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Preemption games are widely used to model economic problems such as patent races. We in-
troduce private information into these games and allow for this information to stochastically change
over time. This reflects,e.g. how R&D competitors improve their innovations over time and keep
these innovations secret before patenting them. The analysis initially appears intractable because of
the complexity of the equilibrium updating of beliefs on opponents’ information. However, we demon-
strate the existence of a class of equilibria and calculate these equilibria in closed form. We find that
the expected durations in these equilibria are longer than when players’ information is public but,
in some cases, shorter than in the collusive outcome. Hence, R&D secrecy slows down innovation
disclosure.
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1. INTRODUCTION

The analysis of timing decisions is of prime importance in economic theory. For example, the
timing of patent applications determines the rate of disclosure of innovations, and hence welfare
assessments of R&D activities and policies. Such economic problems are typically represented
as “preemption games”: models where each agent’s strategic decision is when to end the game,
and there is a first-mover advantage in the pay-offs. One important, but previously neglected,
feature of these timing problems isprivate information:the agents’ pay-off-relevant characteris-
tics (which we define as their states) may be only privately known and may stochastically change
over time. For example, R&D competitors improve their innovations over time and keep them
secret before filing for a patent.This paper calculates equilibria in preemption games where
players’ private information states stochastically increase over time. We contrast our results
with the analysis of timing games with symmetric information. We find that equilibrium du-
rations are longer when information is private. We then contrast our equilibria to the collusive
outcome when players are in a team that aggregates private information and maximizes joint
pay-offs. When each player’s state influences only her own pay-off, we find that private infor-
mation equilibrium durations are shorter than in the collusive outcome. In the context of patent
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races, we conclude that secrecy slows down innovation disclosure, possibly to the advantage of
R&D competitors.

Incorporating into the analysis of preemption games, the realistic feature that players’ private
information states change over time generates novel conceptual obstacles.The calculation of
equilibrium beliefs, and hence the calculation of the equilibrium, appears intractable.The only
available information to a player is that the opponent has not yet ended the game. How should
a player update her equilibrium beliefs of the opponent’s state and hence of the risk of being
preempted? How should higher-order beliefs affect one’s choice?1 Also,how should equilibrium
beliefs evolve over time? If the opponent is still in the game at a late time, should a player believe
that the opponent is likely to remain longer or should she believe that she is coming close to end
the game?

We provide definitive answers to these questions in a stylized continuous-time framework. In
any instant, each player’s state is the sum of past state increments that arrive according to iden-
tical independent Poisson processes. Conditional on arrival, the value of the state increment is
randomly drawn from distributions that are identical and independent across players. Under mild
assumptions on the players’ pay-offs,we show existence of equilibria where each agent ends the
game when her state is above a time-decreasing threshold, and we derive in closed form the or-
dinary differential equation that determines the equilibrium threshold.The equilibrium beliefs
have the following properties. Because the players do not know each other’s states, they use cal-
endar time to make inferences on how close the opponent is to ending the game, and hence on
the risk of preemption. Over time, each player becomes more afraid that the opponent will soon
end the game and becomes more willing to end the game for lower states and pay-offs. To illus-
trate the substantive meaning of our equilibrium, considere.g.a patent race where an innovation
“is in the air”: i.e.more than one firm is working on it. As time advances, the competitors become
more and more concerned with the risk of preemption and less willing to wait for additional re-
sults before applying for a patent.

Having calculated the closed form of the differential equation determining the time-
decreasing equilibrium thresholds, we can perform several comparative statics exercises in appli-
cations such as patent races. We find the surprising policy prediction thatstrengthening patent
rights may slow down innovation disclosure.Stronger patents increase both the commercial
value of current research and the option value of waiting for additional results that improve
current innovations. When research is sufficiently costly compared to the development of in-
novations, it turns out that strengthening patent rights increases the option value for waiting
more than the value of current research, thereby inducing firms to procrastinate patent
applications.

In order to highlight the implications of private information in preemption games, we com-
pare the time-decreasing threshold equilibrium of our games with the equilibrium of analogous
preemption games with public information. Under some regularity assumptions, we find thatthe
expected equilibrium durations are shorter when information is public.When the players’ states
are common knowledge, the equilibrium unravels. For fear of being preempted, each player be-
comes willing to end the game at low states. In turn, this makes the opponent even more afraid
of preemption and willing to end the game at even lower states. When the opponent’s state is pri-
vate information, the players do not know whether the opponent’s state is close to the stopping

1. Note that a player may be willing to delay ending the game only because she believes that there is no risk of
preemption. This belief may be induced by the belief that the opponent believes that there is no risk of preemption and
hence is willing to delay ending the game.
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threshold or not. This reduces the fear of preemption and stops the equilibrium from unrav-
elling. In the context of patent races, this result implies thatsecrecy slows down the speed of
technological disclosure.When innovation results are more likely to leak out, research firms
may become more afraid of preemption and eager to patent innovations of smaller economic
significance.2

Finally, we study the problem of a team that aggregates players’ private information and
that maximizes the team’s joint pay-off. We find that, as the time spent in the game grows
large, competing players become willing to end the game at states for which the team plan-
ner would instruct them to continue. Our results are sharper in the case where each agent’s
state influences only her own pay-off (the private value case). In any time-decreasing thresh-
old equilibrium, the players stop the game too early relative to the collusive outcome. Intu-
itively, when pay-offs are shared among the players, there is no risk of preemption, and hence
game durations are longer than when players compete. In the context of R&D races, this re-
sult implies that,when there are no competition externalities in the innovation market, se-
crecy is advantageous to R&D competitors,as it brings duration times closer to the collusive
outcome.

This paper is presented as follows. After the literature review, Section3 presents our general
model of preemption games with private information. Time-decreasing threshold equilibria are
calculated in Section4 and compared to equilibria of games with public information in Section5.
The team problem is studied in Section6. Section7 relates our results specifically to patent races.
Section8 concludes. Most proofs are in the appendix.

2. LITERATURE REVIEW

Preemption games have been studied widely. Among the earliest games ever studied is “Duel”
(seee.g.Karlin, 1959). In this simple preemption game, two duellists shoot at each other with
accuracy increasing over time. This model has evident military and economic applications,e.g.
Binmore(2004) motivates his study as a model of patent races. Possibly, the simplest preemption
game is the centipede game, introduced byRosenthal(1982). In each round, one of two players
may either contribute one dollar to the opponent’s account or collect the sum accrued in her
account and end the game. A referee adds one dollar to the account for each dollar contributed.
The equilibrium unravels completely. For fear of being preempted by the opponent, each player
closes her account immediately. In contrast to this immediate unravelling, we show that the
equilibrium unravels only gradually in our games with private information.3

A number of papers model patent races as preemption games. Possibly the earliest ones
are byFudenberget al. (1983) andLippman and McCardle(1988). Closer to our work,Weeds
(2002) studies a model with symmetric information where the value of an innovation changes

2. As we later discuss, this result may help explain the acceleration in the patenting rate, observed in the data
since the mid 1980’s (seeKortum and Lerner, 1999;Hall, Jaffe and Trajtenberg, 2001), as well as differences in citation
numbers across R&D industries.

3. Related to preemption games are their mirror-image games, wars of attrition,i.e. timing games with a late-
mover advantage.Baye, Kovenock and de Vries(1993) apply these games to lobbying.Bulow and Klemperer(1999)
generalize the war of attrition to the case where the lastk out ofn players receive a higher pay-off.Fudenberg and Tirole
(1986) model a duopoly war with changing demand as a war of attrition with private information on marginal costs.
Décamps and Mariotti(2004) study a war of attrition where the private cost of the irreversible investment in an uncertain
project is private information.Krishna and Morgan(1997) study general wars of attrition with private information.
Unlike us, none of these papers allows private information to change over time.
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stochastically over time. Similarly,Lambrecht and Perraudin(2003) study a preemption game
where two firms own options to buy an asset with value stochastically changing over time, and
where strike prices are private information. Unlike our analysis, private information is of private
value and constant over time.4

Reinganum(1981),Fudenberg and Tirole(1985) andRiordan(1992) study technology adop-
tion and market entry preemption games. Competitors decide the timing of entry in a market or
the timing of adoption of a process innovation. Waiting reduces the costs of entry and of in-
novation adoption but there is a first-mover advantage. Unlike this paper, they do not consider
private information. Closer to our work,Abreu and Brunnermeier(2003) study a preemption
game modelling the interaction of traders in a financial bubble. Like us, they consider private
information of interdependent value: each trader receives some information of when the bubble
is likely to burst. Unlike us, they do not allow information to change over time.

By calculating equilibria of timing games with states changing over time, our paper con-
tributes to the literature on learning and experimentation in games. One strand of this literature
has studied strategic experimentation in multi-armed bandit models. InBolton and Harris(1999)
andKeller, Cripps and Rady(2005), each player can switch between a safe arm, whose pay-off
is known, and a risky arm whose pay-off is unknown. Further, it is assumed that the players’
pay-offs are common knowledge. This assumption has recently been lifted byRosenberg, Solan
and Vieille (2007) andMurto and Valimaki(2005). Both papers consider the case where the
switch from the risky arm to the safe arm is irreversible.Rosenberg, Solan and Vieille(2007)
show that the equilibrium is in cut-off strategies: Each player chooses to switch when her cumu-
lative pay-off from the risky arm is below a threshold, which decreases with the time spent by
the opponent experimenting with the risky arm.Murto and Valimaki(2005) show that almost all
players keep the risky arm if and only if it yields a higher expected pay-off than the safe arm,
but players tend to stay on the risky arm for too long.

Other papers have considered learning and experimentation in models different from multi-
armed bandits.Keller and Rady(1999) study optimal experimentation by a monopolist who
faces an unknown demand curve subject to random changes. They show that there are two qual-
itatively different regimes. In the first one, there is extreme experimentation and good tracking
of the prevailing demand curve, in the other one, moderate experimentation and poor tracking.
Bergemann and Valimaki(1996) consider a buyer who buys a stream of goods of unknown
value from sellers who compete in prices over time. They find that all Markov perfect equilibria
are efficient, and that prices below marginal cost emerge naturally to sustain experimentation.
Bergemann and Valimaki(2000) expand this model to allow for multiple buyers. Assuming that
the performance of the new product is publicly observable, they show that the buyers perform
excessive experimentation.Keller and Rady(2003) study price setting by duopolists who do not
know the perceived degree of product differentiation. They show that price dispersion arises in
cyclical fashions, depending on whether the value of information gathered through price disper-
sion is high or low.Moscarini and Squintani(2004) study a winner-takes-all R&D race where
firms are privately informed about the arrival rate of the invention. Unlike in this paper, equi-
librium expenditure in R&D is smaller than in the collusive outcome, if the team planner is
sufficiently impatient.

