her account immediately. In contrast to this immediate unravelling, we show that the
equilibrium unravels only gradually in our games with private information.

A number of papers model patent races as preemption games. Possibly the earliest ones
are byFudenberget al. (1983) andLippman and McCard|€1988). Closer to our workjVeeds
(2002) studies a model with symmetric information where the value of an innovation changes

2. As we later discuss, this result may help explain the acceleration in the patenting rate, observed in the data
since the mid 1980’s (sd¢ortum and Lernerl999;Hall, Jaffe and Trajtenber@001), as well as differences in citation
numbers across R&D industries.

3. Related to preemption games are their mirror-image games, wars of atirgidiming games with a late-
mover advantageBaye, Kovenock and de Vrigd993) apply these games to lobbyiiulow and Klempere(1999)
generalize the war of attrition to the case where thelastit of n players receive a higher pay-offudenberg and Tirole
(1986) model a duopoly war with changing demand as a war of attrition with private information on marginal costs.
Décamps and Mariot{2004) study a war of attrition where the private cost of the irreversible investment in an uncertain
project is private informationKrishna and Morgar(1997) study general wars of attrition with private information.
Unlike us, none of these papers allows private information to change over time.
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stochastically over time. Similarly,ambrecht and Perraud{2003) study a preemption game
where two firms own options to buy an asset with value stochastically changing over time, and
where strike prices are private information. Unlike our analysis, private information is of private
value and constant over tinfe.

Reinganum(1981),Fudenberg and TirolE985) andRiordan(1992) study technology adop-
tion and market entry preemption games. Competitors decide the timing of entry in a market or
the timing of adoption of a process innovation. Waiting reduces the costs of entry and of in-
novation adoption but there is a first-mover advantage. Unlike this paper, they do not consider
private information. Closer to our worldbreu and Brunnermeigi2003) study a preemption
game modelling the interaction of traders in a financial bubble. Like us, they consider private
information of interdependent value: each trader receives some information of when the bubble
is likely to burst. Unlike us, they do not allow information to change over time.

By calculating equilibria of timing games with states changing over time, our paper con-
tributes to the literature on learning and experimentation in games. One strand of this literature
has studied strategic experimentation in multi-armed bandit modéaltan and Harrig1999)
andKeller, Cripps and Rad{2005), each player can switch between a safe arm, whose pay-off
is known, and a risky arm whose pay-off is unknown. Further, it is assumed that the players’
pay-offs are common knowledge. This assumption has recently been lifleddsnberg, Solan
and Vieille (2007) andMurto and Valimaki(2005). Both papers consider the case where the
switch from the risky arm to the safe arm is irreversili¥@senberg, Solan and Vieil[@007)
show that the equilibrium is in cut-off strategies: Each player chooses to switch when her cumu-
lative pay-off from the risky arm is below a threshold, which decreases with the time spent by
the opponent experimenting with the risky afdurto and Valimaki(2005) show that almost all
players keep the risky arm if and only if it yields a higher expected pay-off than the safe arm,
but players tend to stay on the risky arm for too long.

Other papers have considered learning and experimentation in models different from multi-
armed banditsKeller and Rady(1999) study optimal experimentation by a monopolist who
faces an unknown demand curve subject to random changes. They show that there are two qual-
itatively different regimes. In the first one, there is extreme experimentation and good tracking
of the prevailing demand curve, in the other one, moderate experimentation and poor tracking.
Bergemann and Valimakil996) consider a buyer who buys a stream of goods of unknown
value from sellers who compete in prices over time. They find that all Markov perfect equilibria
are efficient, and that prices below marginal cost emerge naturally to sustain experimentation.
Bergemann and ValimakR000) expand this model to allow for multiple buyers. Assuming that
the performance of the new product is publicly observable, they show that the buyers perform
excessive experimentatiokeller and Rady2003) study price setting by duopolists who do not
know the perceived degree of product differentiation. They show that price dispersion arises in
cyclical fashions, depending on whether the value of information gathered through price disper-
sion is high or lowMoscarini and Squintar(2004) study a winner-takes-all R&D race where
firms are privately informed about the arrival rate of the invention. Unlike in this paper, equi-
librium expenditure in R&D is smaller than in the collusive outcome, if the team planner is
sufficiently impatient.

4. Other papers have highlighted preemption effects in different models of R&D races. In the “tug-of-war” model
of Harris and Vicker§1985), firms take turns in making costly steps towards a “finish line.” The equilibrium immediately
unravels: once a firm is ahead in the race, its competitors immediately quit. However, this dramatic unravelling disappears
when uncertainty is introduced regarding the duration of each Btapi§ and Vickers1987). Unlike these models, we
introduce private information and show that it makes equilibria unravel only gradually over time.
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3. THE GAME

Two players,AandB are engaged in the following timing game. The state of each plateany

timet is expressed ag(t) € R4, e.g. ¥ maybe the value of playérs innovation in a R&D race.

Each player’s state is private information and evolves according to a compound Poisson process.
Specifically, each player has independent Poisson arrivals of state incrementsofréteat

any timet, the next arrivak; >t is distributed according to the cumulative distribution function
(c.d.f) H(zilp,t) = 1—e»@~Y The c.d.f. of the incremenb—conditional on arrival—is

G, with support equal t@®,. We assume thaB e C?, with bounded densitg, and that the
distribution of increments is log-concavé.e.

dlogG(w)/dw = g(w)/G(w)is decreasing io.

The process we have just described defines a distribution of the randorg; sthtsach player
at timet; we denote the associated c.d.f. B, x; ). Because the support of the c.d¥.is R,
andG e C?, the properties of compound Poisson processes make sute(that) € C2, and we
denote the density dF (t, ;) by f(t,x;).®

Eachplayeri incurs a flow cost to remain in the game. At any point in time, each
playeri may decide to stop the game and achieve a pay+odf(T)). This pay-off need not
be instantaneous, but it may be obtained in a continuation game separate from the timing game
e.g.it may be the present discounted value of the stream of pay-offs associated with a patented
innovation. The opponent receives a payofk; (T), xi (T)). While the first-mover's pay-off
depends only on her own state, we allow the second-mover’s pay-off to depend on both states.
For example, in patent races, both players’ pay-offs likely depend on the first-mover patented
innovation, which becomes the industry standard. When representing a player’'s pay-off, we
shall denote her own state byand the opponent state by By definition of a preemption
game, the first mover has an advantage: there is a uniform (possibly small) beuet that
u(x) > u(x,y)+e¢ for anyx, y. In the event that players stop the game simultaneously at time
T, each playei receives the pay-bfu(x; (T), xj(T)) = [u(xi (T)) +u(x (T), xj(T))]/2. We
assume that both andu arebounded above and twice continuously differentiable. We assume
that there are finite positive bountfsandM; suchthat O< u’ < M, and 0< u; < Mg, this weak
inequality allows the utility not to depend on one’s state when preempted by the oppdnent.

5. For example, increments may be negative exponentially distributed of paraiméter g(w) = Je~* or
gamma distributed with parametexgndb, i.e. g(w) = bﬁdrlfa)wa—le—“’/ b,

6. Note thatx; (t) canbe expressed ag,'f:(‘o) wg, whereK (t) is Poisson distributed with parameietr, and the
incrementsoy areindependent identically distributed of distributi@h Hence, the density of; (t) canbe expressed as

0 ka—kpt
)= 100 LT
k=1 ’

where f D (x) = g(x;), and recursivelyf 0 (x) = /3 g(x — w) f ®~D(w)dw for n > 1. Further, the time derivative
of F(t, xj) canbe derived as

X
Fl(t,x)=A|imOF(t+A’X)_F(t’X) — lim (1—pA)F(t,X)+pAfO F(t,x—w)G(dw) — F(t,x)
N

A A—0 A

"X
=p/ [F(t.x — w) — F (t, )]G (dw)
JO

because in the small time intervAl the probability of more than one arrival is infinitesimal. e Ross(1995).
7. Throughout the paper, the subscripts 1 and 2 refer to derivatives with respect to the first and second
argument.
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order to highlight the competitive features of the environment, we also assume,tka®:
anincrement of the opponent’s state cannot increase the second mover’s §aBapfbffs are
discounted with rate > O. _

For each player = A, B, a historyh; attimet is a weakly increasing path of statesr)
for 0 < r <t. As well as her own state patlx; (z)).<t, the player knows that the opponent
did not leave at any time: 0 < z < t. In general, a pure strategy in this game is a history-
dependent measurable stopping timethat identifies the earliest moment at which firns
willing to stop the game given the histohy. Hence, player ends the game at timg (h') =
inf{t: o (h}) =t}. 9 To simplify the analysis, we shall focus on symmetric history-independent
equilibria: both players adopt the same equilibrium stratggyunction of their own state
and of calendar timé only, and we shall henceforth omit the subscripthenever there is no
ambiguity. Arguments available upon request show that the restriction to history-independent
strategy equilibria is without loss of generality.

