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This article studies optimal patents with respect to the timing of innovation disclosure. In a simple
model, we identify forces that lead firms to either suboptimally patent too early or too late in equilibrium,
and we determine conditions so that stronger patents induce earlier or later equilibrium disclosure. Then, by
solving an infinite multistage patent game with a more explicit structure, we describe innovation growth,
and derive detailed predictions that can be used for policy experiments. As an application, we calibrate our
multistage game using summary statistics from the seeds breeding industry. We find that weaker patent
rights may result in welfare gains of 46% relative to the status quo. The gains are achieved because weaker
patents reduce competition, thus leading firms to postpone patenting.
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1. INTRODUCTION

The traditional debate on patents contrasts their positive incentives on investment in R&D with
their negative effects on competition. According to “Schumpeterian” wisdom, R&D firms find it
worthwhile to innovate only if they can secure monopolistic property rights on their intellectual
findings (seelSchumpete,[1911). Others underline the negative effects of patents on social welfare
through monopoly pricing and on the incentives for future innovations[] This article studies
optimal patent rights from a different angle: the incentives of patents with respect to the timing
of innovation disclosure ]

We first study a simple and widely applicable continuous-time patent race model. Individual
firms pay a flow cost to compete in the R&D of the same innovation. Each firm makes no
progress until it achieves a breakthrough, whose arrival time is exponentially distributed and is
not publicly observed. After the breakthrough, a firm’s innovation value grows at a deterministic
rate which decreases over time, due to diminishing returns. At any moment in time, any firm

1. Some of the strongest opponents of patent rights and intellectual monopoly, for example,m
M), provocatively challenge the views that patents are needed to remunerate R&D activity.
2. We later discuss in detail earlier studies on the timing of innovation disclosure (e.g. W, @;
| [1990; and Matutes er a7]. [1999).
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may patent its innovation, and end the game. It earns the stream of profits associated with its
innovation, but it discloses its technology to potential future competitors. We make no restrictive
assumptions on the firms’ payoffs at the end of the game, but we summarize patent strength in a
single parameter.

To assess the welfare effects of patent policy, we first compare equilibrium strategies with the
socially optimal strategies adopted by firms who internalize the consequences of their decisions
on consumer welfare and their competitors’ payoffs. This comparison leads us to single out
three forces that can lead firms to suboptimally patent innovations either too early or too late
in equilibrium. The first force leads to the most innovative insight of our article. While the
literature on the timing of innovation disclosure is mainly concerned with the possibility that
firms keep innovations secret and suboptimally delay innovation disclosure, our results warn that
the opposite possibility may also be detrimental to welfare. Competing firms may patent their
innovations too early for fear of being pre-empted in a patent race. This makes research durations
too short, hindering the optimal development of innovations and distorting incentives for future
research[]

Because this “fear of pre-emption force” is novel to the academic R&D literature, there are
no systematic empirical studies assessing its 1mp0rtanceﬁ But as we discuss later, there are many
anecdotes in R&D history in which this force played a major role, and some research suggests
that stronger patents induce early disclosure of inventions, and patents of lower value (see e.g.

). Further, it is likely that the switch from the first-to-invent to the first-to-file system,
which took effect in the Spring of 2013 in the U.S., increased the relevance of fear of pre-emption.
(Under the old first-to-invent system, a firm would have been less concerned with pre-emption,
if in the position of verifying the timing of its innovation in Court.)

Further, we identify a “duplication cost” force that leads firms to suboptimally delay disclosure,
because they do not internalize the costs paid by competitors in their decision of when to end
the game. Finally, we uncover a “real-option tradeoff” that may make firms stop too early or
too late depending on whether society values the option of delaying disclosure more or less than
individual firms do, relative to the value of patenting the innovation

We then turn to policy analysis. Contrary to usual presumptions, we find that stronger patents
may make patents less frequent. We identify a simple condition that discriminates whether stronger
patent rights make firms patent earlier or later, in the equilibrium of our model. This condition
depends on whether stronger patents increase the private option value for delaying disclosure
more or less than they increase the patent value.

We argue that our simple model is widely applicable. One application is a class of two-stage
patent races that have been the subject of many studies on sequential innovations. In the first
stage, firms compete on a “basic” innovation that has no commercial value per se, but that leads

3. Our basic patent race is designed within the theoretical framework developed by [Hopenhayn and Squintani
©o11), Bobtcheff and Mariotd 2012), and [Bobtcheff er @] ©013). But unlike them we move beyond one-stage pre-

emption games.
4. iEEEEE and Mezzet M) uncover an independent reason for why firms’ innovation disclosure policy may be

socially excessive. By disclosing technologies not covered by patents, market leading firms may make it more difficult
for competitors to patent their innovations, as they may cease to be sufficiently novel. This disclosure practice may be
socially harmful if it reduces R&D incentives.

5. However, in an empirical piece studying data from the U.S. Patent and Trademark Ofﬁce, M)
establish a connection between patent interferences and patent races. They find evidence that competition in patent races
expedites innovation disclosure. Similarly, M (IM) surveyed 1,478 R&D labs in the U.S. manufacturing
sector, and found evidence of disclosure lags when firms do not compete in patent races.

6. As we discuss in the literature review, our real-option tradeoff is related to insights bym @)
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to valuable applications developed in the second stageﬂ Our basic model can be interpreted as
the first stage of one such race, where the payoffs are thought of coming from the solution of
such a second stage. Our main finding that firms may patent their innovations too early may
bear important implications. Because early disclosure depresses the value of investing in basic
research, we predict that it may be under-provided even in the presence of strong patent rights.

In the second part of the article, we expand and detail our findings by fully solving an infinite
multistage patent game with a more explicit structure than the simple game we described earlier.
Unlike in the first part of the article, the study of the infinite multistage patent game allows us
to explicitly describe innovation growth, and formally distinguish it from social welfare. Each
stage is a single patent race on a novel innovation that builds on previous innovations. We allow
for intertemporal turnover: each competing firm may drop out of the game at the beginning of a
new race. This may happen, for example, if a firm finds out that it does not have the capabilities
to compete on the new innovation. Those who exit are replaced by new competitorsﬁ’ Here, the
payoff of the firm ending a stage includes the expected present discounted value of the patented
innovation net of development costs, but also the firm’s “continuation payoff” for ending the
stage and moving on to the next one. Likewise, the other firms’ payoffs include the continuation
payoffs for moving on to the following stages in the game.

This game is primarily of interest for R&D applications in which new innovations do not
displace earlier ones from the market['] There, the value for ending a stage game does not
necessarily equal the market value of the patented innovation. It may also include the expected
licence fees paid by other firms which market improvements in the future, or the profit for
innovations covered by continuation patents. Further, we argue that under some assumptions this
game may also be applied to environments in which new innovations displace earlier ones from
the market, as in the quality ladder literature where all innovations apply to the same product (see
e.g.|Aghion and Howitd, [1992)). These specific assumptions are that patents have infinite length,
and that the innovator makes a take it or leave it offer to the holders of earlier patents when
bargaining over the licencing fee needed to market its improved product, which includes earlier
patented technology. Under these assumptions, there is no hold-up problem among innovators
of different stages. While the earlier quality ladder literature focused on this hold-up problem
as the only source of market inefficiency, we identify a novel source of inefficiency by studying
the timing of innovation disclosure [T e briefly mention in the conclusion how to expand the
model to account for different patent length and allocations of bargaining power in the licencing
negotiations.

7. Among those who study this class of games, see |Green and Scotchmei @), IScotchmed m), [Kremed
(@), andm (M). Unlike us, their papers do not study the timing of innovation disclosure.

8. Allowing for the possibility of exit relates our model to an important insight in the R&D literature, called
“standing on the shoulder of giants” effect (as in e.g. W m) or “intertemporal spillover” effect. In that
literature, firms may choose not to patent their innovations, due to the limited capability to appropriate the value of
innovation spillovers on future research. For the same reasons, here, firms may choose to delay patenting their innovations.

9. Some R&D models presume that innovators cannot participate to future races (e. g.m, ;

[Scotchmed, [199d: [0"Donoghue er al] [1998), others make the opposite assumption (e.g. [Scotchmer and Greed[199d, and
quality ladder models SIW, @).
10. For example, @) discusses the case of a technology developed while researching for a drug may

later be applied to develop a drug that cures a different disease, whereas [Green and Scotchmer m) discuss a surgical
device developed for humans that may lead to a different surgical device for pets. The possibility that sequential innovations
do not market displace previous ones is often acknowledged in the R&D literature (see e.g.m, @;

[Denicolol, R00d: [Scotchmed [199d: [0"Donoghud [1999).
11. Among studies on optimal patent policy in innovation ladder models, see for example, (@),
- Toanotuu v o) (098, and Eopeohosa orol) G008
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The analysis of this infinite multistage game allows us to derive precise and detailed
predictions. The “real-option tradeoff”” we identified in our basic model takes always the form
of “real-option delay”, here. Because firms may exit the game, they do not fully internalize the
intertemporal spillovers of their innovation on the future lines of research. Specifically, they do
not internalize the value of disclosing their innovations to firms that will build on their research
to achieve innovations that they may not have the capability to research. So, the private option
value of improving the current innovation dominates the social option value, and this pushes
firms to patent too late in equilibrium. Further, this “intertemporal spillover force” is stronger
as the probability of exiting the game increases. In fact, the socially optimal strategies are
independent from intertemporal turnover, because the choices of firms that maximize social value
are unaffected by changes in the firms’ identities. Instead, the self-interested firms who actually
compete in our multistage game delay stopping further when their exit probability increases.