4. Other papers have highlighted preemption effects in different models of R&D races. In the “tug-of-war” model
of Harris and Vickers(1985), firms take turns in making costly steps towards a “finish line.” The equilibrium immediately
unravels: once a firm is ahead in the race, its competitors immediately quit. However, this dramatic unravelling disappears
when uncertainty is introduced regarding the duration of each step (Harris and Vickers,1987). Unlike these models, we
introduce private information and show that it makes equilibria unravel only gradually over time.
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3. THE GAME

Two players,A andB are engaged in the following timing game. The state of each playeri at any
time t is expressed asxi (t) ∈R+, e.g. xi maybe the value of playeri ’s innovation in a R&D race.
Each player’s state is private information and evolves according to a compound Poisson process.
Specifically, each player has independent Poisson arrivals of state increments of rateρ ≥ 0: at
any timet , the next arrivalτi ≥ t is distributed according to the cumulative distribution function
(c.d.f.) H(τi |ρ, t) = 1− e−ρ(τi −t). The c.d.f. of the incrementw—conditional on arrival—is
G, with support equal toR+. We assume thatG ∈ C2, with bounded densityg, and that the
distribution of increments is log-concave,5 i.e.

d logG(w)/dw = g(w)/G(w)is decreasing inw.

The process we have just described defines a distribution of the random statexi of each playeri
at timet ; we denote the associated c.d.f. byF(t,xi ). Because the support of the c.d.f.G is R+
andG ∈ C2, the properties of compound Poisson processes make sure thatF(t,xi ) ∈ C2, and we
denote the density ofF(t,xi ) by f (t,xi ).

6

Eachplayer i incurs a flow costc to remain in the game. At any point in timeT , each
player i may decide to stop the game and achieve a pay-offu(xi (T)). This pay-off need not
be instantaneous, but it may be obtained in a continuation game separate from the timing game
e.g.it may be the present discounted value of the stream of pay-offs associated with a patented
innovation. The opponent receives a pay-offu(xj (T),xi (T)). While the first-mover’s pay-off
depends only on her own state, we allow the second-mover’s pay-off to depend on both states.
For example, in patent races, both players’ pay-offs likely depend on the first-mover patented
innovation, which becomes the industry standard. When representing a player’s pay-off, we
shall denote her own state byx and the opponent state byy. By definition of a preemption
game, the first mover has an advantage: there is a uniform (possibly small) boundε such that
u(x) > u(x, y)+ ε for any x, y. In the event that players stop the game simultaneously at time
T , each playeri receives the pay-off u(xi (T),xj (T)) = [u(xi (T)) + u(xi (T),xj (T))]/2. We
assume that bothu andu arebounded above and twice continuously differentiable. We assume
that there are finite positive boundsM andM1 suchthat 0< u′ < M , and 0≤ u1 < M1, this weak
inequality allows the utility not to depend on one’s state when preempted by the opponent.7 In

5. For example, increments may be negative exponentially distributed of parameterλ, i.e. g(w) = λe−λw or
gamma distributed with parametersa andb, i.e. g(w) = 1

ba0(a)w
a−1e−w/b.

6. Note thatxi (t) canbe expressed as
∑K (t)

k=0 wk, whereK (t) is Poisson distributed with parameterρt , and the
incrementswk areindependent identically distributed of distributionG. Hence, the density ofxi (t) canbe expressed as

f (t,xi ) =
∞∑

k=1

f (k)(xi )
(ρt)ke−kρt

k!
,

where f (1)(xi ) = g(xi ), and recursively,f (k)(xi ) =
∫ xi
0 g(xi −w) f (k−1)(w)dw for n > 1. Further, the time derivative

of F(t,xi ) canbe derived as

F1(t,x) = lim
1→0

F(t +1,x)− F(t,x)

1
= lim

1→0

(1−ρ1)F(t,x)+ρ1
∫ x
0 F(t,x −w)G(dw)− F(t,x)

1

= ρ

∫ x

0
[F(t,x −w)− F(t,x)]G(dw)

because in the small time interval1, the probability of more than one arrival is infinitesimal. Seee.g.Ross(1995).
7. Throughout the paper, the subscripts 1 and 2 refer to derivatives with respect to the first and second

argument.
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order to highlight the competitive features of the environment, we also assume thatu2 ≤ 0:
an increment of the opponent’s state cannot increase the second mover’s pay-off.8 Pay-offs are
discounted with rater > 0.

For each playeri = A, B, a historyhi
t at time t is a weakly increasing path of statesxi (τ )

for 0 ≤ τ < t . As well as her own state path(xi (τ ))τ≤t , the player knows that the opponent
did not leave at any timeτ : 0 ≤ τ < t . In general, a pure strategy in this game is a history-
dependent measurable stopping timeσi , that identifies the earliest moment at which firmi is
willing to stop the game given the historyhi

t . Hence, playeri ends the game at timeTi (hi ) =
inf{t : σi (hi

t ) = t}. 9 To simplify the analysis, we shall focus on symmetric history-independent
equilibria: both players adopt the same equilibrium strategyσi , function of their own statex
and of calendar timet only, and we shall henceforth omit the subscripti whenever there is no
ambiguity. Arguments available upon request show that the restriction to history-independent
strategy equilibria is without loss of generality.

4. THE EQUILIBRIUM

To calculate the equilibrium strategies, we first define the equilibrium valueV(x, t), conditional
on the opponent not having stopped the game before timet , as a function of statex at time t .
Each player’s strategy,σ , determines a stopping regionS= {(x, t): σ(x, t) = t} and a contin-
uation regionC = {(x, t): σ(x, t) > t}. In the stopping regionS, the equilibrium valueV(x, t)
corresponds to the value for stoppingu(x). In the continuation regionC, the equilibrium value
V(x, t) satisfies the following standard flow equation (seee.g.Dixit and Pindyck, 1994):

rV (x, t) = −c+ lim
1t→0+

E[W(x(t +1t), y(t +1t), t +1t)|x, t ] − V(x, t)

1t
, (1)

whereW(x, y, t) = V(x, t) if σ(y(t), t) > t , i.e. the opponent has not ended the game by timet
andW(x, y, t) = u(x, y) otherwise.

In equation (1), the expectation is taken both with respect to the increment of the player’s
own statex and with respect to the opponent’s statey. At any time t , each player conditions
her inference with respect to the opponent’s statey(t), on the opponent’s strategyσ , and on the
information thatT ≥ t : i.e. that the opponent has not left the game beforet . This is equivalent to
the information that the opponent’s statey(τ ) has been in the continuation regionC at any time
τ < t . While these beliefs are well defined for allx and t , in general their calculation is quite
cumbersome.

However, we now show that the updating of beliefs is much simpler in equilibria where the
frontier between the continuation regionC and the stopping regionS is a threshold functionz
continuous and strictly decreasingover time. At any timet , each player can base her inference
only on the information that the opponent’s statey is smaller thanz “one instant beforet”
and can safely ignore all information gathered on the opponent at any previous timeτ . We
henceforth focus on equilibria described by a continuous and decreasing thresholdz, that induce
equilibrium valuesV(x, t) differentiable int . We define our equilibrium class of interest as
decreasing-threshold regular equilibria.

8. By increasing (decreasing) we meanstrictly increasing (decreasing), whenever this is not explicitly qualified.
9. For a general treatment on how to construct stopping time strategies in continuous time games and on their

interpretation, seeSimon and Stinchcombe(1989).
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Lemma 1. In any decreasing-threshold regular equilibrium, at any time t, the equilibrium
belief of either player with respect to the opponent’s state y(t) is the c.d.f. B(y | T ≥ t) =
F(t, y)/F(t,z(t)).

Proof. Because the frontier between the continuation regionC and the stopping region
S is a threshold functionz, the eventT ≥ t is equivalent to the event thaty(τ ) < z(τ ) for
all τ < t . Because the equilibrium threshold functionz(τ ) strictly decreases over timeτ , the
inequality limτ→t− y(τ ) ≤ limτ→t− z(τ ) implies thaty(τ ) < z(τ ) for all τ < t for any weakly
increasing opponent’s innovation state pathy(τ ). The opposite implication is obvious. Because
the thresholdz is continuous, limτ→t− z(τ ) = z(t). Because the probability that a state increment
occurs exactly at timet is zero, Pr(limτ→t− y(τ ) ≤ z(t)) = Pr(y(t) ≤ z(t)). The result then
follows from the definition of conditional probability.‖

Armed with this crucial lemma, we can now proceed to simplify equation (1), specialized
to a decreasing-threshold regular equilibrium.10 Therate of expected change on the right-hand
side has four components. First, there is the effect of time advancing without an increase in
one’s own state and without the opponent ending the game,V2(x, t). Second, with probability
ρ1t , the player’s own statex can increase by some random incrementw: the corresponding
expected increase in value per unit of time is thusρ

∫∞
0 [V(x+w, t)−V(x, t)]G(dw). Third, the

opponent may end the game without experiencing an increase in her state becausez(t) crosses
the opponent’s current state from above, causing the player under consideration a change in
value fromV(x, t) to u(x,z(t)). The conditional probability that this happens by timet +1t is
[F(t,z(t))− F(t,z(t +1t)]/F(t,z(t)). Dividing by 1t and taking the limit, we obtain a third
term equal to−[u(x,z(t)) − V(x, t)] f (t,z(t))z′(t)/F(t,z(t)). Finally, the opponent may end
the game because a state increment takes her state above the threshold. The probability of any
such an increment is againρ1t , and given the opponent’s current statey, the increment must be
at least of sizez(t)− y. Averaging over all such incrementsw and the unknown statey of the
opponent, we obtain a final term equal toρ

∫ z(t)
0

∫∞
z(t)−y[u(x, y+w))−V(x, t)]G(dw)F(t,dy)/

F(t,z(t)).
Adding all these terms up, we see that equation (1) is equivalent to

rV (x, t) = −c+ V2(x, t)+ρ

∫ ∞

0
[V(x +w, t)− V(x, t)]G(dw) (2)

−[u(x,z(t))−V(x, t)]
f (t,z(t))

F(t,z(t))
z′(t)+ρ

∫ z(t)

0

∫ ∞

z(t)−y
[u(x, y+w))−V(x, t)]G(dw)

F(t,dy)

F(t,z(t))
.

In any symmetric decreasing-threshold regular equilibrium, the best response to an opponent
playing according to a time-decreasing thresholdz is to play according toz. This feature allows
us to evaluate the flow equilibrium equation (2) at x = z(t), for any t . We impose the value
matching and smooth pasting conditions,

V(z(t), t) = u(z(t)), V2(z(t), t) =
∂

∂t
u(z(t)) = 0. (3)

We rearrange equation (2) and obtain that any decreasing equilibrium thresholdz solves the
following differential equation:

[u(z(t))−u(z(t),z(t))]
f (t,z(t))

F(t,z(t))
z′(t) = φ(t,z(t)), (4)

10. In the interest of brevity, here we present only an intuitive sketch of the derivations. A formal proof is available
upon request.
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where for any(t,z),

φ(t,z) ≡ ru(z)+c−ρ

∫ ∞

0
[u(z+w)−u(z)]G(dw)

−ρ

∫ z

0

∫ ∞

z−y
[u(z, y+w)−u(z)]G(dw)

F(t,dy)

F(t,z)
.