4. THE EQUILIBRIUM

To calculate the equilibrium strategies, we first define the equilibrium Wélxet), conditional
on the opponent not having stopped the game beforettiras a function of statg at timet.
Each player’s strategy;, determines a stopping regi@= {(x,t): o (X,t) =t} and a contin-
uation regionC = {(x,t): o(X,t) > t}. In the stopping regiois, the equilibrium value/ (x,t)
corresponds to the value for stoppia¢x). In the continuation regio, the equilibrium value
V (X, 1) satisfies the following standard flow equation (segDixit and Pindyck 1994):

. E[W(X(t + At), y(t + At),t + AD)|X, 1] =V (X, t
N = —op i EWO(EE ADLY(+ AD. - AD =V,
At—0t At

1)

whereW(x, y,t) =V (x,t) if a(y(t),t) > t, i.e.the opponent has not ended the game by time
andW(x, y,t) = u(x, y) otherwise.

In equation 1), the expectation is taken both with respect to the increment of the player’s
own statex and with respect to the opponent’s stgteAt any timet, each player conditions
her inference with respect to the opponent’s sigte, on the opponent’s strategy, and on the
information thafl > t: i.e.that the opponent has not left the game befofkhis is equivalent to
the information that the opponent’s stat@) has been in the continuation regiGnat any time
7 < t. While these beliefs are well defined for allandt, in general their calculation is quite
cumbersome.

However, we now show that the updating of beliefs is much simpler in equilibria where the
frontier between the continuation regi@and the stopping regio8 is a threshold functionz
continuous and strictly decreasimyer time. At any time, each player can base her inference
only on the information that the opponent’s stgtés smaller tharz “one instant befordg”
and can safely ignore all information gathered on the opponent at any previous .tivile
henceforth focus on equilibria described by a continuous and decreasing threshalkdnduce
equilibrium valuesV (x, t) differentiable int. We define our equilibrium class of interest as
decreasing-threshold regular equilibria.

8. By increasing (decreasing) we mestrictly increasing (decreasing), whenever this is not explicitly qualified.
9. For a general treatment on how to construct stopping time strategies in continuous time games and on their
interpretation, se8imon and Stinchcomb@989).
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Lemma 1. In any decreasing-threshold regular equilibrium, at any time t, the equilibrium
belief of either player with respect to the opponent's state is the c.d.f. By | T > t) =

F(t,y)/F(t, z(1)).

Proof. Because the frontier between the continuation regioand the stopping region
S is a threshold functiorz, the eventT >t is equivalent to the event that(z) < z(z) for
all = < t. Because the equilibrium threshold functiafr) strictly decreases over timg the
inequality lim, - y(z) < lim _- z(z) implies thaty(z) < z(z) for all = <t for any weakly
increasing opponent’s innovation state pgfh). The opposite implication is obvious. Because
the threshola is continuous, lim_,- z(7) = z(t). Because the probability that a state increment
occurs exactly at timeé is zero, Pdim,_:- y(zr) < z(t)) = Pr(y(t) < z(t)). The result then
follows from the definition of conditional probability. ||

Armed with this crucial lemma, we can now proceed to simplify equatigngpecialized
to a decreasing-threshold regular equilibrifhiThe rate of expected change on the right-hand
side has four components. First, there is the effect of time advancing without an increase in
one’s own state and without the opponent ending the gafre, t). Second, with probability
pAt, the player's own stat& can increase by some random incrementthe corresponding
expected increase in value per unit of time is thg“§°[V(x+ w,t)—V(x,1)]G(dw). Third, the
opponent may end the game without experiencing an increase in her state be&tposesses
the opponent’s current state from above, causing the player under consideration a change in
value fromV (x,t) to u(x, z(t)). The conditional probability that this happens by titmge At is
[F(t,zt)) — F(t, z(t + At)]/ F(t, z(t)). Dividing by At and taking the limit, we obtain a third
term equal to—[u(x, z(t)) — V(x,t)] f (t, z(t))Z (t)/F (t, z(t)). Finally, the opponent may end
the game because a state increment takes her state above the threshold. The probability of any
such an increment is agaimt, and given the opponent’s current stgtehe increment must be
at least of sizez(t) — y. Averaging over all such incremenisand the unknown statg of the
opponent, we obtain a final term equa}otgﬂo(t) fz(t) U, y+w)) =V (x,D]G(dw)F(t,dy)/
F(t, z(t)).

Adding all these terms up, we see that equatirig equivalent to

rV (x,t) = —c+Vz(x,t)+p/oo[V(X+w,t)—V(X,t)]G(dw) o
20) ey 4 [ F.dy
(% 2() -V (x t)]F(t ) ()+/ /Zt_ WOey+w) =V DIGEw) £

In any symmetric decreasing-threshold regular equilibrium, the best response to an opponent
playing according to a time-decreasing threstmigito play according ta. This feature allows

us to evaluate the flow equilibrium equatio?) @t x = z(t), for anyt. We impose the value
matching and smooth pasting conditions,

V()0 =u@),  Va(z(0), ) = —u(zt) =0. ®)

We rearrange equatior2) and obtain that any decreasing equilibrium threshofblves the
following differential equation:

20)

UGz(0) -z 20 £

Z (1) = ¢(t, 2(1)), (4)

10. In the interest of brevity, here we present only an intuitive sketch of the derivations. A formal proof is available
upon request.
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where for any(t, z),

P, 2)= ru(z)+c—p/000[u(z+ w) —u(2)]G(dw)

A B F(t,dy)
o) eyt -ueisen i

We shall now introduce regularity conditions to demonstrate existence of decreasing-threshold
regular equilibria and provide a partial characterization result. The first set of conditions is as
follows.

Condition 1. Forany Xy, U(x) > u;(X, ).
Condition 2. For any x, U'(x) < 0.

In words, Conditionl requires that each player's pay-off dependence in her own state is
larger when she is the first mover. Conditidrimposes weak concavity on the first-mover’s
pay-off. Conditionsl and?2 allow us to establish that the best response of each player to any
opponent’s strategy is a strategy that can be represented as a time-dependent threshold function
z. Specifically, for any time, there is a unique thresholdt) such that continuing is optimal
if X < z(t) and stopping is optimal ik > z(t). Given this result, a decreasing-threshold regular
equilibrium exists as long as there is a strictly decreasing and well-defined sohutiothe
differential equation (4), which induces a valvéx, t) differentiable int. This result will be
established with the aid of the two following conditions.

Condition 3. (r +2p)u(0) < —c+ p 5 [u(w) + u(0,w)]G(dw).
Condition 4. limy_ oo (f 4+ p)U(X) > —C+ 1My 00 p fo° UX + w)G(dw).

Conditions3 and4, while apparently complex, are in fact fairly innocuous boundary condi-
tions. ConditiorB only makes sure that the players are willing to enter the game for low values of
X, it can be understood as a normalization conditiom@mdu. Condition4 stops players from
remaining in the game forever for high valuesxofGiven thatu” < 0, this is a mild restriction.

The final set of conditions is as follows.

Condition 5. For any x Yy, Us,(X, y) < 0.
Condition 6. For any x y, u;»(x,y) <0.

Conditions5 and6 have a simple interpretation: they require that the second-mover’s pay-
off is concave in the opponent’s state and satisfies a single-crossing condition. These conditions
allow us to establish the properties of all decreasing-threshold regular equilibria for early and
late stages in the game. We will show thatffep 0, the threshold functiom converges t@, the
smallestz that solves:

(@ =—c+p [T+ -u@I6Mn) +5 [ luzw-u@leEn. )
Fort — oo, the threshold functioa converges ta, the smallest that solves:
ru(z):—c+p/ [Uz+w)+u(z, z+ w) — 2u(2)]G(dw). (6)
0

The existence and characterization results we have so far described are formally presented in the
following theoremt!

11. We thank the referees, and especially the Editor, Bernard Salanie’, for helping us completing the proof of this
result.
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Theorem 1. Under Conditionsl —4, there exists a decreasing-threshold regular equilibrium.
Adding Condition$ and6, in any decreasing-threshold regular equilibrium, the threshold func-
tion z(t) converges t@ as time t converges to zero ang)zconverges t@ as t converges to
infinity.

The main steps in the proof of existence of decreasing-threshold regular equilibria are as
follows. After concluding that the best response of each player to any opponent’s strategy is a
strategy that can be represented as a time-dependent threshold funetenurn to establish
that there is a strictly decreasing and well-defined solutibmthe differential equatiord). To
prove this result, for any, we letz(t) be the smallest solution of equatigiit, z) = 0. We note
that the flow benefit to remaining in the game decreases as the opponent’g stateases.

As the expectation of the opponent’s stgtencreases in time, the player’s incentive to stop
the game becomes stronger as time goes by. As a risulis strictly decreasing .12 For
every T, we consider the solution of the differential equation4( that coincides withz(T)
at T. We show that this solution is strictly decreasing fortat T. By takingT to infinity, we
have constructed a solutiathat is strictly decreasing for all The existence of a decreasing-
threshold regular equilibrium is then concluded by verifying that the solwtioduces a value
V (x, 1) differentiable int.