Because intertemporal spillovers are counteracted by fear of pre-emption, firms may disclose
innovations too early or too late in equilibrium relative to the social optimum. We show that the
sign of the distortion depends on whether turnover is above or below a precise threshold, function
of the number of firms competing in the game. In fact, fear of pre-emption is stronger as the number
of competitors increases in the game. Further, we identify conditions under which stronger patents
slow down innovation growth by delaying equilibrium patenting. When turnover is stronger than
competition, patent strength is more likely to make firms delay equilibrium disclosure, as the
innovator is more likely to exit the game when patenting its innovation

On the basis of these results, we identify three possibilities for patent policy. Weak patents are
optimal when turnover is sufficiently stronger than competition, so that firms patent too late and
stronger patents would make them delay disclosure even further. At the same time, weak patents
are optimal also when turnover is sufficiently weaker than competition, so that firms patent too
early and stronger patents would make them patent even earlier. Itis only for intermediate values of
turnover and competition that strong patents are optimal in our model. And, perhaps surprisingly,
we find that this is not because strong patents induce firms to disclose innovations early, but
because they induce firms to extend their R&D durations, and this improves social welfare. In
the discussion of our results, we explore how to determine whether strong or weak patents are
optimal in different R&D industries, as well as the regulatory implications of our analysis.

We conclude the article by arguing that our rich and detailed model can be used for policy
experiments. As an illustration, we calibrate our multistage game using summary statistics from
the U.S. seeds breeding industry in the late 1980s. We set the cost parameters, interest rate, arrival
rate of the breakthrough, the number of competitors, and the likelihood to exit the game to match
observed summary statistics. We cannot observe innovation value growth parameters, but we
calibrate them so as to approximate the durations and rates of return found in the data. The best
calibrated time spent in research of a new seed is significantly smaller than the socially optimal
time: the optimal research duration is 43% longer. This result reveals a strong fear of pre-emption
effect, which translates into a consistent welfare loss: the social value of the innovations actually
patented is only 62% of the value of the socially optimal innovations.

Our policy experiments show that this welfare loss can be greatly reduced by weakening
patent rights. The benefits of this policy are two-fold. First, holding the number of competing
firms fixed, we show that making patents weaker leads firms to lengthen research durations.
Secondly, weaker patents reduce competition and thus fear of pre-emption, as they reduce the
number of firms that can enter the game and achieve a non-negative profit. We find that the first

12. Note also that, because stronger patents encourage R&D, they may make innovators postpone disclosure to
avoid competition by future innovators who build their research on the innovator’s patent, and whose R&D activity is
encouraged by stronger patents.

9102 ‘v Afenuer uo »oimepn Jo A1sieAiun e /Blo'sfeulnopiojxo pnisal//:dny wody papeojumoq


http://restud.oxfordjournals.org/

HOPENHAYN & SQUINTANI PATENTS AND DISCLOSURE 203

effect is negligible in our exercise: weakening patents while keeping constant the number of firms
making positive profits yields a welfare gain of only 5% over the status quo. On the other hand,
the second effect turns out to be powerful. By reducing patent strength so that the industry can
support only two of the four firms competing in the status quo, a planner may achieve 87% of
the social optimum and a 46% gain relative to the status quo. We conclude the numerical study
with a robustness analysis that verifies that our results are not sensitive to changes in parameters
of the model.

The article is presented as follows. After the literature review, Section Bl presents and studies
our basic model. Section [ details the analysis of our multistage model, and leads to Section
that reports our numerical results. Section 6l concludes. Omitted proofs are in the Appendices A
and B.

2. LITERATURE REVIEW

The main contribution of our article is the formulation of a rich framework to study innovation
disclosure timing in details. This question is largely unexplored in the R&D literature and in
the literature on optimal patent rights (see e.g. , for a review of this literature). We
discuss some exceptions below. The main novelties distinguishing our work from previous papers
are our results that firms may patent too early relative to the social optimum, and that stronger
patents may delay innovation disclosure. These results follow from our rich dynamic framework,
in which the innovation value increases over the time spent by firms on R&D. Importantly, the
possibility that firms may patent too early in equilibrium is verified in our numerical analysis of
Section 8 and leads to our finding that reducing patent strength may lead to significant welfare
gains.

An early paper studying the timing of innovation disclosure is [Horstmann er /] (1983). In
a simple model, they recognize that firms may choose not to patent their products, for fear of
disclosing technology that may lead to imitation and development of competing products.

Closer to our work, [Scotchmer and Greer (1990) set the agenda on sequential R&D and patent
races in a model with two stages and two firms as well as different institutional rules. When
considering institutions analogous to the ones we consider in our article, they find instances
in which the first innovation is not patented in equilibrium, so that firms suboptimally disclose
innovations too late. In contrast, firms may never patent too late in our infinite multistage model if
they exit the game with zero probability, as it assumed in their paper. Interestingly, this difference
is due to their assumption that the second innovation displaces the first one from the market. It
can be shown that our results would extend to the framework bme&hmgLand_Gde 11990, if
they were to adopt our assumption that innovations do not displace earlier ones from the market.

Also related to our work, [Matutes er al] (199€) study optimal patent design in a model where
a firm that has completed basic research must decide when to disclose its results. By keeping
them secret, it enjoys a lead in the race to develop applications of the completed research, but
it pays the cost of waiting to market already developed applications. So, their paper identifies a
real option delay effect: firms may suboptimally disclose basic research too late because of the
option value of waiting to develop applications. Our article completes this insight by uncovering
the possibility of also real option anticipation, that takes place when the social option value of
delaying disclosure is larger than the private value. These two opposite effects are known in the
literature on real options. For example,m (M) identifies a real option tradeoff in a stopping
game in which two players choose when to make an irreversible investment decision. Instead,
we study the timing of innovation disclosure; and we also consider an infinite multistage game in
which the option value for waiting is mitigated by the possibility of participating to future stages
of the game.
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The other forces that we single out when comparing equilibrium and socially optimal patent
times are novel within the literature on the timing of innovation disclosure. However, they relate
to insights from the broader R&D literature, that we now briefly discuss.

Pre-emption games have been adopted by [Fudenberg er af] (1983) and [Harris and Vickerd

) to assess the optimality of competitors’ exit decisions from races towards a finish line.
They find that pre-emptive forces may lead firms to withdraw from races when they believe
they lag behind. Relatedly, [Hoppe and Lehmann-Grubd (2003) study timing games of product
and process innovation adoption and show that the competition may take the form of a pre-
emption game, leading to the introduction of a less well-developed technology. Instead, we study
innovation disclosure and find that pre-emptive forces may lead firms to suboptimally patent their
innovations too early. Further, [Gilbert and Newbery (1982) show that an incumbent may spend
too much R&D, from a social point of view, for fear of pre-emption by a potential entrant who
may win the race to the patent office. But while this leads to socially excessive R&D investment,
our pre-emption effect leads to socially inadequate investment because the leading firm stops
R&D too soon.

In our model, we single out other forces that may counteract fear of pre-emption. One of these
forces are duplication costs, well known in R&D models, although not considered in the context
of innovation disclosure timing. For example, m (@) shows that firms may overinvest
in R&D, in a simple strategic game in which firms choose experimentation intensity. Among
the earliest dynamic games illustrating duplication costs are the differential games put forth in
[Reinganum (1981],[1982), where the players may increase the arrival rate of a Poisson distributed
innovation at a cost. ) extends the analysis to the case of uncertain arrival rate. While
their strategic variable is the time of quitting, the strategic choice in our stopping game is the
time of patenting.

3. THE BASIC R&D RACE
3.1. The model

We study a continuous-time patent race with N4-1 firms. Each firm i incurs a flow cost ¢ to
compete in the R&D of the same innovation. The firm makes no progress until it achieves
a breakthrough in the R&D activity. The time arrival of each breakthrough 7; is exponentially
distributed, independent across firms, with arrival rate A identical across firms. After experiencing
a breakthrough, firm i’s innovation improves deterministically. Firms cannot observe whether a
competitor achieved a breakthrough or not. The race ends when any of the firms patents its
innovation[d If ending the race at time ¢ past its breakthrough arrival, firm i obtains the payoff
ﬁ(t; «) at time ¢, whereas each one of its competitors receives the payoff U (¢; ). As is standard,
payoffs are discounted with interest rate r.

The first-mover payoff U (¢; o) includes the expected present discounted value of the patented
innovation net of the development costs, but it might also include a continuation payoff for
ending the race, as modelled in Section @l The expected present discounted value of the patent
does not necessarily equal the market profit for the patented product. It may also include the
expected licence fees paid by other firms which market improvements in the future, or the profit
for innovations covered by continuation patents. At the same time, the payoff U (¢;) is to be

13. The possibility that firms exit the game without patenting is not part of the strategies considered in our simple
stopping game. To ensure that this possibility does not disturb our analysis, it is sufficient to assume that the flow cost ¢
is not too large relative to the breakthrough arrival rate A. We report the precise form of our parametric restriction after
calculating the equilibrium.
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taken as net of licencing fees paid to earlier patent holders, in the case that the patented innovation
is an improvement on earlier patents. The race-losers’ payoffs U (t; «) include the continuation
payoff accrued by losing competitors when the race is ended, as well as positive spillovers of
the patented innovation on the products of the other competing firms, or negative effects on their
market shares induced by the patented innovations. Because race losers have the option to leave
the marker after the race is ended, we assume that U (¢; ) > 0.

We assume that U (f;a) > U (t; ) at least for ¢ sufficiently large: The firm winning the race
gains the positive profits associated to the innovation. Further, we assume that U (¢; ) >0 and
that U (t; ) <0, with U (¢; ) — O as t — o0o. The first-mover payoff does not grow until the firm
makes a breakthrough. The firm experiences rapid progress right after the breakthrough, to later
hit diminishing returns so that its payoff growth decreases over time. We do not impose restrictive
requirements on U, (¢; ). In some contexts, i’s patent reduces each competitor j’s market share,
so that U, (t; ) < 0; in other applications, innovation spillovers induce such positive externalities
that U, (#;) > 0. But even in this case we assume that U (t;0) —U, (t;a) > 0. The parameter
o €0, 1] describes patent strength, and we discuss it later in detail.

Each firm i’s strategy prescribes when i should patent its innovation, given the “calendar”
time #; since the beginning of the race, and given the amount of time ¢ past its breakthrough. We
consider Perfect Bayesian Equilibria with strategies that are symmetric across firms, and that do
not depend on calendar time. Any such a strategy can be identified by a stopping time 7': each
firm i stops the game and patents its innovation when the time past its breakthrough ¢ equals 7.
In other terms, each firm i patents the innovation at calendar time 5i=T+1.