We shall now introduce regularity conditions to demonstrate existence of decreasing-threshold
regular equilibria and provide a partial characterization result. The first set of conditions is as
follows.

Condition 1. For any x, y, u′(x) ≥ u1(x, y).

Condition 2. For any x, u′′(x) ≤ 0.

In words, Condition1 requires that each player’s pay-off dependence in her own state is
larger when she is the first mover. Condition2 imposes weak concavity on the first-mover’s
pay-off. Conditions1 and2 allow us to establish that the best response of each player to any
opponent’s strategy is a strategy that can be represented as a time-dependent threshold function
z. Specifically, for any timet , there is a unique thresholdz(t) such that continuing is optimal
if x < z(t) and stopping is optimal ifx > z(t). Given this result, a decreasing-threshold regular
equilibrium exists as long as there is a strictly decreasing and well-defined solutionz to the
differential equation (4), which induces a valueV(x, t) differentiable int . This result will be
established with the aid of the two following conditions.

Condition 3. (r +2ρ)u(0) < −c+ρ
∫∞

0 [u(w)+u(0,w)]G(dw).

Condition 4. limx→∞(r +ρ)u(x) > −c+ limx→∞ ρ
∫∞

0 u(x +w)G(dw).

Conditions3 and4, while apparently complex, are in fact fairly innocuous boundary condi-
tions. Condition3 only makes sure that the players are willing to enter the game for low values of
x, it can be understood as a normalization condition onu andu. Condition4 stops players from
remaining in the game forever for high values ofx. Given thatu′′ ≤ 0, this is a mild restriction.

The final set of conditions is as follows.

Condition 5. For any x, y, u22(x, y) ≤ 0.

Condition 6. For any x, y, u12(x, y) ≤ 0.

Conditions5 and6 have a simple interpretation: they require that the second-mover’s pay-
off is concave in the opponent’s state and satisfies a single-crossing condition. These conditions
allow us to establish the properties of all decreasing-threshold regular equilibria for early and
late stages in the game. We will show that fort → 0, the threshold functionz converges tōz, the
smallestz that solves:

ru(z) = −c+ρ

∫ ∞

0
[u(z+w)−u(z)]G(dw)+ρ

∫ ∞

z
[u(z,w)−u(z)]G(dw). (5)

For t → ∞, the threshold functionz converges toz, the smallestz that solves:

ru(z) = −c+ρ

∫ ∞

0
[u(z+w)+u(z,z+w)−2u(z)]G(dw). (6)

The existence and characterization results we have so far described are formally presented in the
following theorem.11

11. We thank the referees, and especially the Editor, Bernard Salanie’, for helping us completing the proof of this
result.
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Theorem 1. Under Conditions1 –4, there exists a decreasing-threshold regular equilibrium.
Adding Conditions5 and6, in any decreasing-threshold regular equilibrium, the threshold func-
tion z(t) converges tōz as time t converges to zero and z(t) converges toz as t converges to
infinity.

The main steps in the proof of existence of decreasing-threshold regular equilibria are as
follows. After concluding that the best response of each player to any opponent’s strategy is a
strategy that can be represented as a time-dependent threshold functionz, we turn to establish
that there is a strictly decreasing and well-defined solutionz to the differential equation (4). To
prove this result, for anyt , we let ẑ(t) be the smallest solution of equationφ(t,z) = 0. We note
that the flow benefit to remaining in the game decreases as the opponent’s statey increases.
As the expectation of the opponent’s statey increases in timet , the player’s incentive to stop
the game becomes stronger as time goes by. As a resultẑ(t) is strictly decreasing int.12 For
every T , we consider the solutionz of the differential equation (4) that coincides witĥz(T)
at T . We show that this solution is strictly decreasing for allt < T . By takingT to infinity, we
have constructed a solutionz that is strictly decreasing for allt . The existence of a decreasing-
threshold regular equilibrium is then concluded by verifying that the solutionz induces a value
V(x, t) differentiable int .

Further, we show that under Conditions1–6, equation (6) has a unique solution. It follows
that any strictly decreasing solutionz(t) to the differential equation (4) must satisfy
limt→∞ z(t) = z. Since any admissible solutionz to equation (4) can never cross the func-
tion ẑ, or else it would be strictly increasing over a non-degenerate interval, this also implies
that any continuous strictly decreasing solutionz(t) to the differential equation (4) must satisfy
limt→0 z(t) = z̄.

The initial threshold̄z equalizes the option value for waiting and the incentive to preempt,
when the opponent has just entered the game and has not yet received any state increment. As the
chance that the opponent’s statey will soon cross the stopping thresholdz is small, the player is
not particularly afraid of preemption. This impedes the unravelling process and makes the initial
threshold relatively large. The asymptotic threshold,z, equalizes the option value of waiting
with the incentive to preempt, supposing that the opponent will surely stop the game if receiving
one single state increment, of any value. As time goes by, the chance that the opponent is about
to stop the game, although she has not yet done so, becomes larger and larger. As the risk of
preemption reaches its maximum, the player’s willingness to anticipate stopping is largest, and
the unravelling process makes the asymptotic threshold relatively small.

In the Section5, we contrast the equilibrium unravelling over time of preemption games
involving private information, with the immediate equilibrium unravelling of games involving
public information.

5. PUBLIC INFORMATION

This section compares the equilibria of our games involving private information, with equilibria
of analogous games involving public information. We study the framework introduced in Section
3, with the only modification being that at each timet , the historieshA

t andhB
t arecommon

knowledge. Again, we focus on equilibria where the strategiesσi dependonly on the current

12. Under some additional conditions, the results of the paper extend to the case where the first-mover’s pay-off
u depends on the opponent’s state, provided that the functionẑ(t) defined in the extended model is strictly decreasing.
The interested reader may request a full derivation from the authors.
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states(x, y) and not on the entire histories of increments(hi
t ,h j

t ). Omitted derivations, available
upon request, show that this assumption is without loss of generality.

The first, immediate, observation is that, becauseu(x) > u(x, y) > u(x, y) for any(x, y), if
the opponent stops the game at any state(xA,xB), then the unique best response at the same
state(xA,xB) is to stop the game. This observation yields two important results. The first one
is that the players always simultaneously stop the game in equilibrium.13 Thesecond one is that
there are multiple equilibria in the public information game. For every state(xA,xB), even if
each player would prefer to stay in the game if the opponent did not stop at(xA,xB), there is an
equilibrium where both players coordinate on stopping at(xA,xB). For any strategy profileσ,
we describe the setC(σ ) of states(xA,xB) suchthat the strategiesσ prescribe that the players
do not stop the game:σA(xA,xB, t) > t andσB(xB,xA, t) > t , for everyt . We wish to compare
the equilibria of a private information preemption game with the equilibriaσ of the analogous
public information game with the largest set of statesC(σ ).

A profile σ is an equilibrium if and only if for each playeri , a best response to the opponent’s
strategyσ j is to wait at any state(xA,xB) suchthatσ prescribes not to end the game. Formally,
fix a strategy profileσ . Consider any playeri and state(x, y), and let the “best-response” value
at (x, y) beVi (x, y) equalto u(x) in the region where the best response toσ is to stop the game,
thus satisfying the following flow equation in the waiting region:

rV i (x, y) = −c+ρ

∫ ∞

0
[Vi (x +w, y)− Vi (x, y)]G(dw)

+ρ

∫ ∞

0
[Vi (x, y+w)− Vi (x, y)]G(dw). (7)

It is easy to verify that this is a standard Bellman equation for a discounted dynamic program
(seee.g.Dixit and Pindyck,1994). Hence,σ is an equilibrium if and only if, for each playeri ,
Vi (xi ,x j ) > u(xi ,x j ) for every state(xA,xB) suchthatσi (xi ,x j , t) > t .

We now introduce the regularity conditions that will deliver our main result that expected
durations are longer when information is private.

Condition 7. For any(x, y), u′(x)−u1(x, y) ≥ −u2(x, y).

Condition 8. For any(x, y), u′(x)−u1(x, y) ≥ −u2(y,x).

Condition7 requiresthat the change in each player’s first-mover advantageu(x)− u(x, y)
with respect to her own state,x, is larger than the change in the first-mover advantage with
respect to her opponent’s state, for any pair of states(x, y). Condition8 requires that the change
of the first-mover advantageu(x)−u(x, y) with respect to the player’s own state when the states
are(x, y) is larger than the change ofu(y)− u(y,x) with respect to the opponent’s state when
the states are(y,x), i.e.when the states are interchanged between the players.

The next result shows that, under Conditions1–8, the setC(σ ) is bounded above by the
threshold functionxA + xB = 2z in any equilibriumσ . As the processes of statesxA(t) and
xB(t) are independent, the expected time for the states(xA(t),xB(t)) to exit the setC(σ ) is
smaller than the expected time for either processxi (t) to reachz. This implies that the expected
duration of the public information game is smaller than the expected time needed for either,
or both, of the players to reach the asymptotic thresholdz. In this sense, we conclude that the

13. In fact, there are two possible scenarios for this game: either the player that had the last arrival has a time
advantage and stops the game first (which would correspond to the limit as the information disclosure lag goes to zero)
or both players stop simultaneously, by which we mean that each stops first with equal probability. The theorem derived
in this section applies to both scenarios, but for simplicity in our presentation, we only consider the latter case.
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equilibrium of the public information game immediately unravels to the threshold that is reached
only asymptotically in the equilibrium of the private information game.

Theorem 2. Suppose that the histories(hA
t ,hB

t ) are public at any time t Under Conditions
1–8, for any equilibriumσ , the set C(σ ) is contained in{(xA,xB): xA(t)+ xB(t) ≤ 2z}. Hence,
E[inf{τ : (xA(τ ),xB(τ )) /∈ C(σ )}] < E[inf{τ : xA(τ ) ≥ z or xB(τ ) ≥ z}].

This concludes the comparison of preemption games with private and public information.
We have found that equilibrium durations are longer under private information. In Section6, we
compare private information equilibrium durations with collusive durations.

6. THE TEAM’S PROBLEM

This section compares the equilibrium strategies of our private information games with the col-
lusive policies that maximize the sum of the players’ pay-offs under perfect information. As an
illustration, the players may be joined in a team that aggregates private information, maximizes
the joint pay-off and divides it equally.

For clarity of exposition, we assume that it is always optimal for the player with the largest
state to end the game:u(xA)+ u(xA,xB) > u(xB)+ u(xB,xA) if and only if xA > xB. Hence,
we let the team’s pay-off be

u∗(xA,xB) =

{
u(xA)+u(xB,xA) if xA > xB,

u(xB)+u(xA,xB) if xB > xA

becausethe team planner optimally chooses the first mover to maximize the joint pay-off. To
simplify the exposition, we assume thatu∗ is twice continuously differentiable: this requires
that the left and right derivatives are the same atxA = xB.