Further, we show that under Conditiohs6, equation®) has a unique solution. It follows
that any strictly decreasing solution(t) to the differential equation4) must satisfy
lim{_,~ z(t) = z. Since any admissible solutionto equation 4) can never cross the func-
tion 2, or else it would be strictly increasing over a non-degenerate interval, this also implies
that any continuous strictly decreasing solutigt) to the differential equatiord) must satisfy
limioz(t) =2

The initial thresholdz equalizes the option value for waiting and the incentive to preempt,
when the opponent has just entered the game and has not yet received any state increment. As the
chance that the opponent’s stgtevill soon cross the stopping threshads small, the player is
not particularly afraid of preemption. This impedes the unravelling process and makes the initial
threshold relatively large. The asymptotic threshadequalizes the option value of waiting
with the incentive to preempt, supposing that the opponent will surely stop the game if receiving
one single state increment, of any value. As time goes by, the chance that the opponent is about
to stop the game, although she has not yet done so, becomes larger and larger. As the risk of
preemption reaches its maximum, the player’s willingness to anticipate stopping is largest, and
the unravelling process makes the asymptotic threshold relatively small.

In the Section5, we contrast the equilibrium unravelling over time of preemption games
involving private information, with the immediate equilibrium unravelling of games involving
public information.

5. PUBLIC INFORMATION

This section compares the equilibria of our games involving private information, with equilibria
of analogous games involving public information. We study the framework introduced in Section
3, with the only modification being that at each timethe historiesh* andhf are common
knowledge. Again, we focus on equilibria where the strategjedependonly on the current

12. Under some additional conditions, the results of the paper extend to the case where the first-mover’s pay-off
u depends on the opponent’s state, provided that the fung¢igrdefined in the extended model is strictly decreasing.
The interested reader may request a full derivation from the authors.
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stateqx, y) and not on the entire histories of increme(hi@ hg ). Omitted derivations, available
upon request, show that this assumption is without loss of generality.

The first, immediate, observation is that, becawse > U(x, y) > u(x, y) for any (x, y), if
the opponent stops the game at any stats xB), then the unique best response at the same
state(x”, xB) is to stop the game. This observation yields two important results. The first one
is that the players always simultaneously stop the game in equilididrhe second one is that
there are multiple equilibria in the public information game. For every stetex®), even if
each player would prefer to stay in the game if the opponent did not stedatB), there is an
equilibrium where both players coordinate on stoppingxdt, xB). For any strategy profile,
we describe the s& (o) of states(xa, Xg) suchthat the strategies prescribe that the players
do not stop the gamea(Xa, Xg,t) > t andog(Xg, Xa,t) > t, for everyt. We wish to compare
the equilibria of a private information preemption game with the equilibriaf the analogous
public information game with the largest set of staigs).

A profile ¢ is an equilibrium if and only if for each playéra best response to the opponent’s
strategyoj is to wait at any statéx”, xB) suchthats prescribes not to end the game. Formally,
fix a strategy profiler. Consider any playdrand stateX, y), and let the “best-response” value
at(x, y) beV'(x, y) equalto u(x) in the region where the best response fis to stop the game,
thus satisfying the following flow equation in the waiting region:

rvi(x,y) = —c+p/O VI (X4 w,y) =V (X, y)]G(dw)

+p /O Vi (. y+ ) = VI (x, y)]G(duw). @)

It is easy to verify that this is a standard Bellman equation for a discounted dynamic program
(seee.g.Dixit and Pindyck,1994). Henceg is an equilibrium if and only if, for each playey
Vixt, x1) > u(xt, xJ) for every statex?, xB) suchthate; (x', xJ, t) > t.

We now introduce the regularity conditions that will deliver our main result that expected
durations are longer when information is private.

Condition 7. For any (X, y), U'(X) —U; (X, y) > —U,(X, Y).
Condition 8. For any(x, y), U'(X) —u; (X, y) > —u,(y, X).

Condition 7 requiresthat the change in each player’s first-mover advantagg — u(x, y)
with respect to her own state, is larger than the change in the first-mover advantage with
respect to her opponent’s state, for any pair of stéteg). Condition8 requires that the change
of the first-mover advantaggx) — u(x, y) with respect to the player’s own state when the states
are(x, y) is larger than the change ofy) — u(y, X) with respect to the opponent’s state when
the states argy, x), i.e. when the states are interchanged between the players.

The next result shows that, under Conditidrs3, the seC(s) is bounded above by the
threshold functionxa + xg = 2z in any equilibriumo. As the processes of statza(t) and
xg(t) areindependent, the expected time for the stategt), xg(t)) to exit the setC(c) is
smaller than the expected time for either procgs$b) to reachz. This implies that the expected
duration of the public information game is smaller than the expected time needed for either,
or both, of the players to reach the asymptotic threslzold this sense, we conclude that the

13. In fact, there are two possible scenarios for this game: either the player that had the last arrival has a time
advantage and stops the game first (which would correspond to the limit as the information disclosure lag goes to zero)
or both players stop simultaneously, by which we mean that each stops first with equal probability. The theorem derived
in this section applies to both scenarios, but for simplicity in our presentation, we only consider the latter case.
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equilibrium of the public information game immediately unravels to the threshold that is reached
only asymptotically in the equilibrium of the private information game.

Theorem 2. Suppose that the historie{btA, htB) are public at any time t Under Conditions
1-8, for any equilibriuny, the set Go) is contained in{(xa, Xg): Xa(t) + xg(t) < 2z}. Hence,
Efinf{z: (Xa(z), x8(7)) ¢ C(0)}] < E[inf{z: Xa(r) > zor Xg(7) > Z}].

This concludes the comparison of preemption games with private and public information.
We have found that equilibrium durations are longer under private information. In Séctigmn
compare private information equilibrium durations with collusive durations.

6. THE TEAM'S PROBLEM

This section compares the equilibrium strategies of our private information games with the col-
lusive policies that maximize the sum of the players’ pay-offs under perfect information. As an
illustration, the players may be joined in a team that aggregates private information, maximizes
the joint pay-off and divides it equally.

For clarity of exposition, we assume that it is always optimal for the player with the largest
state to end the gama(xa) + u(Xa, Xg) > U(xg) + U(xg, Xa) if and only ifxa > xg. Hence,
we let the team’s pay-off be

u(xa)+u(xsg,xa) if xa > Xg,
u(xg) +U(xa,xg) if X > Xa

u*(Xa,Xg) = [

becausdhe team planner optimally chooses the first mover to maximize the joint pay-off. To
simplify the exposition, we assume that is twice continuously differentiable: this requires
that the left and right derivatives are the samgat Xg.

We focus on policiesr where the decision to stop the game depends only on the states
(Xa, Xg) andnot on the whole history of state increments; omitted arguments show that this
restriction is without loss of generality. We denoté/axa, Xg) theteam'’s value in the game for
a pair of stategxa, Xg). In the region where the planner makes the players &{@¢pa, Xg) =
u*(Xa, Xg). In the continuation regiorV (xa, Xg) satisfieghe flow equation:

rv(xa,Xg) =—2c+p |:/OOV(XA+w, xg)G(dw) —V(xA,xB)}
0

+p |:A V (Xa, Xg + w)G(dw) — V (Xa, XB)i| . (8)

We study the collusive outcome under the following conditions (for consistency with the previ-
ous conditions, we express them in terms of the primitive paytoéfadu).

Condition 9. For any(x, y), U'(x) + U,(y, X) > 0.
Condition 10. For any (X, y), u;1(X,y) <0.

Condition 9 requiresthat the aggregate pay-afiff (xa, Xg) is increasing in both players’
statexa andxsg, i.e. uj(Xa, Xg) > 0 andu;(xa, Xxg) > 0. Condition10, concavity of the second-
mover's pay-off in her own state, implies together with < 0 (Condition 2) andu,, < 0
(Condition5), that the aggregate pay-aff(xa, Xg) is concave in both arguments and xg,
i.e. uj;(Xa, xg) < 0anduj,(xa, xg) < 0.Note also that* inheritsthe single-crossing condition
uj,(Xa, xg) < 0from Condition6.
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Under these conditions, we now show that the team’s stopping time is characterized by a
stopping boundary*. Whenever the stat€xa, Xg) areabove this boundary, the social planner
instructs the player with the largest state to stop the game. Due to the symmetry of the problem,
the boundary is symmetric with respect to the 45 degree line.

Lemma?2. Under Condition2,5,6,9, and10, there is a unique stopping boundary xg —
Xa, such that continuing is optimal if and only ihx z*(xg), and V(z* (xg), Xg) = u*(z*(xg),
xg). The stopping boundary*2s strictly decreasing in ¥ and symmetric, i.e. x = z*(xg) if
andonly if xa = .z*.71(xg).