Our main research question is determining whether firms disclose innovations too early or
too late in equilibrium, relative to the social optimum. Hence, we also calculate the stopping
time T* associated with the symmetric, calendar-time independent strategies that maximize the
social value of the race. Following [Marschak and Radned (1972), T* is found by calculating the
Pareto-dominant equilibrium of the game (the so-called “team problem”) in which each firm i
internalizes the positive spillovers that its strategy induces on competitors and consumers, instead
of just maximizing its own payoff. We denote by U* (¢), the social value achieved when firm i
stops the team problem at time # after i’s breakthrough arrival. Again, we assume that U} (t) >0
for all ¢, and that U7 () is a strictly decreasing function of ¢, with U7 (1) — 0 as t — oo.

The parameter o represents the strength of patent rights. We say that patents are stronger
when they allocate a larger share of the social value of the patent to the patent holder, and do
not distinguish among the institutions that determine a higher «. The social value of the race
U* (¢) is independent of «, because the team problem represents an environment in which each
firm maximizes the social value of R&D, independently of the identity of those who appropriate
of social value. We do not need to assume that U, (t;) >0 in our analysis. Likewise, there is
no need to assume that U, (¢;¢) <0 for our purposes. Nevertheless, it is always the case that
Ut;a)+NU(t;0) <U*(¢) for all « €[0, 1], because consumers’ welfare is not accounted for in
the sum of the firms’ values U (t;a) +NU (t; a)

Our model immediately applies to first-to-file patent systems. It may also be relevant for
first-to-invent systems, whenever the timing of innovation cannot be precisely verified in Court[d

14. In some applications, it is reasonable to assume that U(t;a)+NU (t;a) = U*(¢). But this will not be the case in
the multistage patent race we develop in the next section. In fact, the continuation values associated with the equilibrium
stopping time T and included in U (t;) + NU (¢; ) will be strictly smaller than the continuation value associated with
the optimal stopping time 7* and included in the social payoff U* (¢).

15. However, it can be shown that there does not exist a symmetric pure-strategy equilibrium for our model, under
a first-to-invent system, when the timing of innovation disclosure can be fully and precisely verified.

9102 ‘v Afenuer uo »oimepn Jo A1sieAiun e /Blo'sfeulnopiojxo pnisal//:dny wody papeojumoq


http://restud.oxfordjournals.org/

206 REVIEW OF ECONOMIC STUDIES

3.2. Analysis

We begin solving our basic model by calculating equilibrium stopping time 7. We let V (r) be
the expected equilibrium value of any arbitrary firm i at time ¢ after i’s breakthrough, given that
the other N firms adopt the stopping time 7. We show in Appendix A that, for any ¢ such that
firm i weakly prefers to remain in the game, the flow value rV (t) obeys the following standard
dynamic programming equation:

V(O =—c+V @O +h(E)UT0) -V ). (1)

The first two terms in the right-hand side are the flow cost c¢(¢), and the time increment in the
equilibrium value V (¢). The third term is also expressed in flow terms and represents the expected
loss for losing the race when another firm patents its innovation. Specifically, this term consists
of the hazard rate of losing the race h(f,-), times the change in payoff induced by this event,
U(T;a)—V (). Because the race is lost whenever any of the N firms other than i achieves a
breakthrough earlier than 7, and because breakthrough arrivals are independent and exponentially
distributed, we prove in Appendix A that the hazard rate / (7;) equals N, whenever 7; > T[4

At the equilibrium stopping time 7', the firm is indifferent between patenting its innovation
or not. Because the value for ending the game is the first-mover payoff U (¢;«), standard value

matching and smooth pasting conditions (see e.g. [Dixit and Pindycl, [1994) yield:

V(T)=rU(t;a), V(I)=U,(T;a).

Substituting these equalities in equation (I)), we obtain the equation pinning down the equilibrium
stopping time 7', displayed in the following result.

P_roposition 1. _There exists a unique symmetric, calendar-time independent equilibrium. When
Ui(O;a)>c+rU0;a)+NA [U(O; a)—U(0; a)], its associated equilibrium stopping time T is
the unique solution of

rU(T;0)=—c+U(T;0) —NA[U(T;0) = U (T; )], ()
otherwise, the equilibrium stopping time T is zerol1

The expression on the left-hand side of equation @) represents the opportunity cost of waiting
to patent, the first-mover payoff U (T; @) expressed in flow terms. The expression on the right-
hand side represents the net gains for waiting: the firm pays the flow cost ¢, gains the value
increment U (T;a), but exposes itself to the risk of being beaten in the patent race. The hazard
rate of this last event is NA and the net loss is U (T; ) — U(T; a).

16. For#; <T, we show in the Appendix A that the hazard rate h(f,-) equals zero. Of course, this case is irrelevant
for our analysis, as i’s competitors do not ever patent before 7; equals the equilibrium stopping time 7', in any symmetric
calendar-time independent equilibrium.

17. As anticipated in footnote [[3] to ensure that our conclusions are robust when allowing firms to exit the race
without patenting their innovations, it is sufficient to assume:

— r+NA
c/A<U[T;0) —————— e UNIT L NU(T; ). 3
/A=U( )r+(N+1)A UT;a) (3)
This condition can be easily checked ex post, after calculating the equilibrium stopping time 7'. It is evident that it is not
vacuous, as it always holds when ¢=0. The derivations leading to condition @) are not insightful. We omit them and
make available upon request.

9T0Z ‘v Afenuer Uo oIMBAN 10 A1SBAIUN e /B10'S [euinopuoxo prisal//:dny woly pepeojumod


http://restud.oxfordjournals.org/

HOPENHAYN & SQUINTANI PATENTS AND DISCLOSURE 207

We now turn to determine whether firms disclose innovations too early or too late in
equilibrium. We calculate the stopping times 7* that maximize social value in the team problem
that we defined earlier. As we detailed, these strategies are found by stipulating that each competing
firm internalizes the positive spillovers that its strategy induces on competitors and consumers. So,
letting V* (¢) be each firm i’s equilibrium value in the team problem at time 7 past its breakthrough,
firm ’s dynamic programming equation now reads:

PV (1) =—(N+ De+V* () +NA[V (T¥) = V* (0)]. )

We highlight the modifications with respect to equation (). First, the flow cost term is multiplied
by the number of competing firms, because i internalizes the flow cost borne by its competitors.
Secondly, if any of i’s competitors patents its innovation, the social gain is the value V* (T*), to
be traded against the social value V*(¢) lost by firm i.
At the optimal stopping time T*, V (T*) =U*(T*). So, T* is pinned down by the following
equation:
rU*(T*)=—=WN+Dc+UT(T¥), ®)

provided that U} (0) > (N +1)c+rU*(0); and otherwise T* =0.

We now compare the equilibrium stopping time 7', pinned down by equation @), with the
optimal stopping time 7*. We focus on the case in which both T and T* are strictly positive,
for which this comparison is easier to explain. By subtracting equation @) calculated at the
equilibrium stopping time T from equation @, and rearranging the resulting expression, we
obtain the following decomposition.

Proposition 2. Whether firms patent too early (T< T*) or too late (T> T*), relative to the
socially optimal strategies, depends on whether the quantity

—Ne—{[U1(T;0) —rU(T; )| = [U (1) = rU* (D) |} +NA[U (T;0) = U (T; )] (6)
is strictly positive or negative.

This decomposition allows us to identify the following three different forces which jointly
determine whether the firms disclose their innovations too early or too late in equilibrium, relative
to the socially optimal strategies.

First, we note that the flow cost is ¢ in equation ), whereas it equals (N + 1) ¢ in equation @));
hence, the net difference is Nc as reported in the first term of expression (@). As long as N >0,
this difference pushes each firm to stop too late in equilibrium, as the firm does not internalize
the flow costs paid by its competitors while the race continues. While novel in the context of the
disclosure timing problem, this force can be related to the “duplication cost effect” that has been
studied in the broader R&D literature, as we earlier pointed out

The second term in expression (@) compares the quantity Uy (T; o) —rU (T; ) in equation
@), to the quantity Ui" (T)—rU*(T) in equation @). The former is the difference between
the private payoff growth U;(T:;a) and the current private payoff flow rU(T;«). Thus, it
represents the private tradeoff between continuing and stopping at 7. Likewise, the term
U (T)—rU*(T) represents the social tradeoff between continuing and stopping. If the term

18. The empirical relevance of duplication costs is well known. For example, the white paper prepared for the
[WIPO-TFIA International Symposium on Inventors and Information Technology (1999 reported that 30% of all R&D
expediture in Europe and U.S. duplicated patented research.
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[Ul (T;a)—rU(T; oc)] — [Uik (T)—rU* (T)] is positive, then the society values the option of
not ending the race less than the individual firms, so that the competing firms stop too late in
equilibrium; and vice versa. As this comparison is a tradeoff known in the literature on real
options, we dub “real-option tradeoff” the force identified here.

Whether the real-option tradeoff pushes firms to patent too early or too late in equilibrium
depends on the R&D industry considered. As we explain in details later, the real-option tradeoff
often takes the form of delay in industries where the innovator does not have the capability
to develop and market applications of the innovation it patents. For example, pharmaceutical
innovators often sell their innovation to larger companies, with better development technologies
and facilities. On the other hand, the real-option tradeoff likely pushes firms to patent too early in
equilibrium when their innovations make competitors’ established technologies obsolete. So, the
private option value of not patenting the innovation is smaller than the social value, because the
innovator fully appropriates of the competitors’ market shares as long as its technology is superior,
regardless of its additional social value. Instead, the patent holder of an established technology
is usually reluctant to patent the new, superior technology for fear of cannibalization

Finally, the term NA[U(T;a) — U (T; &) ] identifies a “fear of pre-emption” force that pushes
each firm to patent too early in equilibrium, concerned that a competitor beats it in the race to
the patent office. The identification of this force is the most innovative result of our analysis. In
fact, the literature on the timing of innovation disclosure usually presumes that early disclosure is
beneficial to the society, as it speeds up economic growth. Innovation secrecy is seen as the main
evil. But, as we shall argue with our calibration exercise in Section [l the fear of pre-emption
force we identify here may have an important role in the optimal design of patent policy; and it
may give a justification for policies that reduce patent strength.