We focus on policiesσ where the decision to stop the game depends only on the states
(xA,xB) andnot on the whole history of state increments; omitted arguments show that this
restriction is without loss of generality. We denote asV(xA,xB) theteam’s value in the game for
a pair of states(xA,xB). In the region where the planner makes the players stop,V(xA,xB) =
u∗(xA,xB). In the continuation region,V(xA,xB) satisfiesthe flow equation:

rV (xA,xB) = −2c+ρ

[∫ ∞

0
V(xA +w,xB)G(dw)− V(xA,xB)

]

+ρ

[∫ ∞

0
V(xA,xB +w)G(dw)− V(xA,xB)

]
. (8)

We study the collusive outcome under the following conditions (for consistency with the previ-
ous conditions, we express them in terms of the primitive pay-offsu andu).

Condition 9. For any(x, y), u′(x)+u2(y,x) > 0.

Condition 10. For any(x, y), u11(x, y) ≤ 0.

Condition 9 requiresthat the aggregate pay-offu∗(xA,xB) is increasing in both players’
statesxA andxB, i.e. u∗

1(xA,xB) > 0 andu∗
2(xA,xB) > 0. Condition10, concavity of the second-

mover’s pay-off in her own state, implies together withu′′ ≤ 0 (Condition 2) and u22 ≤ 0
(Condition5), that the aggregate pay-offu∗(xA,xB) is concave in both argumentsxA andxB,
i.e. u∗

11(xA,xB) ≤ 0 andu∗
22(xA,xB) ≤ 0.Note also thatu∗ inheritsthe single-crossing condition

u∗
12(xA,xB) ≤ 0 from Condition6.

 at U
niversity of E

ssex - A
lbert S

lom
an Library on M

arch 31, 2011
restud.oxfordjournals.org

D
ow

nloaded from
 

http://restud.oxfordjournals.org/


“rdq021” — 2011/3/14 — 8:15 — page 678 — #12

678 REVIEW OF ECONOMIC STUDIES

Under these conditions, we now show that the team’s stopping time is characterized by a
stopping boundaryz∗. Whenever the states(xA,xB) areabove this boundary, the social planner
instructs the player with the largest state to stop the game. Due to the symmetry of the problem,
the boundary is symmetric with respect to the 45 degree line.

Lemma 2. Under Conditions2,5,6,9, and10, there is a unique stopping boundary z∗: xB 7→
xA, such that continuing is optimal if and only if xA < z∗(xB), and V(z∗(xB),xB) = u∗(z∗(xB),
xB). The stopping boundary z∗ is strictly decreasing in xB andsymmetric, i.e. xA = z∗(xB) if
andonly if xA = .z∗.−1(xB).

The proof of the first part of this lemma is similar to the proof that, in games with private
information, each player’s best response in any regular decreasing-threshold equilibrium can
be represented by a threshold function (Lemma A.1 in the appendix). The conditionsu∗

1(xA,
xB) > 0 andu∗

2(xA,xB) > 0 make sure that the boundaryz∗ is strictly decreasing. This is the key
feature ofz∗ thatallows us to calculate it. For statexB, we impose that at the boundaryz∗(xB),
theoptimal valueV(z∗(xB),xB) equalsu∗(z∗(xB),xB), the value for stopping the player with
the largest state. The optimal valueV(z∗(xB),xB) canbe explicitly calculated in the waiting
region because the boundaryz∗ is strictly decreasing, and hence if either playerA or B receives
a further state incrementw, the associated optimal values areV(z∗(xB)+w,xB) = u∗(z∗(xB)+
w,xB) andV(z∗(xB),xB +w) = u∗(z∗(xB),xB +w), respectively.14 With these substitutions,
we obtain that, for any statexB, the boundaryz∗(xB) solves:

(r +2ρ)u∗(z∗(xB),xB) = −2c+ρ

∫ ∞

0
u∗(z∗(xB)+w,xB)G(dw)

+ ρ

∫ ∞

0
u∗(z∗(xB),xB +w)G(dw). (9)

We conclude the welfare analysis by comparing the optimal stopping boundaryz∗ with the
equilibrium thresholds̄z andz. We show that in any regular decreasing-threshold equilibrium
at late stages of the game, the players exit at states that are too low relative to the collusive
outcome. This is also true at early stages in the game, and hence in the whole game, in the pure
private value case (whereu2 = 0).15 We let Q be the set of states(xA,xB) suchthat the planner
does not stop the game,i.e. xA < z∗(xB).

Theorem 3. Under Conditions1–6,9, and10, the set Q of states for which the planner does
not stop the game is a superset of[0,z] × [0,z], the set of states for which neither player stops
the game in a decreasing-threshold regular equilibrium for t→ ∞. Whenu2 = 0, the set Q is
also a superset of[0,z(t)] × [0,z(t)], for all t .

The intuition behind this result stems from the observation that the social planner is not
afraid of preemption. At any moment in time, for any state(xA,xB), the planner may decide
which player should stop the game to maximize the joint pay-off. Since the team planner is
not concerned that the players may try to preempt each other, she optimally sets a generous
stopping policy. In any regular decreasing-threshold equilibrium, the players attempt to preempt
each other. Neither of them internalizes the negative externality that her preemption imposes on

14. If instead of instructing the player with the highest state to stop the game, the team planner continued the game
after any state incrementw, it would not be feasible to calculatez∗

15. Beyond the private value case, it can be shown that the comparison between the optimal thresholdz∗ andthe
equilibrium upper bound̄z is indeterminate.
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the opponent. Instead, as they fear each other’s preemption, they wind up anticipating exit to a
greater and greater extent. This results in exit times smaller than in the collusive outcome.

This result concludes our general analysis of preemption games with private information
changing over time. Our general analysis is of wide applicability. In Section 7, we present an
application to patent races.

7. AN APPLICATION: PATENT RACES

Suppose that the two players are firms who conduct research activity at a flow costc. The amount
of resources initially devoted to research activity is common knowledge and determines the in-
novation hazard rate,ρ, and the innovation distribution function,G.16 Over time, the research
activity improves the value of a patentable innovation. The statexi (t) of firm i corresponds to
the value ofi ’s innovation at timet . Each firms’ innovation improvements are kept secret un-
til patented. At any timeT , each firmi may end the patent race by patenting and developing
the innovationxi (T). The patenting firm receives the pay-offu(xi (T)) andthe competitor re-
ceives the pay-offu(xj (T),xi (T)).17,18 We consider the functional form specificationu(x) =
αv(x)−c0. We single out a costc0 for developing the innovation, and we introduce the param-
eterα that measures the fraction of innovation value appropriated by the innovator. We assume
that the regularity Conditions1–10are satisfied, and thatαv(0) > c0. When one is ahead in the
race, the option of dropping out is dominated by the option of patenting one’s own innovation.
This assumption allows us to focus the analysis on the patenting choice.

Our equilibrium characterization hinges on Theorem1. The equilibrium threshold function
z is decreasing in time. As the patent race extends further in time, each firm becomes more
fearful of being preempted and willing to patent less valuable innovations. Having calculated the
differential equation determining the threshold functionz, we can study the relationship between
the equilibrium strategies and a number of variables of interest. We find that the equilibrium
threshold functionz is increasing in the cost of developing the innovationc0 anddecreasing
in the flow cost of researchc.19 Theseresults are intuitive: if the cost of staying in the race
increases, each firm is willing to stop earlier, whereas if the cost of stopping and developing the
innovation increases, each firm chooses to wait longer.

Quite unexpectedly, making patent rights stronger does not necessarily make innovation dis-
closure faster. Increasingα, the fraction of innovation value appropriated by the innovator, does
not necessarily reduce the equilibrium threshold functionz. In fact, increasingα not only in-
creases the current value of the innovation but also the value of waiting for future increments in
the value of the innovation. When the latter effect dominates, the result is a delay in innovation

16. This assumption is motivated by the observation that, while R&D results are often kept secret, the R&D
investment, the size and facilities of the research labs, and the teams of researchers involved are usually public.

17. The patent race pay-offs may represent the innovation profit but can also represent the equilibrium profits of a
competitive market game that takes place after the innovation is introduced into the market.

18. Our specification of the second-mover pay-off covers both instances where firms compete on the same research
project, and instances where they compete on possibly very different projects. In the first case, the second-mover pay-off
is determined only by the innovation patented by the first mover, who in a symmetric equilibrium is always ahead in the
race. In the second case, each player’s pay-off is determined by her own innovation.

19. This is consistent with the data ofHall, Jaffe and Trajtenberg(2001), who identify pharmaceutical and medical
industries as the industries with the smallest patenting rate. Development costs are exceptionally high in pharmaceutical
research because of the high costs of food and drug administration medical trials before a patented drug is allowed to be
produced and marketed.
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disclosure.20 As it turns out, if the development costc0 is sufficiently large relative to the re-
search cost,c, then stronger patent rights induce more frequent patenting. On the other hand,
if research is sufficiently costly relative to development, then stronger patent rights reduce the
patenting rate.

Proposition 1. In patent races, the equilibrium threshold function z increases in the devel-
opment cost c0 anddecreases in the research cost c. The relation between z andα, the fraction
of innovation value appropriated by the innovator, is negative (positive) when c is sufficiently
small (large) relative to c0, unlessu is too large.

Further specializing our general results to patent races, we find that the patenting rate is
smaller when innovation improvements are kept secret than when they are public information
(Theorem2). This result highlights a positive relationship between the patenting rate and indus-
trial espionage, and may help explaining the acceleration in patenting rate, observed in the data
since the mid 1980’s (seeKortum and Lerner,1999;Hall, Jaffe and Trajtenberg, 2001).21 It is
well documented that the threat of economic and industrial espionage has been steadily grow-
ing, spurred on by technological change. The increasingly wide availability of wire-tapping and
document reproduction technologies in the 1980’s has been followed by the internet revolution
of the 1990’s, with all the implied threats to computer security. According to Lexicon Com-
munications corporation, in 2005, economic espionage and the theft of trade secrets cost U.S.
businesses more than $250 billion and $1.2 trillion over the last decade.22

Our result that private information counteracts preemption forces may also shed some light
on the reported differences in citation numbers across industries. The National Bureau of Eco-
nomic Research study byHall, Jaffe and Trajtenberg(2001) on patent data sets identifies “old
technology” industries, such as the mechanical and chemical ones, characterized by a large num-
ber of patents with few citations, and “new technology” industries such as computers and com-
munications, characterized by a smaller number of patents but a larger number of citations. This
dichotomy is consistent with our result that private information translates into a lower patenting
rate but patents of higher economic value. In new, relatively unexplored technologies, different
researchers may follow very different lines of research to achieve competing patentable innova-
tions. As a result, they may be very uncertain about the prospects of the research conducted in
competing labs. On the contrary, researchers are more likely to have a good shared knowledge
of the possible incremental innovations achievable in old technologies, and therefore a good
assessment of the prospects of the research conducted in competing labs.

Turning to welfare analysis, we compare the outcome when firms compete and keep their
technological improvements secret, with the optimal choice of a team that aggregates the firms’
information and maximizes the joint pay-off. Suppose that the value of the patented innovation
does not effect the pay-off of the second mover and hence there are no competition externalities
in the innovation’s market. Theorem3 implies that the team’s patenting rate is lower than the

20. For simplicity, here we assume that once the innovation is patented, the patent race is over. The model can be
extended so that a new patent race starts after the innovation is patented, with innovations building on the previously
patented innovation. The result that increasingα may increase the threshold functionz holds as long as the current patent
race competitors may be substituted by other firms in future races with sufficiently high probability. This assumption is
motivated by the observation that, once an innovation is disclosed, the innovator may lose the technological leadership
in the research field.