The proof of the first part of this lemma is similar to the proof that, in games with private
information, each player’s best response in any regular decreasing-threshold equilibrium can
be represented by a threshold function (Lemma A.1 in the appendix). The conditiong
Xg) > 0 andu;(xa, Xxg) > 0 make sure that the boundaryis strictly decreasing. This is the key
feature ofz* thatallows us to calculate it. For staxg, we impose that at the boundar¥(xg),
the optimal valueV (z*(xg), xg) equalsu*(z*(xg), Xg), the value for stopping the player with
the largest state. The optimal vali&z* (xg), xg) canbe explicitly calculated in the waiting
region because the boundayis strictly decreasing, and hence if either playeor B receives
a further state increment, the associated optimal values &&*(xg) + w, Xg) = u*(z*(Xg) +
w,xg) andV (" (xg), Xg + w) = U*(z*(Xg), Xg + w), respectively:* With these substitutions,
we obtain that, for any states, the boundaryg* (xg) solves:

(r +2p)u*(Z*(xg), XB) = —2C+p /OOO u*(z* (xg) + w, xg)G(dw)

+p/O u*(zZ*(xg), Xg + w)G(dw). 9)

We conclude the welfare analysis by comparing the optimal stopping bouatiamth the
equilibrium thresholdg andz. We show that in any regular decreasing-threshold equilibrium

at late stages of the game, the players exit at states that are too low relative to the collusive
outcome. This is also true at early stages in the game, and hence in the whole game, in the pure
private value case (wherg = 0).1°>We let Q be the set of statexa, Xg) suchthat the planner

does not stop the gamieg. xa < z*(Xg).

Theorem 3. Under Conditionsl—6,9, and10, the set Q of states for which the planner does
not stop the game is a supersef@fz] x [0, Z], the set of states for which neither player stops
the game in a decreasing-threshold regular equilibrium festoo. Whenu, = 0, the set Q is
also a superset db, z(t)] x [0, z(t)], for all t.

The intuition behind this result stems from the observation that the social planner is not
afraid of preemption. At any moment in time, for any stat@, Xg), the planner may decide
which player should stop the game to maximize the joint pay-off. Since the team planner is
not concerned that the players may try to preempt each other, she optimally sets a generous
stopping policy. In any regular decreasing-threshold equilibrium, the players attempt to preempt
each other. Neither of them internalizes the negative externality that her preemption imposes on

14. If instead of instructing the player with the highest state to stop the game, the team planner continued the game
after any state incremeat, it would not be feasible to calculag

15. Beyond the private value case, it can be shown that the comparison between the optimal ttzeshalithe
equilibrium upper bound is indeterminate.
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the opponent. Instead, as they fear each other's preemption, they wind up anticipating exit to a
greater and greater extent. This results in exit times smaller than in the collusive outcome.

This result concludes our general analysis of preemption games with private information
changing over time. Our general analysis is of wide applicability. In Section 7, we present an
application to patent races.

7. AN APPLICATION: PATENT RACES

Suppose that the two players are firms who conduct research activity at a flosv Tbetamount

of resources initially devoted to research activity is common knowledge and determines the in-
novation hazard ratg;, and the innovation distribution functio.1® Over time, the research
activity improves the value of a patentable innovation. The state of firm i corresponds to

the value ofi’s innovation at timet. Each firms’ innovation improvements are kept secret un-

til patented. At any timél, each firmi may end the patent race by patenting and developing
the innovationx; (T). The patenting firm receives the pay-offx; (T)) andthe competitor re-
ceives the pay-ofti(x;j (T), x (T)).1"18 We consider the functional form specificatiafx) =

av(X) — Ccg. We single out a codty for developing the innovation, and we introduce the param-
etero that measures the fraction of innovation value appropriated by the innovator. We assume
that the regularity Conditions—10are satisfied, and that (0) > co. When one is ahead in the
race, the option of dropping out is dominated by the option of patenting one’s own innovation.
This assumption allows us to focus the analysis on the patenting choice.

Our equilibrium characterization hinges on TheorénThe equilibrium threshold function
Z is decreasing in time. As the patent race extends further in time, each firm becomes more
fearful of being preempted and willing to patent less valuable innovations. Having calculated the
differential equation determining the threshold functipwe can study the relationship between
the equilibrium strategies and a number of variables of interest. We find that the equilibrium
threshold functiore is increasing in the cost of developing the innovat@nand decreasing
in the flow cost of research.!® Theseresults are intuitive: if the cost of staying in the race
increases, each firm is willing to stop earlier, whereas if the cost of stopping and developing the
innovation increases, each firm chooses to wait longer.

Quite unexpectedly, making patent rights stronger does not necessarily make innovation dis-
closure faster. Increasing the fraction of innovation value appropriated by the innovator, does
not necessarily reduce the equilibrium threshold functiom fact, increasing: not only in-
creases the current value of the innovation but also the value of waiting for future increments in
the value of the innovation. When the latter effect dominates, the result is a delay in innovation

16. This assumption is motivated by the observation that, while R&D results are often kept secret, the R&D
investment, the size and facilities of the research labs, and the teams of researchers involved are usually public.

17. The patent race pay-offs may represent the innovation profit but can also represent the equilibrium profits of a
competitive market game that takes place after the innovation is introduced into the market.

18. Our specification of the second-mover pay-off covers both instances where firms compete on the same research
project, and instances where they compete on possibly very different projects. In the first case, the second-mover pay-off
is determined only by the innovation patented by the first mover, who in a symmetric equilibrium is always ahead in the
race. In the second case, each player’s pay-off is determined by her own innovation.

19. Thisis consistent with the datalgéll, Jaffe and Trajtenber@001), who identify pharmaceutical and medical
industries as the industries with the smallest patenting rate. Development costs are exceptionally high in pharmaceutical
research because of the high costs of food and drug administration medical trials before a patented drug is allowed to be
produced and marketed.
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disclosuré?® As it turns out, if the development cosg is sufficiently large relative to the re-
search costg, then stronger patent rights induce more frequent patenting. On the other hand,
if research is sufficiently costly relative to development, then stronger patent rights reduce the
patenting rate.

Proposition 1. In patent races, the equilibrium threshold function z increases in the devel-
opment costganddecreases in the research cost c. The relation between z gt fraction
of innovation value appropriated by the innovator, is negative (positive) when c is sufficiently
small (large) relative to g, unlessu is too large.

Further specializing our general results to patent races, we find that the patenting rate is
smaller when innovation improvements are kept secret than when they are public information
(Theorem?). This result highlights a positive relationship between the patenting rate and indus-
trial espionage, and may help explaining the acceleration in patenting rate, observed in the data
since the mid 1980’s (seortum and Lerner1999; Hall, Jaffe and Trajtenber@001)?! It is
well documented that the threat of economic and industrial espionage has been steadily grow-
ing, spurred on by technological change. The increasingly wide availability of wire-tapping and
document reproduction technologies in the 1980’s has been followed by the internet revolution
of the 1990’s, with all the implied threats to computer security. According to Lexicon Com-
munications corporation, in 2005, economic espionage and the theft of trade secrets cost U.S.
businesses more than $250 billion and $1.2 trillion over the last dééade.

Ourresult that private information counteracts preemption forces may also shed some light
on the reported differences in citation numbers across industries. The National Bureau of Eco-
nomic Research study byall, Jaffe and Trajtenber(2001) on patent data sets identifies “old
technology” industries, such as the mechanical and chemical ones, characterized by a large num-
ber of patents with few citations, and “new technology” industries such as computers and com-
munications, characterized by a smaller number of patents but a larger number of citations. This
dichotomy is consistent with our result that private information translates into a lower patenting
rate but patents of higher economic value. In new, relatively unexplored technologies, different
researchers may follow very different lines of research to achieve competing patentable innova-
tions. As a result, they may be very uncertain about the prospects of the research conducted in
competing labs. On the contrary, researchers are more likely to have a good shared knowledge
of the possible incremental innovations achievable in old technologies, and therefore a good
assessment of the prospects of the research conducted in competing labs.

Turning to welfare analysis, we compare the outcome when firms compete and keep their
technological improvements secret, with the optimal choice of a team that aggregates the firms’
information and maximizes the joint pay-off. Suppose that the value of the patented innovation
does not effect the pay-off of the second mover and hence there are no competition externalities
in the innovation’s market. TheoreBimplies that the team’s patenting rate is lower than the

20. For simplicity, here we assume that once the innovation is patented, the patent race is over. The model can be
extended so that a new patent race starts after the innovation is patented, with innovations building on the previously
patented innovation. The result that increasingay increase the threshold functipholds as long as the current patent
race competitors may be substituted by other firms in future races with sufficiently high probability. This assumption is
motivated by the observation that, once an innovation is disclosed, the innovator may lose the technological leadership
in the research field.

21. On a similar countdall and Ziedonig2001), found that the number of patents per R&D dollar in the semi-
conductor industry doubled between 1982 and 1992.