While this fear of pre-emption force is novel to the academic literature, there are many
anecdotes in R&D history where concerns about pre-emption by competitors led inventors to
anticipate patenting. As reported bym M), the most notable example is the telephone.
Alexander Graham Bell was aware not only of competitors working to develop a telephone but
of the filing of patent applications by those competitors. He rushed his application to the patent
office before he finished his invention to avoid being pre-empted by theml™] Further, it is likely
that the switch from the first-to-invent to the first-to-file system, which took effect in the Spring
of 2013 in the U.S., increased the relevance of fear of pre-emption. As a result, one can expect
an increase of patent rate, and a decrease in the proxy variables used to assess patent value, such
as citation numbers. Indeed, some legal scholars rendered these concerns manifest in the debate
that took place before the harmonization of the U.S. system with the first-to-file system adopted
worldwide 1]

19. Fear of cannibalization by the market leader and early patenting by competitors are quite common, see, for
example, the study bym m) on new generation and old generation hard disk drives, as well as the reluctance to
patent and commercialize digital camera technology by Kodak, the holder of the technological superior chemical print
technology.

20. Even then, Bell did not beat his rivals to the patent office, Elisha Gray filed a caveat on the same day. Similarly,
Eli Whitney was expressly warned that competitors were working on similar inventions and this seems to have spurred
him to file his patent application. Other anecdotes in which inventors feared the possibility of pre-emption involve Edison,
who was aware of the work of others on the lightbulb, the Wright Brothers, who recognized that they were in competition
with other inventive teams, as well as Watson and Crick, who knew they were racing Linus Pauling to discover the helical
structure of DNA.

21. For example,m m) writes: “Because the objective of a first-to-file patent system is, in effect, to
reward early filing and punish late filing, many believe the first-to-file system endorses a race to the patent office. (...)
The inventor no longer has the opportunity to develop the invention through its entirety, (...) Such a process of awarding
priority of inventorship will precipitate hasty application drafting with limited experimental exemplification or support.
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The decomposition presented in Proposition [2] provides effective guidelines to establish
whether firms patent their innovations too early or too late in specific R&D industries. For
example, because duplication costs are larger when the research cost ¢ increases, whereas fear
of pre-emption is more relevant when the likelihood of innovation A is larger, one can expect
suboptimally early patenting in industries characterized by low R&D costs and fast innovation
achievements, and suboptimally late patenting in R&D competitions with high costs and low
chances of success. Further, the role played by real-option tradeoff can be gauged by assessing
the intertemporal effect of innovations on competitors’ profits and on social value, analogously to
the cases we discussed above. In Proposition[] the role of competition is ambiguous, as a larger
competition parameter N makes both duplication costs and fear of pre-emption more relevant.
However, we later show that competition leads unambiguously to suboptimally early patenting
in the multistage game we develop in the next section.

Once determined whether competing firms disclose their innovations too early or too late in
equilibrium, a natural question is whether stronger patent rights induce earlier or later equilibrium
disclosure. The usual presumption in the literature is that increasing « and making patents stronger
induces earlier equilibrium disclosure. Proposition Bl below shows that the reverse can also be
true. Stronger patent rights make firms patent earlier in equilibrium when a greater « increases
U 1 (T, @), the option value for letting the innovation value grow further, more than it increases
rU(T;a)+NA[U(T;a) = U(T;a)], the value for ending the game plus the expected loss in the
event of pre-emption, both expressed in flow terms.

Proposition 3. An increase of the patent strength parameter « increases the equilibrium

stopping T if . .
Unp(T;0)>(NA+r)Us(T;0) =NAU, (T ), (N

and T decreases in « if the inequality is reversed.

Our insights on the relationship between patent strength o and the equilibrium stopping
time 7 may be quite relevant for policy. The strengthening of U.S. patent protection over the
1980s and 1990s led to the doubling of the number of new patents granted per year to domestic
inventors between 1985 and 1999 (see e.g., m ). However, mh ) examines
177 policy shifts in sixty countries from 1850 to 2000 and finds some support for an “inverted-U”
relationship between patent strength and the number of patent applications. His findings challenge
the predominant views of the R&D literature, but are broadly consistent with our theoretical
results 3

Our insights on the relationship between patent strength «, the equilibrium stopping time 7,
and the socially optimal stopping time 7*, may be broadly applicable. One class of games to which
they may be applied is the infinite multistage game presented in the next section. We conclude
this section by briefly discussing how to apply our insights to another class of games that has been
studied in the R&D literature. These games feature two stages. In the first one, individual firms
are engaged in basic research: they compete to develop an innovation that does not have market
value per se. But once this basic innovation is patented, it leads to different applications that can

In short, the first-to-file system encourages speculative filing of applications on unproven inventions by ‘idea men’ rather
than actual development of useful commercial inventions, and would retard rather than promote progress”, See also
[Pedersen and Braginsky 200d) and[Conleyl {1991).
22. Other studies found no clear relationship between patent strength and patent numbers; see for example,
@) on U.S. R&D from 1980 to 2000, m ) on U.S. semiconductor R&D
from 1979 to 1995, Branstetter and Sakakibard @001 on Japan R&D from 1988 to 1998, Brora er f] ©003) on U.S.
R&D from 1990 to 2002.
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be marketed and generate significant profits. Crucially, these models presume that the innovator
does not have the capability to develop and commercialize applications of the innovation it
patents. To apply our basic model to these games, suppose that our N + 1 firms compete on basic
research, and interpret the first-mover payoff U (¢;«) as the share of profits generated by future
applications that is captured by the basic research patent holder through licencing agreements
and other arrangements.

One fundamental insight of the literature is that there is a hold-up problem across first- and
second-stage innovators. Awarding too strong patent rights to the basic research patent holder
may stifle R&D on applications, and decrease the market value of the research line. It is not
difficult to recover this hold-up problem in our model by assuming that U (#; ) is decreasing
in « for values of « close to one. Further, this hold-up problem may lead to real-option delay,
as we anticipated earlier. When selling the patent to the second-stage firm, the first innovator
is paid the stock value of the patented innovation, but it is unlikely remunerated also for the
full option value of improving the innovation further before patenting it. As a result, the private
option value dominates the social option value, and the real-option tradeoff takes the form of
delay.

Most importantly, when the fear of pre-emption force we earlier identified is sufficiently
strong in these two-stage race games, the expression (@) may take positive values, despite the
counteracting real-option delay force discussed above. As aresult, basic research may be disclosed
too early, leading to important welfare distortions. Interestingly, these distortions may also lower
the value of basic research ﬁ(T; «), and induce lower incentives to invest resources in studying
basic research in the first place

Hence, our model identifies a novel reason behind the common wisdom, dating back at least to
Nelsod (@), that basic research is underproduced. Our novel insight is that firms that compete
on basic research may patent their innovation too early, for fear of being pre-empted in the
patent race. This practice may stifle incentives for further development, and reduce the payoffs
and incentives for engaging in basic research in the first place. Crucially, this distortion may
be worsened by stronger patents, when they make competing firms disclose their innovation
earlier, as it is usually presumed in the literature on innovation disclosure. Thus, we conclude,
strengthening patent rights need not necessarily provide efficient incentives to conduct basic
research, and may even worsen the underproduction.

4. THE MULTISTAGE GAME
4.1. Model

We consider an infinite multistage game where each stage is a patent race for a different innovation,
which is technologically feasible only when the previous innovations have been developed. Each
stage of the game can be studied using the methodology developed in the previous section.
There are N+ 1 competing firms, paying cost ¢ until the stage ends. Each firm i starts making
progress only after making a breakthrough, which has an exponentially distributed time arrival
7;, independent across firms, with arrival rate X identical across firms. The time 7; is not publicly
observed.

If a firm ends the stage at time ¢ since its breakthrough, its first-mover payoff U (t; ) takes
here the explicit form ax (f) —co+ UL. The term x(¢) denotes the expected present discounted

23. In simple derivations available upon request, we expand our basic model and endogeneize both the entry
decision (extensive margin) and the investment choice which determines a firm’s arrival rate A (intensive margin). We
determine precise conditions for fear of pre-emption to lead to lower incentives in both margins.
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social value of the patented innovation, a fraction « of which is earned by the innovator. The term
co denotes the development costs for consolidating the research outcomes so that a successful
patent application can be presented. For simplicity, ¢ is taken to be independent of 7, and we
assume that ax(0) <cg: it is not enough just to achieve a breakthrough for the innovation to
be profitable. In our main applications, cy may be reinterpreted as also including the costs for
marketing the patented innovation and any other fixed costs incurred after patenting The term
U is the continuation value of the firm patenting the innovation and ending the stage game; we
will derive it precisely later.

In line with Section Bl we assume that the growth rate x(-) is a strictly decreasing, positive
function, with ax(0) >¢, x(t)— 0 as t — 00; but with ax(t) > c¢/r+cq for ¢ sufficiently large.
The payoff of all losing firms U (¢; ) is here assumed to consist only of the continuation value
UF, which we derive later. Finally, each firm’s social payoff in the team problem U* (r) consists
of x(t) —co+ US: the social value of the patented innovation x(#) minus the development cost
o, plus the social continuation value U S that we derive later.

We focus the solution on stage-stationary equilibria in which (as in the previous section)
strategies are symmetric and calendar time independent, so that they can be summarized by
a stopping time 7. Unlike in the previous section, we can here explicitly describe innovation
growth. Given the equilibrium stopping time 7', we let the expected time-averages equilibrium
innovation growth g equal E[x(T) /(T +7)], where 7 be the random time of the first breakthrough
arrival among the N + 1 competitors of any given stage. We show in Appendix B that whenever
A is not too small and x is sufficiently concave, a larger equilibrium stopping time 7 corresponds
to a smaller equilibrium innovation growth g. To assess equilibrium welfare (as in the previous
section) we also study the stopping time T*, associated with the stage-stationary, calendar-time
independent, symmetric strategies that maximize social welfare.