21. On a similar count,Hall and Ziedonis(2001), found that the number of patents per R&D dollar in the semi-
conductor industry doubled between 1982 and 1992.

22. We see our explanation of the acceleration of the patenting rate as complementary and not as a substitute to the
previous explanations that invoke a pro-patent legislative change in the mid 1980’s and improved technological fertility.
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competing firms’ rate, and that the team patents innovations of greater economic significance.
Hence, secrecy is beneficial to competing firms as it brings the outcome closer to the collusive
outcome.

8. CONCLUSION

We have presented a general analysis of preemption games with private information states in-
creasing over time. The analysis initially appeared intractable because of the complexity of
the agents’ equilibrium updating of beliefs on the opponents’ state. But we have calculated
equilibria where each agent ends the game when her state is above a time-decreasing stop-
ping threshold. We have compared these equilibria of our private information games with the
equilibria of analogous preemption games with public information, and have found that the ex-
pected stopping time is shorter when information is public. We have studied the problem of a
team aggregating the players’ private information and maximizing the joint pay-off. As time
grows large, competing players become willing to end the game at states for which the team
planner would instruct them to continue. For the crucial case where the states are of private
value, we have found that competing players stop the game too early relative to the collusive
outcome.

We have applied these results to patent races, to find that secrecy slows down the speed of
innovation disclosure. When there are no competition externalities in the innovation market,
competing R&D firms benefit from secrecy as it brings the equilibrium outcome closer to the
collusive outcome. However, the collusive outcome is not achieved, as equilibrium durations
are shorter than in the collusive outcome. Having calculated the closed form of the differential
equation governing the equilibrium threshold, we have performed several comparative statics ex-
ercises. Surprisingly, we have found that strengthening patent rights may slow down innovation
disclosure.

Our results can also be applied to innovation adoption and market entry games. Our analysis,
available upon request, builds on the classic preemption game studied byReinganum(1981)
and later perfected byFudenberg and Tirole(1985). In one application of that model, a process
innovation is disclosed to competitors in a specific industry. When adopted, the innovation tilts
the profits in favour of the first firm adopting the innovation; but adopting the new technology is
costly. We expand the original model toposit adoption costs that depend on the stage of adap-
tation of the technology to the processes of each individual firm. Another application of the
preemption game byReinganum(1981) is a simple model of market entry. Competitors choose
the timing of entry into a market. Entry is profitable and there is a first-mover advantage, but
entering the market is costly. We suppose that each firm’s entry costs depend on prior invest-
ment by the firm,e.g. in building capacity, in establishing a commercial network, in signing
representation contracts, etc.

Assuming that our regularity conditions are satisfied, Theorem2 implies that innovation
adoption and market entry are delayed when the activities leading to innovation adoption and
market entry are kept secret. As a result, secrecy stifles competition and is likely to reduce con-
sumers’ welfare. Consumers are likely to benefit from frequent market entry by new competitors
and when production technologies are frequently improved. At the same time, Theorem3 im-
plies that competing firms jointly benefit from secrecy, as it brings equilibrium durations closer
to the collusive outcome. We also perform comparative statics analysis. We find that subsidizing
innovation adoption and market entry makes them occur faster. However, subsidizing innovation
development and investments leading to market entry delays innovation adoption and market
entry. Intuitively, these subsidies are equivalent to reducing the waiting costs in our games and
hence they induce longer expected stopping times.
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APPENDIX A

We begin the analysis by stating our results concerning the properties ofF(t, y)/F(t,z). In the interest of brevity, we
omit their proofs that are available upon request from the authors.

Theorem A1. If the c.d.f. G of the random incrementw is log-concave, i.e. the inverse hazard rate g(w)/G(w) is
weakly decreasing inw, then the c.d.f. F(t, y)/F(t,z) is stochastically increasing in t for any z and y≤ z.

Theorem A2. If the increment c.d.f. G(w) is differentiable, of connected support that includesw = 0, then for any z,
the c.d.f. F(t, ∙)/F(t,z) concentrates all mass on z as t goes to infinity, i.e.

lim
t→∞

F(t, y)

F(t,z)
= 0 for any y < z.

Proof of Theorem1. We proceed in three Lemmas. We first show that, for any opponent’s strategy, the best
response of a player is a strategyσ that can be represented as a time-dependent threshold functionz.

Lemma A1. Under Conditions1 and 2, for any t, and any strategy played by the opponent j , there is a unique
threshold z(t) such that continuing is optimal for player i if x< z(t), stopping is optimal if x> z(t), and the optimal
value Vi (x, t) equalsu(x) at x = z(t).

Proof. The proof proceeds in two steps. The first step shows that for any strategy played by the opponent, the
unique best response of a player induces a valueVi (x, t) continuousin x. Given continuity ofu andu, the result is
intuitive. Hence, we make its proof available only upon request.

Step 1. For any strategy played by player j , the best response of player i induces a value Vi (x, t) continuousin x.

The second step shows that, for any strategy played by the opponentj , if the best response by playeri induces a
valueVi (x, t) continuousin x, then it can be represented by a threshold function.

Step 2. Under Conditions1 and2, for any t, and any strategy played by the opponent, if the optimal value Vi (x, y) is
continuousin x, then there is a unique threshold z(t) such that continuing is optimal for player i if x< z(t), stopping is
optimal if x> z(t), and Vi (z(t), t) = u(z(t)).

We want to show that for everyt , there is a uniquez such thatu(x) < (=)Vi (x, t) if and only if x < (≥)z. Since
Vi (x, t) is continuous inx, we only need to show that for anyt and anyx such thatu(x) < Vi (x, t),

lim
x−x′→0

sup
Vi (x, t)− Vi (x′, t)

x − x′ < u′(x)

becausethis implies that for any fixedt , the functionsVi (x, t) andu(x) canmerge only once. Sinceu′(x) > 0, it follows
thatu(x) is dominated byVi (x, t) if and only ifx is smaller than the merging point.

Consider a playeri and any pair(x, t) such that the optimal strategyσ dictatesσ(x, t) > t . For anyx′ < x and
(x′, t), let Vi (σ ′,x′, t) be the value associated with applying the same strategyσ rescaled by a factorx − x′, i.e.
the strategyσ ′ suchthat σ ′(x′′ + x′,τ ) = σ(x′′ + x,τ ) for any τ ≥ t and x′′ ≥ 0. Since the optimal value at timet
and statex′ is at least as large as the valueVi (σ ′,x′, t) of adopting the possibly suboptimal waiting strategyσ ′, we note
thatVi (x, t)− Vi (x′, t) ≤ Vi (x, t)− Vi (σ ′,x′, t).

Fixing the opponentj ’s strategyσ j (whichdoes not depend onx), the optimal pay-off at state(x, t) is

Vi (x, t) =
∫

E[u(x +x(Ti ))χ(Ti < Tj )e
−r (Ti −t)

+ u(x +x(Tj ), y+y(Tj ))χ(Ti > Tj )e
−r (Tj −t) −

∫ min{Ti ,Tj }

t
ce−r vdv | Tj ≥ t ]B(dy | Tj ≥ t),

andplayeri ’s expected pay-off for playing strategyσ ′ startingat state(x′, t) is

Vi (σ ′,x′, t) =
∫

E

[

u(x′ +x(T ′
i ))χ(T ′

i < Tj )e
−r (T ′

i −t)

+ u(x′ +x(Tj ), y+y(Tj ))χ(T ′
i > Tj )e

−r (Tj −t) −
∫ min{T ′

i ,Tj }

t
ce−r vdv | Tj ≥ t

]

B(dy | Tj ≥ t),
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where(i) the expectationE is taken with respect to the sample pathsx = {x(τ ): τ ≥ t} andy = {y(τ ): τ ≥ t}, generated
by our compound Poisson processes and such thatx(t) = 0 andy(t) = 0; (ii) Tj = inf{τ : σ j (y(τ )+ y,τ ) = τ }, Ti =
inf{τ : σ(x(τ ) + x,τ ) = τ }, andT ′

i = inf{τ : σ ′(x(τ ) + x′,τ ) = τ }; (iii) χ denotes the indicator function over sets of
paths(x,y); and (iv) B(y | Tj ≥ t) = Pr{y(t) ≤ t | Tj ≥ t} is the c.d.f. of the opponent state,y(t), given that she has not
left the game by timet .

Noting thatT ′
i = Ti , and averaging across sample paths,(x,y), we obtain

Vi (x, t)− Vi (x′, t)

x − x′ ≤
Vi (x, t)− Vi (σ ′,x′, t)

x − x′

=
∫

E

[(
u(x +x(Tj ), y+y(Tj ))−u(x′ +x(Tj ), y+y(Tj ))

x − x′

)

e−r (Tj −t)χ(Tj < Ti )

+
(

u(x +x(Ti ))−u(x′ +x(Ti ))

x − x′

)
e−r (Ti −t)χ(Ti < Tj ) | Tj ≥ t

]

B(dy | Tj ≥ t).

Since,

lim
x−x′→0

(
u(x +x(Ti ))−u(x′ +x(Ti ))

x − x′

)
= u′(x +x(Ti )),

lim
x−x′→0

(
u(x +x(Tj ), y+y(Tj ))−u(x′ +x(Tj ), y+y(Tj ))

x − x′

)

= u1(x +x(Tj ), y+y(Tj )),

theConditions1, u′ ≥ u1, and2, u′′ ≤ 0, yield:

lim
x−x′→0

sup
Vi (x, t)− Vi (x′, t)

x − x′ ≤ lim
x−x′→0

∫
E

[(
u(x)−u(x′)

x − x′

)
e−r (Ti −t)χ(Ti < Tj )

+
(

u(x)−u(x′)

x − x′

)
e−r (Tj −t)χ(Tj < Ti ) | Tj ≥

]
B(dy | Tj ≥ t)

= lim
x−x′→0

∫ (
u(x)−u(x′)

x − x′

)
E
[
e−r (Ti −t)χ(Ti < Tj )

+e−r (Tj −t)χ(Tj < Ti ) | Tj ≥ t
]

B(dy | Tj ≥ t).

SinceE[Ti − t | Ti < Tj ] > 0, E[Tj − t | Tj < Ti ] > 0, andTi andTj areindependent ofx′, the quantityE[e−r (Ti −t)

χ(Ti < Tj )+e−r (Tj −t)χ(Tj < Ti ) | Tj ≥ t ] is strictly smaller than 1 and constant inx′. Thus,

lim
x−x′→0

sup
Vi (x, t)− Vi (x′, t)

x − x′ < lim
x−x′→0

∫
u(x)−u(x′)

x − x′ B(dy | Tj ≥ t)

= lim
x−x′→0

u(x)−u(x′)

x − x′ = u′(x).