22. We see our explanation of the acceleration of the patenting rate as complementary and not as a substitute to the
previous explanations that invoke a pro-patent legislative change in the mid 1980’s and improved technological fertility.
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competing firms’ rate, and that the team patents innovations of greater economic significance.
Hence, secrecy is beneficial to competing firms as it brings the outcome closer to the collusive
outcome.

8. CONCLUSION

We have presented a general analysis of preemption games with private information states in-
creasing over time. The analysis initially appeared intractable because of the complexity of
the agents’ equilibrium updating of beliefs on the opponents’ state. But we have calculated
equilibria where each agent ends the game when her state is above a time-decreasing stop-
ping threshold. We have compared these equilibria of our private information games with the
equilibria of analogous preemption games with public information, and have found that the ex-
pected stopping time is shorter when information is public. We have studied the problem of a
team aggregating the players’ private information and maximizing the joint pay-off. As time
grows large, competing players become willing to end the game at states for which the team
planner would instruct them to continue. For the crucial case where the states are of private
value, we have found that competing players stop the game too early relative to the collusive
outcome.

We have applied these results to patent races, to find that secrecy slows down the speed of
innovation disclosure. When there are no competition externalities in the innovation market,
competing R&D firms benefit from secrecy as it brings the equilibrium outcome closer to the
collusive outcome. However, the collusive outcome is not achieved, as equilibrium durations
are shorter than in the collusive outcome. Having calculated the closed form of the differential
equation governing the equilibrium threshold, we have performed several comparative statics ex-
ercises. Surprisingly, we have found that strengthening patent rights may slow down innovation
disclosure.

Our results can also be applied to innovation adoption and market entry games. Our analysis,
available upon request, builds on the classic preemption game studieeibganum(1981)
and later perfected biyudenberg and Tirol€1985). In one application of that model, a process
innovation is disclosed to competitors in a specific industry. When adopted, the innovation tilts
the profits in favour of the first firm adopting the innovation; but adopting the new technology is
costly. We expand the original model positadoption costs that depend on the stage of adap-
tation of the technology to the processes of each individual firm. Another application of the
preemption game bReinganun(1981) is a simple model of market entry. Competitors choose
the timing of entry into a market. Entry is profitable and there is a first-mover advantage, but
entering the market is costly. We suppose that each firm’s entry costs depend on prior invest-
ment by the firm,e.g.in building capacity, in establishing a commercial network, in signing
representation contracts, etc.

Assuming that our regularity conditions are satisfied, Theo2eimplies that innovation
adoption and market entry are delayed when the activities leading to innovation adoption and
market entry are kept secret. As a result, secrecy stifles competition and is likely to reduce con-
sumers’ welfare. Consumers are likely to benefit from frequent market entry by new competitors
and when production technologies are frequently improved. At the same time, Thaadmem
plies that competing firms jointly benefit from secrecy, as it brings equilibrium durations closer
to the collusive outcome. We also perform comparative statics analysis. We find that subsidizing
innovation adoption and market entry makes them occur faster. However, subsidizing innovation
development and investments leading to market entry delays innovation adoption and market
entry. Intuitively, these subsidies are equivalent to reducing the waiting costs in our games and
hence they induce longer expected stopping times.
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APPENDIX A

We begin the analysis by stating our results concerning the propertieé of)/F (t, ). In the interest of brevity, we
omit their proofs that are available upon request from the authors.

Theorem Al. If the c.d.f. G of the random incremeant is log-concave, i.e. the inverse hazard rat@oy/ G(w) is
weakly decreasing im, then the c.d.f. R, y)/F(t, 2) is stochastically increasing in t for any z anckyz.

Theorem A2. If the increment c.d.f. Go) is differentiable, of connected support that includes- 0, then for any z,
the c.d.f. Rt,-)/F(t, z) concentrates all mass on z as t goes to infinity, i.e.
Fty)
t—oo F(t,2)
Proof of Theorenll. We proceed in three Lemmas. We first show that, for any opponent’s strategy, the best
response of a player is a strategyhat can be represented as a time-dependent threshold fuaction

=0foranyy < z.

Lemma Al. Under Conditionsl and 2, for any t, and any strategy played by the opponent j, there is a unique
threshold #t) such that continuing is optimal for player i if x z(t), stopping is optimal if x> z(t), and the optimal
value V! (x,t) equalsu(x) at x = z(t).

Proof. The proof proceeds in two steps. The first step shows that for any strategy played by the opponent, the
unique best response of a player induces a v&llg, t) continuousin x. Given continuity ofu andu, the result is
intuitive. Hence, we make its proof available only upon request.

Step 1. For any strategy played by player j, the best response of player i induces a véﬂuet)/continuousin X.

The second step shows that, for any strategy played by the opppriétite best response by playeinduces a
valueV' (x,t) continuousn X, then it can be represented by a threshold function.

Step 2. Under Conditionsl and2, for any t, and any strategy played by the opponent, if the optimal vdl(ne,y) is
continuousn x, then there is a unique threshold gsuch that continuing is optimal for player i if x z(t), stopping is
optimal if x > z(t), and V! (z(t), t) = u(z(t)).

~ We want to show that for every there is a unique such thau(x) < (=)Vi (x,t) if and only ifx < (>)z. Since
V' (x,t) is continuous irx, we only need to show that for amyand anyx such thau(x) < V' (x, t),
Vi) = Vied

/
<u'(x
x—x'—0 X=x )

becausghis implies that for any fixed, the functionsV' (x, t) andu(x) canmerge only once. Sinag (x) > 0, it follows
thatu(x) is dominated by' (x, t) if and only ifx is smaller than the merging point.

Consider a player and any pair(x, t) such that the optimal strategy dictateso (x,t) > t. For anyx’ < x and
(X, 1), let V! (¢’,x,t) be the value associated with applying the same strateggscaled by a factox — x/, i.e.
the strategys’ suchthate’(x” +x’,7) = o (x” 4+ x,7) for anyz > t andx” > 0. Since the optimal value at time
and state’ is at least as large as the vaMé(c’, X', t) of adopting the possibly suboptimal waiting stratedywe note
thatV' (x,t) —V'(x’,t) < V' (x,t) = V' (¢, X, 1).

Fixing the opponenf’s strategysj (which does not depend ax), the optimal pay-off at stat, t) is

Vi = [ Bl X < Tent )
—r (T; —t) min{Ti,Tj} _r
+UX+X(T}), y+y(T))x (T > Tpe ) _/t ce™"dv | T} > t]B(dy | T} > 1),
andplayeri’s expected pay-off for playing strategy startingat state(x’, t) is
Vi (@', X 1) = / E |:u(X/+X(Ti/))X(Ti/ < -I—J_)e—r('ri/_t)

/ ) ) ’ AT (Tj—1) min{Ty. Ty} —ro ) )
+ U +x(T)), y+y(T)x (T > Tpe " — ce” do | Tj >t | By |Tj >1),
t
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where(i) the expectatiork is taken with respect to the sample paths {x(z): ¢ >t} andy = {y(r): ¢ > t}, generated
by our compound Poisson processes and suchxiftat= 0 andy(t) = 0; (i) Tj = inf{z: oj(y(r) +y,7) =}, Ty =
inf{z: 0 (x(r) +x,7) = 7}, and T,/ = inf{z: ¢’ (x(r) + X, 7) = 7}; (iii) x denotes the indicator function over sets of
paths(x,y); and (iv) B(y | Tj > t) =Pr{y(t) <t| T; >t} isthe c.d.f. of the opponent statg(t), given that she has not
left the game by timé.

Noting thatTi/ = Tj, and averaging across sample patltsy), we obtain

Vi =V _ Vi) =V’ X\
X —x - X —x’

X=X’

_ /E[(u<x+x(T;),y+y(T;))—u(x +X(T), Y +y(Tj )))e_r(Tj_t)X T <7

+ (U(X+X(Ti ) —u(x’ +x(T;))

v )e‘““‘”x(ﬁ <THIT >t} By | Tj > 1).

Since,

i (u(x—i—X(Ti ))—u(x’+X(Ti)>) = U (X+x(T)),

x—x"'—=0 X=X/
lim (U(XH(Ti ).y +y(Tj) _g,(x X y ))) = U (X+X(T)), y+y(T))),
x—x'—0 X=X

the Conditionsl, u’ > uq, and2, u” < 0, yield:

i ERVINY . _ /
lim sup—v *H V(X’t)< lim /E[(iu(x) u(X))e‘r(Ti_t))((Ti <Tj)

x=x'>0 X=X T x=x'-0 X — X/
ux) —ux)\ —r(ti—
+(%)e 1 (Tj t))((Tj <T|)|TJ 2:|B(dy|Tj >t)
— i u(x) —u(x’) Tt
‘x_"x’f‘Lo/ (ﬁ Efe 2(T <T

+e " T (T < T | T Zt} B(dy | Tj > 1).