As discussed in the introduction (Section 1), our multistage game covers primarily the case
in which the product invented in any stage does not displace earlier innovations from the market.
While each innovation is possible only because of previously disclosed technology advancements,
there is no market interaction between the different patented products, and hence the expected
value ax () —xo can be defined independently of what happens in future stages of the game.
Also, for these applications it is immaterial whether the cost ¢ is paid before or after the patent
application is filed, so that the term cg may include the costs for marketing the innovation as well
as its development costs.

However, our game may also be applied to contexts in which each innovation concerns the
same product and fully displaces all previous innovations from the market. Under the assumptions
of infinite patent length and full bargaining power to licence buyers, we may interpret x () as the
increment in the expected present discounted social value of the product generated by the current
innovation, and ax (¢) as the fraction of this value earned by the innovator when marketing the
improved product. Because its innovation is based on prior technology, the innovator must buy
licences for all the patents covering the currently marketed product before marketing the improved
product. Suppose that the innovator can make a take-it-or-leave-it offer to the current licence
and patent holders. Then, the payment exactly equals the expected present discounted market
value of the unimproved product. So, net of this payment, the innovator’s expected present

24. Alarge fixed development cost is incurred in medical research, due to the expensive medical trials to test and
finess a chemical compound or treatment. These trials are integral part of R&D; for example, they may induce a complete
reassessment of earlier engineered compounds (as was the case for Sildenafil, originally researched to cure hypertension).
Indeed, according to the PhARMA 2002 Industry Profile, for every one drug that reaches the market, approximately 250
drugs are tested in preclinical animal trials.
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discounted market profit for its innovation equals ax(¢) exactly, as in the case of no-market
displacement

As discussed in the introduction (Section 1), some R&D multistage models presume that
innovators cannot participate in future races, whereas others make the opposite assumption.
Here, we do not impose any such restriction. After an innovation is patented, we say that a firm
may find itself incapable to compete on the next innovation, and may exit the game with some
exogenous probability. For example, the next innovation may concern a product that the firm
would not be able to market; or for the case of full market displacement, the next innovation may
be an improvement that requires a technological capability outside of the firm’s expertise.

To avoid notation clutter, we assume that each firm’s payoff when leaving the game is zero
We let the exit probability be 1 — p for the stage winner, and 1 — x for all the other players. As we
explain in details later, the turnover parameter 1 — p represents the strength of the “intertemporal
spillover” effect in our game. We assume that y < p as, intuitively, the stage winner is less likely
to find its technology inappropriate for the next innovation. When a firm exits the game, it is
promptly replaced by an entrant so that exactly N 41 firms compete in each stage of the game.
This assumption can be rationalized by supposing that potential entrants pay a fixed cost to set
up the research capability to participate in the game, and that this cost is such that a firm does
not find it profitable to enter the game if (and only if) there are already N + 1 competitors at the
beginning of the stage. (We will later show that the equilibrium payoff is decreasing in N.)

4.2. Equilibrium

Unlike in SectionB] the equilibrium stopping time T now enters the analysis in determining the
firms’ continuation values U” and U when each stage of the game ends. Because the equilibrium
is stage stationary and symmetric; each firm expects that the stopping time in each future stage will
be equal to the current stopping time 7. Let Q(T') be each firm’s expected value at the beginning
of a new stage of the game (when all players adopt the stopping time T') so that UL (T) = pQ(T)
and U (T)= x Q(T) because a stage winner (respectively, loser) participates in the next stage
with probabilities p and x respectively. We prove in Appendix B that Q(T) takes the form:

ax(T)—co

N+1 ®)

Q(T)={ﬂ(T) —%[l—ﬂm]}

1
1-£8(T)’

where
N 1

=+ —
L
is the expected probability of a firm not leaving the game at the next stage, calculated at the
beginning of any stage, where each player expects to win the stage with equal probability

1/(N+1). Further, letting T be the random time of the first breakthrough arrival among the
N +1 competitors of any given stage, 8 (T)=E [e" (f+T)] is the expected discount factor for the

random time 7+ T, in which the stage ends (calculated at the beginning of any stage). Because

25. Note that this interpretation of our model does not require that the expected present discounted market value
of the unimproved product is the same in each stage of the game, or that it is the same on and off the equilibrium path.

26. In practice, this is only a normalization assumption. The qualitative properties of our game would not change
if this payoff were strictly positive. This would be the case, for example, if a firm leaving our game achieved a positive
payoff by improving already patented innovations.
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the hazard rate of 7 is (N + 1) A, we prove in the Appendix B that

B(T) —o'T (N+DA -
(N+DAr+r

Given these definitions, the expression (§) is intuitive. The term between in the large brackets
is the expected value of any stage in which the firm participates, calculated at the beginning of
that stage. The firm pays the flow cost ¢ until the random stage-ending time T+7, so that the
firm’s expected one-off cost is c[1— B (T)]/r; whereas with probability 1/(N 4+ 1) the firm wins
the stage, achieving payoff ax(T) — cq discounted by S (T'). After the next stage, the firm expects
to participate in future stages with probability &, as it does not know whether it will win the stage
or not. Because discount factors can also be interpreted as the probability not to exit a infinite
multistage game, the term £8 (T') can be understood as the stationary probability of remaining in
the game at any future stage, so that the term 1/[1 —&8(T)] compounds payoffs as is standard in
any infinite multistage game.

Having calculated the continuation payoffs UL (T) and U* (T'), we can now can plug them
into the expressions U(T;0)=ax(T)—co+ UL (T) and U(T;)= uF (T') that appear in the
equilibrium equation @) of Proposition Il Doing so, we obtain the following result which fully
determines the unique equilibrium stopping time of our multistage patent game. The statement
distinguishes the value function Q (T'), which depends on the stopping time 7', from the equilibrium
value Q which depends only on the model’s exogenous parameters.

Proposition 4. There exists a unique symmetric, stage-stationary and calendar-time inde-
pendent equilibrium. Its associated equilibrium stopping time T is the unique solution of

r+NV)[ax(T)—col+[rp+Nr(p—x)1Q(T)=—c+ax(T). )

The stopping time T decreases in N, A, c, & (fixing p—x), and in p— x (fixing &), whereas it
increases in cqy. The function Q(-) increases in T. The equilibrium value Q decreases in N, ¢, and

in p—x (fixing &).

Equation @) implicitly calculates the equilibrium stopping time 7. It equalizes the flow
value for ending the stage r[ax(T) —co+ pQ(T)] with the net gains for waiting —c+ax(T) —
NAlax(T)—co+ (p— x)Q(T)] which include the flow cost ¢, the innovation value increment
ax(T), and payoff loss in case of pre-emption ax(T)—co+(p— x)Q(T), which occurs with
hazard rate NX. The comparative statics are intuitive. Increasing N and A increases the fear of
pre-emption and makes firms stop earlier, as does a higher research cost ¢, or a higher p — x . Also
intuitive is that a higher development cost ¢y makes firms stop later.

Turning to considering comparative statics with respect to the equilibrium value Q, we find that
Q decreases in ¢ because higher costs depress profits and they shorten the equilibrium stopping
time 7 and thus reduce Q (7). However, holding £ fixed, changes in p — x have no direct effect
on the equilibrium value Q, so that the negative relationship between Q and p — x is entirely
due to the negative relationship between p — x and 7. Most importantly, we highlight that the
equilibrium value Q decreases in N, as anticipated earlier. This is because higher competition
both reduces the probability of winning any game stage, and shortens the equilibrium stopping
time T, so that Q(T) is lower.

We now turn to consider the relationship between the equilibrium stopping time 7" and our
policy parameter «. As in Proposition Bl we derive a precise condition such that T increases or
decreases in «, so that stronger patent rights induce later or earlier innovation disclosure.
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Proposition 5. Increasing « increases T whenever

ro+Ni(p—x) B(T) .
N+1 1—£8(T)

x(T)>(r+NMx(T)+ (1), (10)

and the opposite conclusions hold if the inequality is reversed.
When p=x =&, there is a threshold function & : N+ &, such that stronger patents induce
earlier equilibrium disclosure if € > £(N) and later disclosure if € <&(N).

With the aid of the discussion presented after Proposition[3] the interpretation of this result
is simple. Increasing « increases one’s value for patenting an innovation rx(7') and continuation
utility rp N+-1 %x (T), as well as the loss if pre-empted NAx (T') and continuation value loss

if pre-empted 1%_’__1)() i f é‘(ﬁ{ ()T)x(T). All these terms (calculated as flow values) correspond to

the value for disclosing the innovation and proceeding to the next stage. If they are dominated
by the option value for waiting x(7') which also increases in «, then a higher « increases the
equilibrium stopping time 7. Further, we note for future reference that when p = y =§, there is
a threshold function ?,? :N+— &, such that stronger patents induce earlier equilibrium disclosure if
E> é (N) and later disclosure if & < é (N). As the exit probability 1 —& increases, stronger patents
are more likely inducing later equilibrium disclosure.

Proposition [3] carries relevant implications also for the innovation growth g, as it shows
that stronger patents may decrease growth. As well as determining dT /da, condition (IQ)
also pins down the sign of the derivative dg/da, which is the opposite of dT /da when x is
sufficiently concave and A not too small, as we pointed out earlier. Hence, PropositionBlprovides
a novel insight for patent policy. Stronger patents may make patents less frequent and slow
down innovation growth. The previous literature presumed that stronger patent rights increase
incentives for R&D efforts and speed up innovation growth. Here, we have uncovered a novel
counteracting effect. Stronger patents not only raise the value of the patented innovation, but also
the value of waiting to further increase its value. When the second effect dominates the first one,
stronger patents may slow down innovation growth. Importantly, our analysis also shows that
slowing down innovation growth may be socially beneficial, whenever the equilibrium stopping
time T is shorter than the socially optimal stopping time 7*, which we calculate next.