The limit for x′ > x is similarly handled. The result thatu(z(t)) = Vi (z(t), t) follows from continuity ofu(x) and
Vi (x, t). ‖

The second lemma shows that there exists an admissible (i.e. strictly decreasing and defined on all the real line)
solution to the differential equation (4). Further, it characterizes the limiting properties of all solutions to equation (4)
for t small andt large.

Lemma A2. Under Conditions1–4, there exists a strictly decreasing solution z well defined onR+ to the differ-
ential equation(4). Adding Conditions5 and 6, for any admissible solution z to equation(4), limz→0+ z(t) = z̄ and
limt→∞ z(t) = z.
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Proof. We proceed in several steps.

Step 1. (Auxiliary Solution) For any t, the equationφ(t,z) = 0 has a solution z. The selection

ẑ(t) = min{z: φ(t,z) = 0},

is strictly decreasing and satisfiesẑ(0) = z̄ andlimt→∞ ẑ(t) = z.

For anyt , Conditions3 and4 make sure that the functionφ(t,z) is negative forz small enough and positive forz
large enough. By continuity,φ has a zeroz for anyt .

Since at time zero, the opponent’s state isy(0)= 0, and the probability of an increment arriving at time zero is zero,
it must be that

f (0,z)

F(0,z)
= 0 for anyz > 0.

It follows that equationφ(t,z) = 0 coincides with equation (5) for t = 0.
By Theorem A2, limt→∞ F(t, y)/F(t,z) = 0 for anyz > 0 andy < z. Hence, limt→∞ ẑ(t) = z.
We finally want to show that the selectionẑ is strictly decreasing int . Becauseφ(t,z) crosses zero at̂z(t) from

below, it follows that the selection̂z is decreasing ifφ1 > 0. As F(t, y)/F(t,z(t)) increasesin t in first-order stochastic
dominance by Theorem A1, it is sufficient to show that the expressionρ

∫∞
z(t)−y[u(z)−u(z, y+w)]G(dw) increases in

y. In fact,

d

dy
ρ

∫ ∞

z−y
[u(z)−u(z, y+w)]G(dw)

= −ρ

∫ ∞

z−y
u2(z, y+w)G(dw)+ρ[u(z)−u(z,z)]g(z− y) > 0

becauseu > u andu2 ≤ 0.
We note that̂z may be discontinuous at timest such thatφ2(t, ẑ(t)) = 0.Nevertheless,̂z is right continuous. Indeed,

for anyt , consider a sequence{tn}n≥1 suchthatt < tn+1 < tn for all n, and limn→+∞ tn = t . Becausêz(tn) is increasing
and bounded above, it must converge and, by continuity ofφ, it must be that limn→+∞ ẑ(tn) = ẑ(t).

The next step establishes that, as long ast is bounded away from zero, the ordinary differential equation (4) has
a well-behaved solution field. Because the proof is entirely standard, it is omitted and made available upon request.
Clearly, att = 0, the derivativez′(0) is indeterminate becausef (0,z)/F(0,z) = 0 for anyz > 0. We shall complete the
solution at zero later in the paper.

Step 2. (Existence) For any smallδ̄ > 0, consider the set R(δ̄) = {(t,z): t ≥ δ̄,z > 0}. For any initial condition
(δ,zδ) ∈ R(δ̄), the ordinary differential equation (4) has a unique (twice-differentiable) solution path z(t,δ,zδ) defined
ona setR̄(δ̄) ⊆ {t : t ≥ δ̄}, such that z(δ) = zδ .

We are left to show that the ordinary differential equation (4) has an admissible solution,i.e. a solution strictly
decreasing and well defined on(0,∞). Since step 2 allows for the possibility that solutions explode (i.e. have vertical
asymptotes), we shall explicitly construct one admissible solution. We now show a result that will be useful in the
construction.

Step 3. Consider any solution path z(t) of the ordinary differential equation (4) defined on a set̄R(δ̄). For any T ∈
R̄(δ̄), if z(T) ≤ ẑ(T), then z(t) < ẑ(t), and hence z′(t) < 0, for all t < T ,t ∈ R̄(δ̄).

We first show that, for anyt ∈ R̄(δ̄), φ2(t, ẑ(t)) is bounded above. In fact, for any(t,z),

φ2(t,z) = r u′(z)+c−ρ

∫ ∞

0
[u′(z+w)−u′(z)]G(dw)

−ρ

∫ ∞

0
[u(z,z+w)−u(z)]G(dw)

F(t,z)

F(t,z)

−ρ

∫ z

0

∂

∂z

[∫ ∞

z−y
[u(z, y+w)−u(z)]G(dw)

F(t,dy)

F(t,z)

]
,
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andhence,

φ2(t,z) = r u′(z)+c−ρ

∫ ∞

0
[u′(z+w)−u′(z)]g(w)dw

−ρ

∫ ∞

0
[u(z,z+w)−u(z)]g(w)dw

+ρ
f (t,z)

F(t,z)

∫ z

0

[∫ ∞

z−y
[u(z, y+w)−u(z)]g(w)dw

]
f (t, y)

F(t,z)
dy

−ρ

∫ z

0

[∫ ∞

z−y
[u1(z, y+w)−u′(z)]g(w)dw

]
f (t, y)

F(t,z)
dy

+ρ

∫ z

0

[
[u(z,z)−u(z)]g(z− y)

] f (t, y)

F(t,z)
dy.

Becauseu1, u′, g, u, andu arebounded, the first four terms in the above expression are bounded above, and so are also
all terms integrated againstf (t, y)/F(t,z). Further, note that for any finitet ≥ δ̄ > 0, the termf (t, y)/F(t,z) is finite
for all y ≤ z, and, likewise,f (t,z)/F(t,z) is finite for all finite t andz > 0. This concludes thatφ2(t, ẑ(t)) is bounded
above for allt ∈ R̄(δ̄).

Turning to prove the statement, suppose by contradiction thatz(t) ≥ ẑ(t) for somet < T .
Note that, without loss of generality, we can takez(t) > ẑ(t) because ifz(t) = ẑ(t) for somet < T , thenz(t ′) > ẑ(t ′)

for all t ′ on a right neighbourhood oft . In fact, becausez(t) = ẑ(t), it follows that z′(t) = 0. Becausêz is strictly
decreasing andφ2(t, ẑ(t)) is bounded above, there existsα > 0 such that for all small positiveh, ẑ(τ +h)− ẑ(τ ) < −αh.
Combining this withz′(τ ) = 0 yieldsz(τ +h) > ẑ(τ +h).

Becausêz is strictly decreasing,z(t) > ẑ(t) > ẑ(T) ≥ z(T). Sincez is continuous and continuously differentiable,
andz(t) > z(T), there must exist a timeτ ∈ (t,T) such thatz(τ ) = ẑ(t) andz′(τ ) ≤ 0. But by definitionφ(t, ẑ(t)) =
0. Becauseτ > t , and because we have proved in Step 1 thatφ1(t,z) > 0 for all (t,z), it follows that φ(τ, ẑ(t)) =
φ(τ,z(τ )) > 0, and hence thatz′(τ ) > 0. We have obtained a contradiction.

Step 4. (Admissibility) The ordinary differential equation(4) has a strictly decreasing solution path z(t) defined on
(0,∞).

Fix a timeδ > 0. We first construct an admissible solution in the range [δ,∞). For anyT > δ, consider the initial
condition(δ,zδ,T ) identifying the solution pathz(t,δ,zδ,T ) suchthatz(T,δ,zδ,T ) = ẑ(T). First, note that, by Step 3,
z(t,δ,zδ,T ) < ẑ(t) for all t ∈ [δ, T). Further, by Step 2, for any point(z, t) with t ≥ δ andz> 0, the solution pathz(t) such
thatz(t) = z is unique. Hence, for anyT ′ > T , the solution pathz(t,δ,zδ,T ) mustlie above the solutionz(t,δ,zδ,T ′ ). For
anyT , we proceed analogously to identify the initial condition(δ,zδ,T ) pinningdown the solution pathz(t,δ,zδ,T ) such
that z(T,δ,zδ,T ) = z. The statezδ,T decreasesin T , whereas the statezδ,T increasesin T . Furthermore,zδ,T < zδ,T
becausêz(T) > z for anyT . Hence, there existszδ suchthat limT→+∞ zδ,T ≤ zδ ≤ limT→+∞ zδ,T . By construction,
the solution pathz(t,δ,zδ) is such thatz(t,δ,zδ) < ẑ(t) on the whole ranget ≥ δ. Hence,z(t,δ,zδ) strictly decreases in
t for all t ≥ δ. Note also limt→∞ z(t,δ,zδ) ≥ z, and thatzδ neednot be unique.

We now complete the admissible solutionz(∙,δ,zδ) to the left of δ. Consider a strictly decreasing sequence
{δn}n≥1 suchthat δ1 = δ andδn → 0. Let z1 = zδ , and, for anyn, definezn+1 recursively by solving the condition
z(δn,δn+1,zn+1) = zn. For alln, Step 2 implies thatzn is well defined and that the functionz(∙,δn+1,zn+1) is (twice)
differentiable on [δn+1,δn). By construction,z(t,δn+1,zn+1) = z(t,δn,zn) for all t ≥ δn.

We now show by induction that, for alln, z(t,δn+1,zn+1) < ẑ(t) for all t ∈ [δn+1,δn]. In fact, we have previously
shown thatz(δ1,δ1,z1) < ẑ(δ1). Further, by the induction hypothesis,z(δn,δn,zn) < ẑ(δn). Becausez(t,δn+1,zn+1) =
z(t,δn,zn) for all t ≥ δn, it follows thatz(δn,δn+1,zn+1) < ẑ(δn). By Step 3, it follows thatz(t,δn+1,zn+1) < ẑ(t) for
all t ∈ [δn+1,δn). This concludes the proof of the induction argument.

We have shown that̂z(δn+1) > zn+1 andthat for anyn, z(t,δn+1,zn+1) is strictly decreasing int for all t ≥ δn+1.
As a result, for anyn, ẑ(0) > ẑ(δn+1) > zn+1 > zn. Because, the sequence{zn} is strictly increasing and bounded, it
admits a limit forn → ∞. Hence, by taking the limit forn → ∞, we have completed the solutionz(t,δ,zδ) on the
interval (0,δ), and proved that the completed solutionz(t) is strictly decreasing. Note also that we have shown that
limt→0 z(t) ≤ z̄.

The above steps of the proof have proved existence of an admissible solution of the ordinary differential
equation (4). We now characterize all admissible solutionst → 0.
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Step 5. (Solution Characterization for t → 0) For any admissible (i.e. decreasing and well defined) solution path
z(t) of the ordinary differential equation(4),

lim
t→0+

f (t,z(t))

F(t,z(t))
z′(t) = 0,andhencelim

t→0
z(t) = z̄.