SinceE[T; —t | T < T%-] >0, E[Tj —t|Tj < Ti]> 0,andT; andT; areindependent o', the quantityE[e~" (T —t)
2T <Tp) +e Tt x(Tj <Tj) | Tj > t] is strictly smaller than 1 and constanbih Thus,

. Vix, ) = Vi, t) : u(x) —u(x’) .
B L b = LU R
_ /
= |lim M = u/(x).

x—x'>0 X=X

The limit for X’ > x is similarly handled. The result thai(z(t)) = vi (z(t),t) follows from continuity ofu(x) and
VI,

The second lemma shows that there exists an admisdiklestrictly decreasing and defined on all the real line)
solution to the differential equatiod). Further, it characterizes the limiting properties of all solutions to equadipn (
for t small andt large.

Lemma A2. Under Conditionsl—4, there exists a strictly decreasing solution z well define@®nto the differ-
ential equation(4). Adding Conditions$ and 6, for any admissible solution z to equatioh), lim,_, 4+ z(t) =z and
limt 00 2(t) = z.
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Proof. We proceed in several steps.
Step 1. (Auxiliary Solution) For any t, the equatiog (t, z) = 0 has a solution z. The selection
2(t) = min{z: ¢(t,z) =0},
is strictly decreasing and satisfiég0) = z andlim¢— o0 2(t) = z.
For anyt, Conditions3 and4 make sure that the functiaf\(t, z) is negative forz small enough and positive far
large enough. By continuity has a zera for anyt.

Since at time zero, the opponent’s statg(®) = 0, and the probability of an increment arriving at time zero is zero,

it must be that
f(0,2)

F(©,2)

=0foranyz> 0.

It follows that equations (t, z) = O coincides with equatiorb] fort = 0.

By Theorem A2, lim_, o F(t, y)/F(t,z) =0foranyz> 0 andy < z. Hence, lim— o 2(t) = z.

We finally want to show that the selectidns strictly decreasing in. Becausep(t, z) crosses zero &t(t) from
below, it follows that the selectiohis decreasing ifp1 > 0. As F(t, y)/F(t, z(t)) increasedn t in first-order stochastic
dominance by Theorem A1, it is sufficient to show that the expressﬁﬁ)_y[u(z) —Uu(z,y+w)]G(dw) increases in
y. In fact,

dgyp/zioy[u (2) —u(z, y+ w)]G(dw)

——p / Up(Z, Y+ 0)G(dw) + plu(@) —u(z 2)]g(z—y) > 0
z-y

becauses > u andu, < 0.

We note thaZ may be discontinuous at timesuch that,(t, z(t)) = 0. Nevertheless is right continuous. Indeed,
for anyt, consider a sequené¢® }n>1 suchthatt <tnq <ty foralln, and limh— + o0 th =t. Because(tn) isincreasing
and bounded above, it must converge and, by continuity, @must be that lim— 400 2(tn) = 2(t).

The next step establishes that, as long asbounded away from zero, the ordinary differential equat®nh@s
a well-behaved solution field. Because the proof is entirely standard, it is omitted and made available upon request.
Clearly, att = 0, the derivativeZ (0) is indeterminate becausg0,z)/F (0,z) = 0 for anyz > 0. We shall complete the
solution at zero later in the paper.

Step 2. (ngistence) For any smalld > 0, consider the set ®) = {(t,2): t > §,z > 0}. For any initial condition
(9, z5) € R(9), the ordinary differential equation (4) has a unique (twice-differentiable) solution patid,zs) defined
ona setR(d) C {t: t > 5}, such that &) = zs.

We are left to show that the ordinary differential equatidi lfas an admissible solutione. a solution strictly
decreasing and well defined @8, c0). Since step 2 allows for the possibility that solutions expldde fave vertical
asymptotes), we shall explicitly construct one admissible solution. We now show a result that will be useful in the
construction.

Step 3. Consider any solution path( of the ordinary differential equatiord] defined on a seR(d). Forany Te
R(5), if z(T) < 2(T), then 4t) < 2(t), and hence’t) <0, forallt < Tt € R(5).

We first show that, for any e R(6), ¢o(t, 2(t)) is bounded above. In fact, for arfy, ),

$2(t.2) :ru/(z)+c—p/0°°[u’(z+w)—u’(z)]G(dw)

F(t,2)
F(t,2)

zg [ oo F(t,dy)
_,,/O &[/ Juzy ) —u@Ie ) }

—p/oo[g<z,z+w>—u(z>le(dw)
0

z—
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andhence,

do(t,2)=ru'(2) +C—p/ooo[u/(z+ w) — U (2)]g(w)dw

| " lu(z 2+ ) — u@]g(w)dw
0

f(t,2) [?
P2 Jo

e / f(t,y)
o [ sty m-v@ngman | Dy

fty),

[/Zioy[g(z, y+w)— u(z)]g(u))dw] Fi.2)

fty,

4
40 [ ltue. 2 -u@lae-y)] £ oy

Becauselq, U, g, u, andu arebounded, the first four terms in the above expression are bounded above, and so are also
all terms integrated against(t, y)/F (t, z). Further, note that for any finite> 6 > 0, the termf (t, y)/F (t, 2) is finite
for all y < z, and, likewise,f (t, z)/F (t, 2) is finite for all finitet andz > 0. This concludes thaf(t, (1)) is bounded
above for allt € R(9).

Turning to prove the statement, suppose by contradictiorethpt> 2(t) for somet < T.

Note that, without loss of generality, we can take > 2(t) because i(t) = 2(t) for somet < T, thenz(t’) > 2(t")
for all t’ on a right neighbourhood of. In fact, because(t) = 2(t), it follows that Z/(t) = 0. BecauseZ is strictly
decreasing and(t, 2(t)) is bounded above, there exists- 0 such that for all small positivie, 2(z +h) — 2(z) < —ah.
Combining this withZ' () = 0 yieldsz(z +h) > 2(z +h).

Because is strictly decreasingg(t) > 2(t) > 2(T) > z(T). Sincez is continuous and continuously differentiable,
andz(t) > z(T), there must exist a time e (t, T) such thaiz(z) = 2(t) andZ(z) < 0. But by definitiong (t, 2(t)) =
0. Because > t, and because we have proved in Step 1 thdt, z) > 0 for all (t, 2), it follows that¢(z, 2(t)) =
¢(z,z(zr)) > 0, and hence tha () > 0. We have obtained a contradiction.

Step 4. (Admissibility) The ordinary differential equatiotd) has a strictly decreasing solution patktz defined on
(0,00).

Fix a timed > 0. We first construct an admissible solution in the ranged). For anyT > 4§, consider the initial
condition(d, zs, 1) identifying the solution patlz(t, d, zs ) suchthatz(T, d, zs ) = 2(T). First, note that, by Step 3,
z(t,d,25,7) < 2(t) forallt €[4, T). Further, by Step 2, for any poift, t) with t > ¢ andz > 0, the solution patia(t) such
thatz(t) = zis unique. Hence, for arlj’ > T, the solution pata(t, 4, z; T) mustlie above the solutioa(t, 5, 25 11)- For
anyT, we proceed analogously to identify the initial condit'(én;s’T) pinningdown the solution path(t, J, S’T) such
thatz(T,J,gjﬂT) =z The statezs T decreasem T, whereas the statg; 1 increasesn T. Furthermoregm <Zs5T
becaus&(T) > zfor anyT. Hence, there existg; suchthat limr_, 4 Zs 1<% < limT_ 400 25,7 By construction,
the solution patlz(t, J, z5) is such that(t, 4, z5) < z(t) on the whole range> . Hencez(t, d, z5) strictly decreases in
t forall t > J. Note also lim— o0 2(t, J, Z5) > z, and thatzs neednot be unique.

We now complete the admissible solutiag, J, z;) to the left of §. Consider a strictly decreasing sequence
{on}n>1 suchthaté; = 6 anddn — 0. Let z; = z;, and, for anyn, definez,; recursiely by solving the condition
Z(dn, On+1. Zn+1) = Zn. For alln, Step 2 implies that is well defined and that the functiae(-, dn-1, Zn+1) is (twice)
differentiable on §,1, dn). By constructionz(t, dn41, Zn4+1) = Z(t, on, zn) for all t > on.

We now show by induction that, for all, z(t, dny1, Zn+1) < 2(t) for all t € [dy41, dn]. In fact, we have previously
shown thatz(d1, 1, z1) < 2(d1). Further, by the induction hypothesiEgn, on, zn) < 2(dn). Because(t, on+1, Zn+1) =
2(t, dn, zn) for all t > dn, it follows thatz(dn, dn+1, Zn+1) < 2(dn). By Step 3, it follows thak(t, dny1,Zn+1) < 2(t) for
all t € [0n4+1.,Jn). This concludes the proof of the induction argument.

We have shown thé(d,1) > zn41 andthat for anyn, z(t, dn1, zn+1) is strictly decreasing i for all t > 1.