4.3.  Socially optimal strategies

To determine whether firms disclose innovations too early or too late in equilibrium, we now
calculate the stopping time T* associated with the stage-stationary, calendar time independent,
symmetric strategies that maximize social welfare. Following the same procedure adopted to
calculate T, we first prove in Appendix B that the social continuation value U takes the following
form, as a function of T*:

(")

[o(T) —co] =V +1) 5. (11)

We compare this formula with the expression (§) which defines the equilibrium payoff Q(T)
in the multistage patent race. Each firm engaged in the team problem internalizes the research
costs ¢ paid by current and future firms throughout the game. This loss is represented by the term
—(N+1)c/r. The first term in equation (8) represents the social benefit of the patented innovation
by (T*) —co discounted by (T*) at the beginning of the stage and compounded by the multiplier

1/[1-B(T%)].
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Now, plugging in the definition U* (T*) =x(T*) —co+US (T*) into equation @), we fully
determine the socially optimal stopping time 7*.

Proposition 6. There is a unique stage-stationary, calendar-time independent, symmetric
strategy profile that maximizes social welfare in our multistage patent game. Its associated
stopping time T* is the unique solution of:

_r
1=B(T")

The left-hand side of the above equation represents the social value of the current innovation,
calculated in flow terms and compounded with multiplier 1/ [1 -8B (T*)], whereas the right-hand
side represents the net social flow value for increasing the innovation value. Note that, because
the flow cost ¢ is paid by all firms (current and future ones) it does not appear in the equation
characterizing the socially optimal stopping time T*.

We now compare the equilibrium stopping time 7" with the optimal stopping time 7. We
are interested in the effect of the competition parameter N and of the intertemporal spillover
parameters 1 —p, 1 —&, and 1 — x on the comparison between T and T*. These parameters bear
a close relationship to the forces we identified in Proposition 2l N determines the strength of
the fear of pre-emption effect; whereas p, &, and x influence the real-option tradeoff as they
determine the relationship between the private and social continuation payoffs UL (), UF (1),
and US (r) Interestingly, the duplication cost effect identified in Proposition Rldoes not play a
role in the infinite multistage model of this section. As we anticipated earlier, this is because the
flow cost ¢ does not have any effect on the optimal stopping time as it is paid by all firms (current
and future ones), and the number of firms participating in each stage of the race is constant.

To simplify the exposition, we focus on the case in which there is no exit probability advantage
for the race winner, that is, p=x =§, and study the effect of the competition parameter N and
of the turnover parameter 1 —£, on the difference between the equilibrium stopping time 7" and
the optimal stopping time 7* 2 The reported polar cases of extreme & and N are derived when
a =1, so that the innovator fully appropriates of the stream of profits of the patented innovator.
In this case, the equilibrium equation @) can be directly compared with equation (I2).

[x(T*) —col =x(T™). (12)

Proposition 7. When there is no exit probability advantage for the race winner (i.e. when p =
x =&), there is a threshold function & N &, such that, with strong patents, firms disclose
innovations too early in equilibrium (i.e. T <T?*) if patents competition dominates turnover —
i.e. if € > E(N), whereas innovations are disclosed too late if £ <&(N). With full patent strength
(e =1), firms patent too early in the presence of competition (N > 0) and with no turnover (€ =1),
or with strong competition (N is large) and no full turnover (& >0). Instead, T > T* when there
is no competition (N =0) and some turnover (& < 1), or with full turnover (¢ =0), regardless of
N.

27. In fact, letting

x(t)—co ¢
()= —-[1-
(1)=B() NLl r[ B(0)]
be the per-capita, per-period payoff function, the continuation payoffs can be expressed as:
I 1 N+DII
Uieye PO pp L @ s (VDT
1-£B(7) 1-£B(0) 1-B(7)

28. To assess the effect the parameters of p and x, we also establish that, holding the number of competing firms
N+ 1 and the exit probability 1 —£& fixed, the equilibrium stopping time 7 decreases relative to the socially optimal time
T* as the race winner exit probability advantage p — x increases.

9T0Z ‘v Afenuer Uo oIMBAN 10 A1SBAIUN e /B10'S [euinopuoxo prisal//:dny woly pepeojumod


http://restud.oxfordjournals.org/

216 REVIEW OF ECONOMIC STUDIES

The analysis of Proposition[Zlshows that weak competition (i.e. N =0) or large turnover (§ =0)
induce firms to patent their innovation suboptimally late, as it is presumed in the existing literature.
Instead, strong competition (i.e. high N) or small turnover (£ =1) lead firms to patent their
innovations too early. In general, more competition (i.e. larger N) induces an earlier equilibrium
disclosure time T, relative to the socially optimal stopping time 7%, whereas more turnover
(larger 1 — &) makes firms patent their innovations later in equilibrium, relative to 7*.

These results allow us to recover the fear of pre-emption and intertemporal spillover forces we
discussed in the introduction (Section 1). The competition parameter N determines the strength
of fear of pre-emption, whereas the exit probability 1 —& determines the strength of intertemporal
spillovers. In fact, when the turnover parameter 1 —§& is large, current competitors anticipate that
they will likely not participate in the next stage of the game, and that the knowledge they patent
will spill over to the next stage competitors. As a result, the private option value of improving the
innovation further before patenting them is larger than the social option value. So, we determine
that fear of pre-emption leads firms to patent their innovations too early, whereas intertemporal
spillovers lead them to patent too late.

The results in Proposition[relating turnover to the timing of patents are by and large consistent
with the empirical findings bymgm ). They find that the electronic industry, charac-
terized by high intertemporal turnover, has significantly lower patenting rate than the mechanical
industry, which has less turnover, over the 1965-1990 period. Conversely, they find some evidence
of higher patent value in the electronics industry over the 1975-1990 period, by comparing patent
citation numbers across the two industries. There is also empirical evidence supporting our results
in Proposition [7] relating competition to the timing of patents. For example, m
M) find that forward citation indexes of patents are negatively related with the number of
competing firms in the R&D industry, in a large database of pharmaceutical and biotechnology
patents granted by the United States Patent and Trademark Office from 1965 to 2005.

Further, some of the polar cases reported in Proposition [l are of special interest, as they are
closely related to the literature. The case of N=0 and £ =0 is reminiscent of the models by
[Green and Scotchmed (1993), andﬁ]lmo.gthaU (1998). In these R&D investment models,
formulated to study patent design in the presence of intertemporal spillovers, a single, new firm
participates in each stage of the game. Here, we find that firms disclose innovations too late in
equilibrium, relative to the social optimum, when patent rights are strong. Likewise, the case of
&=1and N > 0 can be related to the quality ladder models quoted in the introduction (Section 1).
These models provided a canonical framework to study growth in the presence of technological
innovation. Interestingly, we here find that firms may disclose innovations too early in equilibrium
due to fear of pre-emption.

Propositions[Qland [Zlmay have important implications for policy. The latter determines when
firms disclose their innovations in equilibrium too early or too late relative to the social optimum,
whereas the former determines when strengthening patents induces earlier or later equilibrium
disclosure. Hence, these two propositions jointly determine whether weak or strong patent
rights would be more effective in correcting the distortions caused by the firms’ self-interested
equilibrium disclosure strategies.

Proposition [ shows that, when p =y =&, there is a threshold function & : N — &, such that
the firms disclose too early in equilibrium if £ > £(N), and too late if £ <&(N). Proposition
shows that, when p =y =&, there is another threshold function é‘ :N+— &, such that stronger
patents induce earlier equilibrium disclosure if & > é (N) and later disclosure if & < é (N). The
final result of this section, Proposition [l below, brings Propositions Bl and [7] together and shows
that it is always the case that é(N )< § (N). So, we determine when it is the case that weak or
strong patents are optimal, as a function of the turnover parameter 1 —&, which pins down the
strength of intertemporal spillovers, and of the competition parameter NV, which determines the
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strength of fear of pre-emption. Further, we determine whether optimal patent policy improves
upon equilibrium by making firms delay earlier or later, as a function of the parameters 1 —§&
and N.

Proposition 8. Suppose that there is no exit probability advantage for the race winner (i.e. that
o= x=E&). When turnover is sufficiently weak relative to competition—that is, § > é(N ), weak
patents are optimal because they lengthen suboptimal equilibrium patent times (i.e. because
T <T* and dT /da <0). When turnover is sufficiently strong relative to competition—that is,
£ <E(N), weak patents are optimal as they shorten suboptimal equilibrium patent times (i.e. as
T >T* and dT /da > 0). In the intermediate case in which §(N) <&E< é(N), strong patents are
optimal because they lengthen suboptimal equilibrium patent times (T <T* and dT /da > 0).

The results in Proposition [l are powerful. Within our framework, we find that if the turnover
parameter 1 —§& is sufficiently small relative to the competition parameter N, then the social
planner should opt for weak patent rights. This is because fear of pre-emption dominates
intertemporal spillovers, and firms would patent innovations too early, in equilibrium, if strong
patent rights were in place. Weaker patents make firms patent their innovations later and this
improves social welfare.

Further, weak patents are also optimal when the turnover parameter 1—£ is sufficiently
large relative to the competition parameter N, but for the opposite reasons. Here, intertemporal
spillovers dominate fear of pre-emption, and firms patent their innovation too late in equilibrium,
under strong patents. Weaker patents make firms anticipate disclosing their innovations so that
social welfare improves.

It is only in the intermediate case in which 1 —£& is neither too small nor too large relative
to N, that strong patent rights are optimal. But, perhaps surprisingly, this is not because they
make firms disclose their innovation earlier. To the contrary, in this intermediate case, fear of
pre-emption dominates intertemporal spillovers, and firms patent their innovation suboptimally
early in equilibrium. Strong patents make firms patent their innovation later, and this improves
social welfare.

The above analysis has determined a rich set of predictions that can be taken to the data.
The key parameters we identified to assess the optimality of weak or strong patents are turnover
(measured by 1 — &) and competition (pinned down by N). These parameters are often observable.
Also, competition may be related to observable technological or institutional barriers to entry.
Hence, one can take to the data also the implication of our analysis that strong patents are optimal
only in the case of intermediate entry barriers.