We inspect again the ordinary differential equation (4). Because, as already pointed out,f (0,z)/F(0,z) = 0
for any z > 0, it follows that (i) the derivativez′(t) is indeterminate att = 0 and (ii) limt→0+ z(t) is a solution of
equation (5) unless

lim
t→0+

f (t,z(t))

F(t,z(t))
z′(t) = K < 0,

whereK is a negative constant. By the properties of Poisson arrival,

lim
t→0+

f (t,z(t))

F(t,z(t))
z′(t) = lim

t→0+

ρtg(z(t))

(1−ρt)+ρtG(z(t))
z′(t) = lim

t→0+
ρtg(z(t))z′(t).

Notethat limt→0+ ρtg(z(t))z′(t) = K requiresthatz′(t) = k/t +o(1/t), wherek is a negative constant ando(1/t) de-
notes a term that converges to zero if multiplied byt whent → 0;hence it requires that limt→0+ z(t) = limt→0+ k logt =
+∞. Condition4 implies thatφ(t,z(t)) > 0, and hencez′(t) > 0, for z(t) large enough. This contradictsz′(t) < 0. The
above result implies that limt→0+ z(t) is a solution of equation (5). To conclude, note that any admissible solution
z(t) of the ordinary differential equation (4) cannot cross the function̂z or else it is increasing over a non-degenerate
interval (by Step 3). This implies that limt→0+ z(t) ≤ limt→0+ ẑ(t) = z̄, and hence by the previous arguments that
limt→0+ z(t) = z̄.

The next result characterizes all admissible solutionsz(t) for t → ∞ under conditions1–6.

Step 6. (Solution Characterization for t → ∞) Under Conditions1–6, for any admissible (i.e. decreasing and well
defined) solution path z(t) of the ordinary differential equation(4),

lim
t→+∞

f (t,z(t))

F(t,z(t))
z′(t) = 0 andhence lim

t→∞
z(t) = z.

Consider the expression:

φ(z) = (r +2ρ)u(z)+c−ρ

∫ ∞

0
[u(z+w)+u(z,z+w)]G(dw).

Sinceu2 ≤ 0, u′ ≥ u1 (Condition1), u′′ ≤ 0 (Condition2), u22 ≤ 0 (Condition5), andu12 ≤ 0 (Condition6), the
expressionφ(z) strictly increases inz as

φ′(z) = r u′(z)+ρ

∫ ∞

0

[
u′(z)−u′(z+w)+u′(z)−u1(z,z)+u1(z,z)−u1(z,z+w)

− u2(z,z)+u2(z,z)−u2(z,z+w)
]
G(dw) > 0.

Hence, there is a unique solution to equation (6). So, for any admissible solutionz of the ordinary differential equation
(4), it must be the case that limt→∞ z(t) ≤ z or elseφ(t,z(t)) > 0 and hencez′(t) > 0 for t sufficiently large. Further,
becausez(t) is strictly decreasing and bounded below, asz(t) ≥ 0, it must be the case thatz(t) converges to a limit
as t → ∞. Suppose by contradiction, that limt→∞ z(t) < z. By inspecting the ordinary differential equation (4), this
implies thatz′(t) f (t,z(t))/F(t,z(t)) converges to a real valued limit−K < 0 ast → ∞. By using L’Hopital’s rule, we
obtain

lim
t→∞

f (t,z(t))z′(t)

F(t,z(t))
= lim

t→∞

f1(t,z(t))z′(t)+ f2(t,z(t))(z′(t))2 + f (t,z(t))z′′(t)

F1(t,z(t))+ F2(t,z(t))z′(t)

= lim
t→∞

ρ
∫ z(t)
0 [ f (t,z(t)−w)− f (t,z(t))]G(dw)

F(t,z(t)) z′(t)− ρF(t,z(t))g(z(t))
F(t,z(t)) z′(t)+ f2(t,z(t))

F(t,z(t)) (z′(t))2 + f (t,z(t))z′(t)
F(t,z(t))

z′′(t)
z′(t)

ρ
∫ z(t)
0 [F(t,z(t)−w)−F(t,z(t))]G(dw)

F(t,z(t)) + f (t,z(t))z′(t)
F(t,z(t))

.
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wherethe second equality follows by the formula forF1(t,x) andby

f1(t,x) = F12(t,x) = ρ[F(t,0)− F(t,x)]g(x)+ρ

∫ x

0
[ f (t,x −w)− f (t,x)]G(dw)

= ρ

∫ x

0
[ f (t,x −w)− f (t,x)]G(dw)−ρF(t,x)g(x).

From Theorem A2,

lim
t→∞

F(t,x)

F(t,z(t))
= 0 for allx < z(t),

hence,

lim
t→∞

ρ
∫ z(t)
0 [F(t,z(t)−w)− F(t,z(t))]G(dw)

F(t,z(t))

= lim
t→∞

ρ

∫ z(t)

0

F(t,z(t)−w)

F(t,z(t))
G(dw)−ρ

∫ z(t)

0

F(t,z(t))

F(t,z(t))
G(dw) = − lim

t→∞
ρG(z(t)).

lim
t→∞

ρ
∫ z(t)
0 [ f (t,z(t)−w)− f (t,z(t))]G(dw)

F(t,z(t))

= lim
t→∞

(

ρ

∫ z(t)

0

f (t,z(t)−w)

F(t,z(t))
G(dw)−ρ

f (t,z(t))

F(t,z(t))
G(z(t))

)

≤ lim
t→∞

(

ρ sup
w

g(w)

∫ z(t)

0

f (t,z(t)−w)

F(t,z(t))
dw −ρ

f (t,z(t))

F(t,z(t))
G(z(t))

)

= lim
t→∞

(

ρ sup
w

g(w)

∫ z(t)

0

f (t, ŵ)

F(t,z(t))
dŵ −ρ

f (t,z(t))

F(t,z(t))
G(z(t))

)

= ρ sup
w

g(w)−ρ lim
t→∞

f (t,z(t))

F(t,z(t))
G(z(t)).

Due to Theorem A2, we have that limt→∞ f2(t,z(t))/F(t,z(t)) > 0. Since z′′(t)/z′(t) = d
dt ln(−z′(t)) and

limt→∞(−z′(t)) = 0+, we have that limt→∞ z′′(t)/z′(t) = −∞. Hence, we obtain a contradiction, as:

−K = lim
t→∞

f (t,z(t))z′(t)

F(t,z(t))

≤ lim
t→∞

ρ supw g(w)z′(t)+ρG(z(t))K −ρg(z(t))z′(t)+ f2(t,z(t))
F(t,z(t)) (z′(t))2 − K z′′(t)

z′(t)

−ρG(z(t))− K
= −∞.

This conclude the proof of the second part of Lemma A.2.‖

The proof of Theorem1 is concluded by establishing that the equilibrium valueV(x, t) is differentiable int .

Lemma A3. If both players play according to a strictly decreasing continuously differentiable threshold function z(t),
then the equilibrium value V(x, t) is differentiable in t.

We establish this result by forward-calculatingV(x, t) when both players play according to a strictly decreasing
continuously differentiable threshold functionz(t), and then by inspecting the resulting formula forV(x, t). Because the
argument is calculation incentive and the calculations are not further used in the analysis, we make the proof available
only upon request. ‖

Proof of Theorem2. We proceed in four steps.
For any equilibriumσ , the first step derives an upper bound to the setC(σ ). Intuitively, each playeri must neces-

sarily stop the game for anyx ≥ ž, wherež is the unique solution of the equation

ru(ž) = −c+ρ

∫ ∞

0
[u(ž+w)−u(ž)]G(dw). (A.1)
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In fact, this equation describes the flow costs and benefits when playeri acts as a “monopolist” and there are no costs
of waiting induced by competition with the opponent. As this step is intuitive and is not central to the argument in the
proof, it is omitted and made available upon request.

Step 1. For anyσ , the set C(σ ) is a subset of{(xA,xB): xA ≤ ž, xB ≤ ž}.

For any equilibriumσ , the second step of the proof determines the marginal incentives to stop the game on the
“north-east” frontier ofC(σ ).

Step 2. For any equilibriumσ , consider any pair(xA,xB) that belongs toC̄(σ ), the closure of C(σ ), such that
(xA +w) /∈ C(σ ) and(xB +w) /∈ C(σ ) for all w > 0. For any i = A, B,

φ̃(xi ,x j ) ≡ (r +2ρ)u(xi )+c−ρ

∫ ∞

0
[u(xi +w,x j )+u(xi ,x j +w)]G(dw) ≤ 0.

For anyδ > 0, there is a pair(xδ
A,xδ

B) ∈ C(σ ) such that|xδ
A − xA| < δ, and|xδ

B − xB| < δ, possibly(xδ
A,xδ

B) =
(xA,xB). Since(xδ

A,xδ
B) ∈ C(σ ), we know that for anyi ,

u(xδ
i ) ≤ Vi (xδ

i ,xδ
j )

=
1

r +2ρ

{

−c+ρ

∫ |xi −xδ
i |

0
[Vi (xδ

i +w,xδ
j )+ Vi (xδ

i ,xδ
j +w)]G(dw)

+ρ

∫ ∞

|xi −xδ
i |

[
u(xδ

i +w,xδ
j )+u(xδ

i ,xδ
j +w)

]
G(dw)

}

.

Exploiting the boundednessof u andVi , we obtain

u(xi ) ≤ Vi (xi ,x j ) =
1

r +2ρ

{
−c+ρ

∫ ∞

0
[u(xi +w,x j )+u(xi ,x j +w)]G(dw)

}
.

The proof follows by rearranging this inequality.

Step 3. For any equilibriumσ , the set C(σ ) is contained in{(xA,xB): xA + xB ≤ 2z}.

For anyy, let z̃(y) be the uniquez that solvesφ̃(z, y) = 0. The threshold̃z is well defined because

dφ̃(z, y)

dz
= ru′(z)+ρ

∫ ∞

0
[u′(z)−u1(z+w, y)+u′(z)−u1(z, y+w)]G(dw)

≥ ru′(z)+ρ

∫ ∞

0
[u′(z)−u′(z+w)+u′(z)−u′(z)]G(dw) > 0,

where the first inequality follows from Condition1, u > u1, and the second from Condition2, u′′ ≤ 0.
To comparez with the statẽz = sup{z: z = z̃(z)}, note that

φ(z̃) = φ(z̃)− φ̃(z̃, z̃)

= −ρ

∫ ∞

0
[u(z̃+w)+u(z̃, z̃+w)− ū(z̃+w, z̃)− ū(z̃, z̃+w)]G(dw)

= −
ρ

2

∫ ∞

0
[u(z̃+w)+u(z̃, z̃+w)−u(z̃+w, z̃)−u(z̃)]G(dw)

= −
ρ

2

∫ ∞

0
[u(z̃+w)−u(z̃)+u(z̃, z̃+w)−u(z̃, z̃)−u(z̃+w, z̃)+u(z̃, z̃)]G(dw) ≤ 0

under Condition8, u′(x)+u2(y,x)−u1(x, y) ≥ 0. This implies thatz≥ z̃ becauseφ(z) is strictly increasing inz under
Conditions1, 2, 5, and6.
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We now show thatdz̃(y)/dy > −1,

dz̃(y)

dy
+1 = −

φ̃2(z, y)

φ̃1(z, y)
+1

∝ (r +2ρ)u′(z)−ρ

∫ ∞

0
[u1(z+w, y)+u1(z, y+w)−u2(z+w, y)−u2(z, y+w)]G(dw)

= (r +2ρ)u′(z)−
ρ

2

∫ ∞

0
[u′(z+w)+u1(z+w, y)−u2(z+w, y)

+u′(z)+u1(z, y+w)−u2(z, y+w)]G(dw)

≥ (r +2ρ)u′(z)−ρ

∫ ∞

0
[u′(z+w)+u′(z)]G(dw) > 0.