As a result, for anyn, 2(0) > 2(dn+1) > Zn+1 > Zn. Because, the sequen{=} is strictly increasing and bounded, it
admits a limit forn — co. Hence, by taking the limit fon — oo, we have completed the solutiaft, J, zs) on the
interval (0, 0), and proved that the completed solutip) is strictly decreasing. Note also that we have shown that
lim{_oz(t) <z

The above steps of the proof have proved existence of an admissible solution of the ordinary differential
equation (4). We now characterize all admissible soluttorsO.
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Step5. (Solution Characterization for t — 0) For any admissible (i.e. decreasing and well defined) solution path
z(t) of the ordinary differential equatiot4),

f(t,z(t) . -
m ————=7(t) =0,andhencelim z(t) = z.
o Fzy” AR
We inspect again the ordinary differential equatial). (Because, as already pointed ofi{0,z)/F(0,z) =0
for any z > 0, it follows that (i) the derivativeZ' (t) is indeterminate at = 0 and (ii) lim,_, 5+ z(t) is a solution of
equation (5) unless

ftzt) ,
M Pz ” 00

whereK is a negative constant. By the properties of Poisson arrival,

FGz0) o jim —P19E®) /
I F 22 O T T o0 + eyt T I 1eEZ O

Notethat lim,_, o+ ptg(z(t))Z (t) = K requiresthatZ'(t) = k/t +0(1/t), wherek is a negative constant awg1/t) de-
notes a term that converges to zero if multiplied byhent — 0; hence it requires thatlim, o+ z(t) = lim_, o+ klogt =
+o0. Condition4 implies thatp (t, z(t)) > 0, and hence’ (t) > 0O, for z(t) large enough. This contradictqt) < 0. The
above result implies that lim, o+ z(t) is a solution of equationy). To conclude, note that any admissible solution
z(t) of the ordinary differential equatior) cannot cross the functidhor else it is increasing over a non-degenerate
interval (by Step 3). This implies that lim o+ z(t) < lim;_ o+ 2(t) = z, and hence by the previous arguments that
lim; o+ 2(t) =2.
The next result characterizes all admissible solutiribsfor t — oo under conditiond—6.

Step 6. (Solution Characterization for t — oco) Under Conditionsl—6, for any admissible (i.e. decreasing and well
defined) solution path(g) of the ordinary differential equatiot4),

ftzt)

M FCz0) t)=0 andhencetILmM z(t)y=1z.

Consider the expression:
$(@) = +2p)u(2) +C—p/o [u(z+w) +u(z, z+ w)]G(dw).

Sinceu, < 0, u’ > u; (Condition1), u” < 0 (Condition2), u,, < 0 (Condition5), andu;, < 0 (Condition6), the
expressionp(2) strictly increases iz as

P@D=rd@+p /0Do [V@-U(z+w)+U (2 —U1(z.2) + Uy (2. 2) — Uy (2, 2+ w)
— Us(Z,2) + Up(Z,2) — Up(Z, Z+ w) | G(dw) > 0.

Hence, there is a unique solution to equatiép So, for any admissible solutianof the ordinary differential equation
(4), it must be the case that lim o z(t) < z or else#(t, z(t)) > 0 and hence (t) > 0 for t sufficiently large. Further,
because(t) is strictly decreasing and bounded below,zéy > 0, it must be the case thatt) converges to a limit
ast — oo. Suppose by contradiction, that §m o z(t) < z. By inspecting the ordinary differential equatiof)( this
implies thatz/ (t) f (t, z(t))/F (t, z(t)) corverges to a real valued limitK < 0 ast — oo. By using L'Hopital’s rule, we
obtain

m & zZt))Z (1) _ im 2 2(t)Z (1) + fa(t, Z0)) (Z )%+ f (&, 2(1) 2" (1)
t—soo  F(t,z(t)) t—o00 F1(t, z(t)) + Fo(t, z(t))Z (1)

/)fz(”[f(t,Z(t)—w)—f(t,Z(t))]G(dw) F(t,z(t))g(z(t)) fo(t,2(t) 2, f(tz)Z ) 2/t
m Z20) 70~ gty 22O+ Az @O+ TEian - 70

t>o0 2 JEVIF 20 —w)~Ft.z)]GWMw) | f(t,2)7 1)
Ft.z) F(t.z(t)
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wherethe second equality follows by the formula fB{ (t, x) andby

X
f1(t,x) = F1a(t,x) = p[F(t,0)— F(t,X)]g(x)—',—p/O [ft,x—w)— f(t,x)]C(dw)

=p/ox[f<t,x—w>— F (£, 3]G (dw) — pF (. X)g(X).

From Theorem A2, F(t.x)
X
m ————— =0forall t),
5% F (¢, 2(t)) x <zt
hence,

P BUVIF 20 —w) — F20)]6(dw)
500 F(t.z0)

O F(t, z(t) — w) O F(t, z(t))

Jim p b TZ(t))G(dw)_p/o I:(?Z(t))(?;(dw):—timoopG(Z(t)).

RO Gz — )~ Ft,20)]C@)

t—00 F(t, z(t))
e 2O f(t, z(t) — w) f(t, z(t))
_t|_|>moo(/)/o WG(dw)—pmG(z(t))

. 20 £ (t, 2(t) — w) f(t,z(t))
< t'l)moo(Psllprg(w)‘/O WdW—PmG(Z(t))

. M ft,p) . f(t,zt)
:tlmoo(psulfpg(w)/o Fit.zt) % Pz CEW)

. f(t,z(t
:psgpg(w)—ptgmm%mz(t».

Due to Theorem A2, we have that lim o fo(t, z(t))/F(t,z(t)) > 0. Since 2’(t)/Z (t) = %In(—z’(t)) and
lim{— 0o (=2 (t)) = 0T, we have that lim_, o 2’ (t)/Z (t) = —oc0. Hence, we obtain a contradiction, as:

B f(t, 2t)Z (1)
T tooo  F(t,z(1))

pSUR, 90)Z ®) +pGEOK —pgz)Z O + FEEH E O - K57

-K

< lim
t—oo —pG(z(t))— K

This conclude the proof of the second part of Lemma A.2,.

The proof of Theorem is concluded by establishing that the equilibrium valli, t) is differentiable irt.

Lemma A3. If both players play according to a strictly decreasing continuously differentiable threshold fun¢tjon z
then the equilibrium value ¥, t) is differentiable in t.

We establish this result by forward-calculatikgx, t) when both players play according to a strictly decreasing
continuously differentiable threshold functiaft), and then by inspecting the resulting formulaYoix, t). Because the
argument is calculation incentive and the calculations are not further used in the analysis, we make the proof available
only upon request. ||

Proof of Theoren2. We proceed in four steps.
For any equilibriunmy, the first step derives an upper bound to theGiet). Intuitively, each player must neces-
sarily stop the game for any> 7z, wherez is the unique solution of the equation

ru) = —C+/)/Ooo[u(2+w)—u(i)]G(dw). (A1)
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In fact, this equation describes the flow costs and benefits when plagts as a “monopolist” and there are no costs
of waiting induced by competition with the opponent. As this step is intuitive and is not central to the argument in the
proof, it is omitted and made available upon request.

Step 1. For anyg, the set GQo) is a subset of (Xa, Xg): Xa < Z, Xg < Z}.

For any equilibriums, the second step of the proof determines the marginal incentives to stop the game on the
“north-east” frontier ofC(c).

Step 2. For any equilibriumeo, consider any pair(xa, xg) that belongs toC(c), the closure of o), such that
(Xa+w) ¢ C(o) and(xg +w) ¢ C(o) forall w > 0. Forany i = A, B,

o0

F06. %)) = (¢ +2P)U(Xi)+0—ﬂ/0 [T06 +w. X}) + T . X] + )]G (dw) <O.

For anyd > 0, there is a paitx}, x3) € C(s) such thatx — xal <, and|xg — xg| < d, possibly(x}, xg) =
(XA, XB)- Since(xéA, x%) € C(o), we know that for any,

uee) < V' ¢, x?)