As highlighted in the introduction (Section 1), our main results concern the case in
which competition is sufficiently stronger than turnover—& > %(N ), so that fear of pre-emption
dominates intertemporal spillovers, and weak patents are optimal as they lengthen suboptimal
equilibrium patent times (i.e. because T <T* and dT /da <0). Some evidence of excessive
patenting and of low-value patents can be found in numerous anecdotes about trivial patents,
and in the staggeringly low rate of patents that are commercialized P Furthermore, we later

29. For a humourous account of the phenomenon of trivial patents, see http://images.businessweek.com/ss/09/04/
0408 _ridiculous_patents/ According to the then director of public affairs for the U.S. Patent & Trademark Office, “There
[were] around 1.5 million patents in effect [in the U.S. in 2005], and of those, maybe 3,000 were commercially viable,” see
http://www.businessweek.com/stories/2005-11-09/avoiding-the-inventors-lament  Other, complementary, explanations
for these phenomena are that private inventors are often overconfident about their inventions’ prospects, and that R&D
firms often patent innovations that they do not intend to commercialize, to preempt competitors from patenting the same
technology or a similar one.
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illustrate in SectionBlhow our results can be used to assess quantitatively the optimality of weak
patents by means of a numerical exercise.

The implication of our results with respect to regulatory policy are manifold. As well known
in the literature, there are a number of institutional possibilities to weaken patent rights. A simple
one is to reduce patent breadth. Indeed, as patent protection is narrower, competitors are more
capable of inventing and patenting competing technologies. But the effect of this policy is not
clear in the context of the timing of innovation disclosure. Keeping R&D expenditure constant,
in fact, narrower patent protection may lead to an increase in patenting frequency; and this
would exacerbate the welfare loss induced by fear of pre-emption. Other possibilities to weaken
patent strength may include weakening the innovator’s exclusive right to market the patented
innovation.

Within the context of our model, one can explore alternative policy interventions to reduce
welfare loss. For example, making patent applications more expensive, or tightening the non-
obviousness requirement for granting patents would increase the cost ¢y and lengthen the
equilibrium patent time 7. Whenever a significant welfare loss is due to excessive patenting, and
low-value innovations, the benefits of these policy interventions are easy to appreciate. Another,
less obvious, possibility is to reduce fear of pre-emption by intervening on the competition
parameter N. As we shall see in the numerical exercise of Section[3] in fact, weakening patent
strength also reduces competition, as it makes R&D industries capable of sustaining a smaller
number of firms. And, evidently, other possible policy interventions that reduce N include raising
institutional entry barriers in R&D industries, fostering joint ventures across R&D firms, and
providing incentives for patent pools, in which different firms cross-licence patents relating to a
particular technology

The next section illustrates how our model can be used to calculate optimal patents and assess
welfare gains in specific industries by means of a numerical exercise. Before presenting our
findings, however, we take a small detour and conduct a few robustness checks on the analysis
of the multistage game we studied in this section.

4.4. Robustness checks

This section assesses whether the predictions of our multistage patent game are robust when we
allow the firms broader plans of action than the ones considered so far. This exercise requires
expanding our model beyond the boundaries of the class of stopping games to which our multistage
patent game belongs. We consider three specific possibilities that may be natural in the contexts
of some applications of our model. The first possibility is that, at any time, competing firms
may choose to exit the game as well as choose to end the stage by patenting its innovation. The
second possibility is that, after ending a stage of our multistage patent race, a firm may improve
the innovation it has just patented, instead of moving on to participate in the next stage of our
game. The third possibility is that, while engaged in one stage of our game, a firm may switch to
research a new innovation without disclosing its current innovation, instead of ending the current
stage of the game by patenting its innovation.

4.4.1. Participation. The first robustness requirement we impose on the parameters of
our multistage patent game is that competing firms do not ever have any incentive to leave the
game. We have already introduced this check in the context of the basic model presented in
Section Bl where we required that ¢/ be sufficiently small to satisfy condition (@). In the context

30. Among the largest patent pools recently established, about twenty companies active in the radio frequency
identification domain formed a Consortium in August 2005, to administer their cross-licenced patents.
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of the multistage game, this sufficient condition can be refined to obtain the following sufficient
condition, which contains much slack

rANA giNnr, N p ) _
c/kf(r+(zv+1))\e TN E o pm ) e <ol (13)

As is the case for condition @), the above condition can easily be checked after calculating
the equilibrium stopping time 7', and is evidently not vacuous, as it is satisfied whenever c is
sufficiently small relative to X.

4.4.2. Improvements after patenting. We now consider the possibility that an innovator
improves its innovation after patenting it, instead of participating in the next stage of our game.
Whether or not this possibility requires any parametric restriction on our multistage model depends
on the context of its application. As we earlier pointed out, our model may be applied to contexts
in which innovations displace previous ones in the market and to contexts in which there is
not any market displacement. In the latter case, the possibility that innovations are improved
after patenting does not entail any modification of our model. It is sufficient to interpret the
private innovation value ax (7)) as including the value of all the innovation’s improvements, that
is achieved by the first innovator through follow-up patents or licencing.

Matters are more complicated in contexts with market displacement. To be sure, in equilibrium,
it cannot be the case that any firm i (including the firm who patented the innovation) obtains a
payoff larger than the equilibrium value, by deviating to improve a patented innovation instead
of participating in the next stage of our game. But this does not imply that the equilibrium play
would always conform to our earlier results, when allowing for the possibility that innovations
patented at time 7" are improved after they are patented. In fact, to dissipate any potential gain over
the equilibrium value, firms would improve patents with positive probability on the equilibrium
path. So, to ensure that our results are robust with respect to the possibility of improving
innovations after patenting them, we introduce appropriate parametric restrictions that rule out
any such potential gains. These restrictions are satisfied when the value function x (-) is sufficiently
concave and when the costs ¢ and ¢ are sufficiently high, so that firms would not be able to recoup
them if improving an innovation after patenting it.

The specific restrictions are calculated as follows. Because we search for a sufficient condition
for the robustness of our analysis, we consider the worse-case scenario in which rejoining the
multistage game only after improving the patented innovation does not lower the continuation
payoff. Further, we abstract from the possibility that competitors diminish the value of improving
the patented innovation, by either patenting competing innovations in the next stage of our game,
or by directly competing with the innovator in the improvement of the patented innovation.

Under these simplifying worse-case assumptions, a player who improves a patented innovation
until any time 7 and then rejoins our multistage game obtains a value function V (1) that follows
a simple dynamic programming equation: rV(t)=—c+V'(1). At the optimal time T to stop

31. As the derivation of this condition is tedious and uninformative, we make it available only upon request.

32. In fact, if this were the case, a different firm j could appropriate of almost all i’s payoff, by improving the
same innovation and by patenting the improvements slightly before than i. So, even if a single firm would potentially
gain over the equilibrium value by improving a patented innovation in absence of competition, this potential gain will
be dissipated by competition in equilibrium. As a result, our results are always robust to the possibility that any firm
patents its innovation at a time # < 7 but then keeps improving it, instead of switching to the next stage of our game. Due
to the above value dissipation argument, in fact, the value of this deviation is no larger than ax*(t)—co+pQ(T), the
equilibrium value for patenting at time ¢, which is strictly smaller than V(¢).
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improving the patented innovation, the value is V(f”):a[x(f“)—x(T)] —CO+UL(T): the firm
obtains the innovation private value increment over the previous patent a[x(f") —x(T)], net of
the development cost ¢, together with the continuation value for rejoining the game UX(T). So,
provided that T is positive, it is the unique solution of:

r [ax(f”) —ax(T) —co—l—,oQ(T)] = —c—l—w‘c(f).

Therefore, a sufficient condition (containing much slack) which rules out that firms improve
patented innovations instead of moving on to the next stage in the game is that the discounted

deviation value e="(7=7) V(I)— [1 —e " (T_T)] c¢/r be not larger than the equilibrium value, that

is, after simple manipulations it is sufficient that:

_—r(T-1)

alx(T)—x(T)] < m[pQ(T)-i-C/VH-CO. 14

In words, this condition requires that the maximal private value increment o [x(f) —X (T)] not be

sufficiently large to recoup the development cost ¢, together with the appropriately compounded
flow research costs ¢, and the continuation payoff postponement. As is the case for condition
(@), the above condition can easily be checked after calculating the equilibrium stopping time 7.
Again, condition {I4)) is not vacuous (e.g. itis satisfied when ¢ is not too small, and x is sufficiently
concave), and it can be proved that it does not conflict with earlier parametric restrictions.

4.4.3. Switching without patenting. Finally, we consider the possibility that a firm may
switch to research a new innovation keeping its current innovation secret, instead of patenting it
as it is required by our multistage game model.

First, we note that this possibility is not always feasible in specific applications. For example,
in medical research one can often interpret cg as the cost of medical trials that conclude the
research of a new drug or therapy. Such trials are public by law and they are a fundamental part
of the R&D of the innovation. Hence it may not often be possible that a company switches to a
new project without disclosing its current innovation. In other applications, the possibility that a
firm secretly switches to research a new innovation may disturb our analysis. We now introduce
parametric restrictions so that this is not the case; these restrictions are satisfied when the function
x(-) is sufficiently concave or when the arrival rate X is sufficiently small relative to N or r.

Onmitting details, we derive our sufficient condition by imposing that no firm i is tempted to
switch secretly to the next innovation in the multistage sequence at any time ¢ past its breakthrough,
regardless of the patenting strategy chosen after the secret switch. Again, we consider a worse-case
scenario. We presume that, if firm i achieves a breakthrough on the secretly researched innovation
before any competitor patents the previous innovation, then it cannot be pre-empted on either of
the two innovations. Derivations analogous to the ones leading to the determination of T in the
previous subsection show that firm i improves its secretly researched innovation until the time
T that solves r[ax(T)—co+pQ(T)|=—c+ai(T). After lengthy calculations presented in an
Online Appendix, we then prove that the following condition is sufficient to ensure that firms
have no incentive to secretly switch to research a new innovation before completing the current
stage of our multistage game:

2™ T [ax (T) = co] < [N — DA+ rllax(T) —co+ (1 —£)Q(T)]. (15)
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This condition requires that A is not too large relative to N and r or that the maximal innovation
private value ax(7) is not much larger than the equilibrium private value ax(T) As for
conditions (I3) and (I4), the above condition can be checked after calculating the equilibrium
stopping time 7. Again, condition ([3)) is not vacuous (e.g. it is satisfied when x is sufficiently
concave or A sufficiently small) and it can be proved that it does not conflict with earlier parametric
restrictions.