The first inequality follows from Condition7,u′(x) ≥ u1(x, y)−u2(x, y). The second inequality follows becauseu′ > 0
andu′′ ≤ 0 (Condition2).

As z≥ z̃ anddz̃(y)/dy> −1, we conclude that for allxA+xB ≥ 2z, xA 6= xB, it is either the case that̃φ(xA,xB) >

0, whenxA > xB or that φ̃(xB,xA) > 0, whenxB > xA. It follows that (xA,xB) /∈ C(σ ) for all xA + xB ≥ 2z, xA 6=
xB. Suppose to the contrary that(xA,xB) ∈ C̄(σ ) and xA + xB ≥ 2z, xA 6= xB. SinceC(σ ) is bounded, there exist
(x̄A, x̄B) ∈ C̄(σ ), x̄A ≥ xA and x̄B ≥ xB, such that(x̄A + w) /∈ C(σ ) and (x̄B + w) /∈ C(σ ) for all w > 0. Because
x̄A + x̄B ≥ 2z, it follows thatφ̃(x̄A, x̄B) > 0 or φ̃(x̄B, x̄A) > 0 or both, contradicting Step 2.

Step 4. For any equilibriumσ , E[inf{τ : (xA(τ ),xB(τ )) /∈ C(σ )}] < E[inf{τ : xA(τ ) ≥ z or xB(τ ) ≥ z}].

As xA(t) andxB(t) areindependentE[inf{τ : xA(τ ) ≥ z or xB(τ ) ≥ z}] = E[inf{τ : xA(τ ) ≥ z}]. The distribution
of the processq(t) = xA(t)+ xB(t) belongsto the same class as eitherxA(t) or xB(t), but with a Poisson arrival rate of
2ρ instead ofρ. Due to the properties of Poisson processes, the law ofs(t) = q(t/2) = xA(t/2)+ xB(t/2) is the same
as the law of eitherxA(t) or xB(t). As xA(τ ) = xB(τ ) occurs with probability zero, it follows that

E[inf{τ : (xA(τ ),xB(τ )) /∈ C(σ )}] < E[inf{τ : xA(τ )+ xB(τ ) ≥ 2z}] =

= E[inf{τ : xA(τ/2)+ xB(τ/2) ≥ z}] = E[inf{τ : xA(τ ) ≥ z}] = E[inf{τ : xA(τ ) ≥ z orxB(τ ) ≥ z}]. ‖

Theproof of Lemma2 is analogous to the proof of Lemma A.1. Hence, we omit it. It is available upon request.

Proof of Theorem3. As the stopping boundaryz∗ is strictly decreasing and symmetric, it suffices to compare the
statex̄ such that̄x = z∗(x̄) with the thresholdsz andz̄.

Whenx̄ = z∗(x̄), equation (9) can be written as

φ̂(x̄) ≡ (r +2ρ)
u(x̄)+u(x̄, x̄)

2
+c−ρ

∫ ∞

0
[u(x̄ +w)+u(x̄, x̄ +w)]G(dw) = 0 (A.2)

becauseu∗(x̄ +w, x̄) = u∗(x̄, x̄ +w) = u(x̄ +w)+u(x̄, x̄ +w).
We now subtract equation (6) from equation (A.2), calculated atz to obtain

φ̂(z) = φ̂(z)−φ(z) = (r +2ρ)

[
u(z,z)−u(z)

2

]
< 0

becauseu(z) > u(z,z). To conclude thatz < x̄, we only need to establish that for allx,

φ̂′(x) = (r +2ρ)
u′(x)+u1(x,x)+u2(x,x)

2
+c

−ρ

∫ ∞

0
[u′(x +w)+u1(x,x +w)+u2(x,x +w)]G(dw) > 0,

which follows from u1 ≥ 0, u′ + u2 > 0 (Condition 9), u′′ ≤ 0 (Condition 2), u2 ≤ 0 (Condition 5), andu12 ≤ 0
(Condition6).
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We now comparēx with the threshold̄z. Whenu2 = 0, dropping the dependence ofu in the second argument, the
quantitiesz̄ andx̄, respectively, solve

φ̄(z̄) ≡ (r +ρ)u(z̄)+c−ρ

∫ ∞

0
u(z̄+w)G(dw)−ρ[1− G(z̄)][u(z̄)−u(z̄)] = 0

and

φ̂(x̄) = (r +2ρ)
u(x̄)+u(x̄)

2
+c−ρ

∫ ∞

0
u(x̄ +w)G(dw)−ρu(x̄) = 0.

As u′ > 0, u′ > 0, andu′′ ≤ 0 (Condition2), it follows thatφ̂′(x) > 0 for all x. Hence, we only need to show that

φ̂(z̄) = φ̂(z̄)− φ̄(z̄) = (r +2ρ)
u(z̄)+u(z̄)

2
−ρu(z̄)−{(r +ρ)u(z̄)−ρ[1− G(z̄)][u(z̄)−u(z̄)]}

= r
u(z̄)−u(z̄)

2
+ρ[1− G(z̄)][u(z̄)−u(z̄)] < 0,

which follows becauseu(z̄) < u(z̄). ‖

Proof of Proposition1. As shown in Theorem1, the equilibrium threshold functionz is such that

lim
t=0+

φ(t,z(t)) = 0 and lim
t→+∞

φ(t,z(t)) = 0,

where

φ(t,z(t)) = c−ρ

∫ ∞

0
α[v(z(t)+w)−v(z(t))]G(dw)−ρ

∫ z(t)

0

∫ ∞

z(t)−y
u(z(t), y+w)G(dw)

F(t,dy)

F(t,z(t))

+

(

r +ρ

∫ z(t)

0
[1− G(z(t)− y)]

F(t,dy)

F(t,z(t))

)

[αv(z(t))−c0].

Hencez(t) decreasesin c and increases inc0, in the limits for t small andt large, because

∂

∂c
φ(t,z(t)) = 1 > 0 and

∂

∂c0
φ(t,z(t)) = −

(

r +ρ

∫ z(t)

0
[1− G(z(t)− y)]

F(t,dy)

F(t,z(t))

)

< 0.

Considernow the ordinary differential equation characterizing the equilibrium thresholdz on the whole domain

z′(t) =
φ(t,z(t))

[αv(z(t))−c0 −u(z(t),z(t))] f (t,z(t))
F(t,z(t))

.

Making the dependence ofz(t) in costc explicit, suppose by contradiction thatz(t,c+ 1c) > z(t,c) for somet and
some small1c. As z(t) decreases inc for t small andt large, there must be at least two crossing pointst1 andt2, such
that z(t1,c+1c) = z(t1,c), z(t2,c+1c) = z(t2,c) andz1(t1,c+1c) ≥ z1(t1,c), z1(t2,c+1c) ≤ z1(t2,c), but for
1c small,

dz1(t,c)

dc

∣
∣
∣
∣
z(t,c)=z(t,c+1c)≡z(t)

≈
∂

∂c



 φ(t,z(t))

[αv(z(t))−c0 −u(z(t),z(t))] f (t,z(t))
F(t,z(t))



∝
∂φ(t,z(t))

∂c
= 1 > 0.

Analogously, the supposition thatz(t,c0 +1c0) > z(t,c) for somet is contradicted by

dz1(t,c0)

dc0
|z(t,c0)=z(t,c0+1c0)≡z(t) ≈

∂

∂c0



 φ(t,z(t))

[αv(z(t))−c0 −u(z(t),z(t))] f (t,z(t))
F(t,z(t))





∝ −

(

r +ρ

∫ z(t)

0
[1− G(z(t)− y)]

F(t,dy)

F(t,z(t))

)

[αv(z(t))−c0 −u(z(t),z(t))] +φ(t,z(t))

< −

(

r +ρ

∫ z(t)

0
[1− G(z(t)− y)]

F(t,dy)

F(t,z(t))

)

[αv(z(t))−c0 −u(z(t),z(t))] < 0.
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Further, consider

∂

∂α
φ(t,z(t)) =

(

r +ρ

∫ z(t)

0
[1− G(z(t)− y)]

F(t,dy)

F(t,z(t))

)

v(z(t))−ρ

∫ ∞

0
[v(z(t)+w)−v(z(t))]G(dw),

Suppose thatu is small. Sinceφ(t,z(t)) ≈ 0, we obtain that

∂

∂α
φ(t,z(t)) ≈

(

r +ρ

∫ z(t)

0
[1− G(z(t)− y)]

F(t,dy)

F(t,z(t))

)

v(z(t))

−
1

α

[

c+

(

r +ρ

∫ z(t)

0
[1− G(z(t)− y)]

F(t,dy)

F(t,z(t))

)

[αv(z(t))−c0]

]

∝

(

r +ρ

∫ z(t)

0
[1− G(z(t)− y)]

F(t,dy)

F(t,z(t))

)

c0 −c.

Thisquantity is negative (positive) whenc is sufficiently large (small) relative toc0.
Finally, we need to calculate, foru small,

dz1(t,α)

dα

∣
∣
∣
∣
z(t,α)=z(t,α+1α)≡z(t)

≈
∂

∂α



 φ(t,z(t))

[αv(z(t))−c0 −u(z(t),z(t))] f (t,z(t))
F(t,z(t))





≈
∂

∂α




c−αρ

∫∞
0 [v(z(t)+w)−v(z(t))]G(dw)+

(
r +ρ

∫ z(t)
0 [1− G(z(t)− y)] F(t,dy)

F(t,z(t))

)
[αv(z(t))−c0]

[αv(z(t))−c0] f (t,z(t))
F(t,z(t))





∝
∂

∂α

[
c−αρ

∫∞
0 [v(z(t)+w)−v(z(t))]G(dw)

αv(z(t))−c0

]

∝ −ρ

∫ ∞

0
[v(z(t)+w)−v(z(t))]G(dw)[αv(z(t))−c0]

−v(z(t))

[
c−αρ

∫ ∞

0
[v(z(t)+w)−v(z(t))]G(dw)

]

= c0ρ

∫ ∞

0
[v(z(t)+w)−v(z(t))]G(dw)−cv(z(t)),

where the first proportionality sign is found by dividing through byαv(z(t))− c0, and the second one by simplifying.

For anyt , 0 < z < z(t) < z̄ < ∞, v′ > 0, z is bounded away from 0 and̄z is bounded away from∞ for c0 = 0 and
c = 0. Hence, the above quantity cannot change sign whenc is either sufficiently small or sufficiently large relative
to c0. ‖
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