] 17

= NV IV
= -c+,;/ V' +w,x9) + V' (X, x¢ + w)]G(dw)
r+2p 0

~00 N S
+p/ s [u(Xi()+w,Xf)+U(Xi5’X(j)+w)}G(dw)}'
| =X |

Exploiting the boundedness U andV', we obtain
u(x) < V! (X, X)) = ——— I—c+p/ [U(x +w,x}) + U, X +w)]G(dw)] .
r+2p 0
The proof follows by rearranging this inequality.
Step 3. For any equilibriums, the set Go) is contained inf{(Xa, Xg): XA+ XB < 2z}.
For anyy, letZ(y) be the unique that solvesh(z, y) = 0. The threshold is well defined because

dé(z,y)
dz

:ru’(z)+p/Ooo[u’(z)—U1(2+u>,y)+u’(z)—Ul(z,y-i-w)]G(du))
geel
> ru’(z)-l-p/o (@2 —-u@zZ+w)+U (2 -U(2)]Gdw) > 0,

where the first inequality follows from Conditidh u > Ty, and the second from Conditichu” < 0.
To comparez with the statez = supf: z= Z(z)}, note that

32 =92 —-$22)
:—p/ooo[u(i-i- w)+Uu(z, 24+ w) —0(Z+ w, 2) —0(Z, 2+ w)]G(dw)
_ p/°° 5 -5 o s .
=—-= [UZ+w)+uZ, 24+ w) —u(Z+ w, 2) —u(2)|G(dw)
2Jo
= _g /Oo[u(i-i-u))—u(2)+g(2,2+w)—g(2, 7)—u@E+w,2)+ Uz 2)]G([dw) <0
Jo

under Conditior8, u’(x) + u,(y, X) —u; (X, y) > 0. This implies that > Z becausg(z) is strictly increasing irz under
Conditionsl, 2, 5, and6.
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We now show thatlz(y)/dy > —1,

a2y by

dy P12 y)

o« (r 420U (@) — p /O [01(2+ 0. Y) + T1(Z Y+ 0) — Ta(2+ 0. Y) — Ta(z Y+ )] G(dw)

=a+amwn—%Aqu+m+ma+uw—@u+mw
+U'(2) +Uq(Z, y+w) —Uy(z, y+w)]G(dw)

> (r +2p)u/(z)—p/ooo[u/(z+ w) +U'(2)]G(dw) > 0.

The firstinequality follows from Conditiof, u’(x) > u4 (x, y) —U»(X, y). The second inequality follows because- 0
andu” < 0 (Condition2).

Asz> zanddz(y)/dy > —1, we conclude that for allp + xg > 2z, Xa # X, itis either the case thai(xa, Xg) >
0, whenxa > xg or thatd(xg, xa) > 0, whenxg > Xa. It follows that (xa, Xg) ¢ C(c) for all xa +xg > 2z, Xp #
xg. Suppose to the contrary théta, xg) € C(o) andxa + Xg > 2z, xa # Xg. SinceC(o) is bounded, there exist
(Xa, %) € C(0), XA > Xa andXg > Xg, such that(Xa + w) ¢ C(c) and (Xg + w) ¢ C(o) for all w > 0. Because
XA+ Xg > 2z, it follows thaté(Xa, Xg) > 0 or (Xg, Xa) > 0 or both, contradicting Step 2.

Step 4. For any equilibriuma, E[inf{z: (xa(7), xg (7)) ¢ C(0)}] < E[inf{z: Xa(z) > zor xg(7) > z}].
As xa(t) andxg(t) areindependenE[inf{z: xa(z) > zor xg(z) > z}] = E[inf{z: Xa(z) > z}]. The distribution
of the process|(t) = xa(t) + xg (t) belongsto the same class as eithex(t) or xg(t), but with a Poisson arrival rate of

2p instead ofp. Due to the properties of Poisson processes, the las(tdt= q(t/2) = xa(t/2) + xg(t/2) is the same
as the law of eithex o (t) or xg (). As xa(r) = Xg(z) occurs with probability zero, it follows that

Efinf{z: (xa(z),xB (7)) ¢ C(a)}] < E[inf{z: xa(z) +xp () > 22}] =

— Efinf{z : Xa(/2)+Xa(z/2) > 2)] = Efinf{: xa(c) > 2] = E[inf(z: xa(z) > zorxg (¢) > Z)]. I

Theproof of Lemma2 is analogous to the proof of Lemma A.1. Hence, we omit it. It is available upon request.
Proof of Theoren8.  As the stopping boundawf is strictly decreasing and symmetric, it suffices to compare the

statex such thai = z*(X) with the thresholdg andz.
Whenx = z*(X), equation 9) can be written as

) =(r +2p)w +C—p/ooo[u()_<+ w)+U(X, X+ w)]G(dw) =0 (A.2)

becauser* (X + w, X) = u* (X, X + w) = U(X + w) + U(X, X + w).
We now subtract equatiol) from equation (A.2), calculated ato obtain

0 =30-30 = +29| *EEE ] <o

becausei(z) > u(z, z). To conclude that < X, we only need to establish that for all

wm+mmm+@mm+c

00 = +2p) 5

—p/ooo[u’(x+w)+g1(x,x+w)+gz(x,x+w)]G(dw) >0,

which follows fromu; > 0, U’ +u, > 0 (Condition9), u” < 0 (Condition 2), u, < 0 (Condition5), anduy, < 0
(Condition6).
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We now compare with the threshold. Whenu, = 0, dropping the dependence win the second argument, the

quantitiesz andx, respectively, solve

P =(r +p)U(2)+C—p/0 UZ+w)G(dw) - p[1 - G(@)][u®) -u@)] =0

and
u(x)+u(x © -
360 =420 "B TE oy [T us )G - pu) =0
Asu’ > 0,Uu > 0,andu” < 0 (Condition2), it follows thatg’(x) > O for all x. Hence, we only need to show that

30 =30 -5@ =1 +20) 2722 o4~ (1 +p)u2) ~ pl1 - 6@ ~u@))

=270 e eiue - ual <o,

whichfollows because@(2) < u(z). |
Proof of PropositioriL.  As shown in Theoren, the equilibrium threshold functianis such that
lim ¢(t,z(t)) =0and lim ¢(t,z()) =0,
t=01 t—+o0

where

F(t.dy)

z(t)
P(t,z(t) =c— p/ alv(z(t) + w) —ov(z(1))]G(dw) — /)/ / u(z(t), y+w)G(dw) ——— F(Lz()

z(t)
+(r+p | n-sen-yz (t)))[ o(2(0) ol

Hencez(t) decreasem c and increases iy, in the limits fort small andt large, because

o o z(t) F(t,dy)
—¢(t,z(t)) =1> 0and—a(t, z(t)) = — 1-G(zt)—y)] ——— 0.
S590.20) = 1> 0and.2-g (1. 200) (r 0 [ n-sE0-gd ) <
Considemow the ordinary differential equation characterizing the equilibrium threshotdthe whole domain
Z(t) = #(t, z(t))
- [ f(t,z(t)) °
av(z(t)) —co—u(z(t), z(1))] F(t,z(0)

Making the dependence dfit) in costc explicit, suppose by contradiction thatt,c+ Ac) > z(t, c) for somet and
some smallAc. As z(t) decreases in for t small andt large, there must be at least two crossing pdip@ndty, such
thatz(t;,c+ Ac) = z(tg, ), z(t, ¢+ Ac) = z(tp,¢) andz; (t1, ¢+ Ac) > 73(t1,©), z1(t2,C+ AcC) < z31(tp, ), but for
Ac small,

=1>0.

dz(t,0 8 [ Bt 2(1) } M AR0)

e lago=ztcrag=aty €| [an(zt) - co—u((t), 2()] HEAD oc

Analogously the supposition that(t, cg + Acg) > z(t, c) for somet is contradicted by

dz (t, co)
~dep

|zt t,co+A t 2 2. 20)
DT 0y | at) - g - uta(t). 20| Fld)

O e dy)
~(r40 [ -G -y Jan ) oo -uzw. 20 + 41t 20)

z(t) F
—(r+p [Mn-cen- Y)]F((ttz(t)))[av(l(t))—co u(z(t), 20)] <0.
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Further consider

o (1) F(t,dy) %
Zpt.a0)= (r 0 [ =60 -yl o) = [ + - o)]e@n),

Suppose that is small. Sincep(t, z(t)) ~ 0, we obtain that

d _ z() F(t,dy)
Zpt.a0) ~ (r + /O 1= -y ook o)

1 z(t) F(t,dy)
—a[c+(r+p/o (LG - s )leo @) —col

20 Ft.dy)
°<(r+ﬂ(/o [1—G(Z(t)—Y)]m Co—C.

This quantity is negative (positive) wheris sufficiently large (small) relative t.
Finally, we need to calculate, farsmall,

dzy(t, )
da

L2 $(t.2(1)
dta—ztatsm=2t) 0% | [an(2t) o~ u@t). 20)] Fr5o)

. {c—ap J5°Do @0)+ ) =0 @G M) + (1 +p 5V - Gt - Y] FERE; ) leo @) — col

oa [0 (2()) — col £t 50

o | c—ap [5°v(z(t) + w) — v (z(1)]G(dw)
> %a a0 (z(®) —co

x—p /0 [ (2(t) + w) — v (2N G (duw)[av (2(t) - o]
—o(z(t)) [c—ap /0 [0 (2(t) + w) — v(z(t))]G(dw)]

— cop /0 [o (2(t) + ) — 0 (Z1)]G(dw) — co (z(1)),

where the first proportionality sign is found by dividing throughday(z(t)) — cg, and the second one by simplifying
For anyt, 0 < z < z(t) < Z < o0, v’ > 0, z is bounded away from 0 antlis bounded away fromo for cg = 0 and
¢ = 0. Hence, the above quantity cannot change sign vehisneither sufficiently small or sufficiently large relative

toco. |
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