5. NUMERICAL ANALYSIS

The simulation strategy takes its parameters from the agricultural seed industry as found in
[Eernandez-Cornejd ). The datareveal that aggregate costs for R&D of a new variety are 2.25
million dollars in the late 1980s. Further, the average time from cross-pollination to determination
of a new variety is 7.9 years. We take this period as the “research period”. This period is followed
by an average of 3.2 years spent in developing the new variety. Hence the per-year research cost
cissetat2.25/(7.9+43.2)=0.202, whereas the cost ¢ is 2.25 —0.202 x 7.9=0.654. We set the
interest rate at r =0.095, the average bank prime rate in the second half of the 1980s. Although our
symmetry assumption is unlikely to hold precisely in this industry, it would be too cumbersome
to solve an asymmetric version of the model. Hence, we assume equally size firms. The reported
Herfindahl index allows us to take the number of competitors as N + 1 =4. Because the same
competitors compete over time, we take p=x =1. FollowinglAlsmmaLaL] 2000, Table 15), we
set the social rate of return of innovation to 74.3% and the private rate of return to » =0.32. This
gives an estimated value of « =1.32/1.743 =0.76, significantly higher that the classical estimates
by IMansfield et all (1977), where the social value of innovation is close to twice as large as the
private value. During this time period, competitors researched a very broad variety of plant and
vegetable seeds and there is no indication that novel innovations displaced previous seeds in the
marketPd

Further, the data byIEQmandczﬂmq'd dZij) reveals that in the first stages of the research
process (recognition, parent-line preparation, and initial crosses) the value of the innovation does
not grow. The value of the innovation begins to grow with the following phase (progeny selection)
which starts on average 6 years after the beginning of the research process. With these data, we
shall henceforth focus on A so that the average time for innovation growth to start is 1/A=6.

e

We choose an innovation growth process such that x () decays exponentially: x (1) = aol_Ty[ SO

that X (1) =ape~”". We note that the half-time of the growth process is given by In2/y, this is the
amount of time 7 needed for the growth rate x(7") to reach ag/ 2F

We recover the parameters y and ag so that the expected research time, 1 /A +T is as close
as possible to 7.9 (we obtain 7.76) and the private rate of return R is as close as possible to 0.32
(we get 0.33). The parameter values are given in Table[T]

Taking the number of firms as given, we calculate the socially optimal stopping rule. Results
are given in Table[2] The difference between the best calibrated time spent in research of a new

33. Note that the possibility of switching to researching the next innovation without patenting the current one is
meaningless when there are no competitors, so that N =0. Hence the right-hand side of condition (I3} is always positive,
whenever this exercise is relevant.

34. Among the different plants and vegetables which were the object of R&D,m ) include barley,
beans, cassava, sugarcane, groundnuts, maize, millet, other crops, pigeon pea or chickpea, potato, rice, sesame, sorghum,
and wheat, as well as various sorts of tree crops and animal feed. Further, different seed varieties of the same plants were
developed for different markets, for example some varieties were bred to be resistant to drought and others to excessive
rainfall.

35. One can check that our parametric restrictions are satisfied, as long as y >0, and ap > ¢, and that the results
presented in SectionEhold also when y =0, here.
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TABLE 1
Parameter values
Parameter r c co N = 1/A o y aop
Value 0.09 0.20 0.66 3 1 6 0.76 0 0.32
TABLE 2
Social welfare
Expected duration Social welfare
Competitive 7.76 8.10
Optimal 11.12 13.06
Comp/Opt 0.69 62%
TABLE 3
Optimal number of firms
N+1 U* a* o Us
1 10.6 1 1 10.6
2 13.1 0.06 0.34 11.8
3 135 0.05 0.47 10.4
4 13.1 0.05 0.60 8.4
5 12.1 0.05 0.72 6.14

seed, 1/A+ Ty 76=7.76 years, and the socially optimal research time, 1/A+T*=11.12 years, is
striking. Our calculations require that firms should wait an average of 43% more before patenting
their innovations. The social value of the innovations actually patented is only 62% of the value
of the socially optimal innovations. Fear of pre-emption appears to dominate the other forces we
have uncovered in the theoretical analysis, and to yield a large welfare loss.

We find that firms can be induced to choose the optimal stopping time by making patent rights
less strong.

First, holding the number of competing firms fixed, our calculations show that optimal research
durations can be achieved if and only if the fraction of innovation earned by the innovator is
negligible, and equal to 0.05. However, for such a small value of «, the four firms participating
in the patent race in the status quo would not find it profitable to remain in the race. Instead, the
highest level of appropriation that is consistent with four firms staying in the race equals 0.60,
which achieves 65% of the maximum social welfare, a modest gain relative to the status quo.

Secondly, social welfare can be improved by making patents weaker so as to reduce the number
of firms participating in the game. Table [l gives social welfare and optimal patent strength as
we vary N. Social welfare is maximized by having one firm less than the status quo, though the
gains are small. As in the status quo, optimal patent strength at « =0.06 is extremely low. Taking
into account the voluntary participation of firms, welfare is maximized with two firms and a
value of & =0.34, achieving 87% of the social optimum, and 46% gain relative to the status quo.
Restricting the number of participants in the race by using weak patents leads to considerable
gains.

The final part of our numerical investigation is reported in an Online Appendix. We repeat the
analysis by varying the parameters of the model around the values recovered from the data. We
demonstrate the robustness of the conclusions of our policy experiments on the calibrated model,
and derive basic comparative statics on our variable of interest.
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6. CONCLUSION

We have studied how patent rights shape incentives with respect to the timing of innovation
disclosure. In a simple model, we have identified forces that lead firms to either patent innovations
too early or too late in equilibrium, relative to the socially optimal strategies. Our novel results
warn that competing firms may patent their innovations too early, for fear of being pre-empted in
the patent race. Contrary to usual intuitions, we have also shown that stronger patents may make
firms delay equilibrium patenting. By relating our formalization to the existing literature, we have
argued that it may be applied to a wide range of R&D scenarios. These scenarios include a class
of two-stage patent races, in which firms compete on a “basic” innovation with no commercial
value per se, that later leads to valuable applications.

Further, we have expanded and detailed the analysis by fully solving an infinite multistage
patent game. The analysis of this model has allowed us to derive precise and detailed predictions
and to explicitly describe innovation growth. As well as a fear of pre-emption force which leads
firms to disclose innovations too early, we have identified an intertemporal spillover force that
distorts firms’ stopping times in the opposite direction. Further, we have shown that stronger
patents may slow down equilibrium innovation growth by delaying equilibrium patenting. We
argue that our precise and detailed predictions can be taken to the data and used for policy
experiments. As an illustration, we have calibrated our multistage game on summary statistics
from the seeds breeding industry. We have found support for weaker patent rights that could
result in welfare gains of 46% relative to the status quo. These gains are achieved through the
mitigation of fear of pre-emption. When patents are weaker, a smaller number of firms find it
profitable to participate in the game. Reduced competition makes the remaining firms willing to
extend their innovation disclosure times so that they are better aligned with the socially optimal
disclosure times.

The most important methodological contributions of this article is the formulation of a rich
framework to study innovation disclosure timing in details. Future research could extend our
framework to also analyse the invention decision. For example, the breakthrough probability
could be endogenized, and different flow costs of invention and development could be introduced.
More broadly, as the study of the innovation disclosure incentives are currently underdeveloped,
our framework could be extended in a number of direction and generate a rich research
programme.

A promising extension consists in allowing for heterogeneity in the growth processes of
different firms. This may be valuable as it allows one to capture asymmetries between firms that
could be due to different market shares. For example, asymmetries could represent instances
in which firms have different amounts of funds that can be devoted to R&D activity, or
different access to credit. Another possibility would be to study a non-stationary version of
our multistage model, where the underlying parameters change across stages. For example, the
cost of entry in the multistage game may change over time, so that the number of competing
firms may also change. When this is the case, duplication costs would play a role in the
multistage model, as well as in our basic model. A further possibility would be to modify
our framework so that the breakthrough arrival rate of the winner is larger than the losers’
arrival rates. This modification would generate a force that makes firms patent later: firms
may choose to postpone patenting for the purpose of gaining an advantage in the next race
(as in [Scotchmer and Greed, [1990). Also, the applicability of our multistage game could be
broadened by lifting the assumption that second-generation inventors make a take-it-or-leave-
it offer to the holders of previous patents, for the case in which the patented innovations
displace earlier one from the market (see the discussion on page 13). For example, it could
be assumed that licencing is solved via Nash bargaining, so that the holder of previous
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patents appropriates of a fixed share of the new innovation’s expected present discounted
value [

When reconsidering our findings within these more involved frameworks, we expect our
calibration results to be robust, because the optimal patent strength we calculated is not much
sensitive to parameter variation.

APPENDIX A — PROOFS OMITTED FROM SECTION 3

A. Derivation of equation (I) and of the hazard rate A (7).

We calculate the symmetric equilibria in which all firms adopt the same optimal stopping time 7 past the breakthrough
arrival at time t. We fix a firm i, suppose that all the other N firms adopt the stopping time 7', and calculate i’s best
response. Letting F () be the distribution of the time at which the first one of i’s opponents patents its innovation, with the
usual discrete-time approximation technique, the optimal value V (¢) at calendar time 7 and time ¢ past the breakthrough
arrival can be recursively written as:

F(i —F( 1-F(
(t+dr) (Z)e**d'g(T;a)+ (t4dr)

—rdt
l*F(?) 717}7(;) e "V (t4dt) ;.

V () =max {U(t;a), —cdt+
The first term is the value U (t; @) of stopping and patenting the innovation. The second term is the value for conducting
research of a small period of time d¢, thus paying the flow cost cdt, and then reoptimizing. With probability [F (?+dt) -
FO)/[1-F (?)], an opponent stops the race and the firm achieves the continuation value U (T'; ). With complementary
probability, the race continues and the firm reoptimizes, obtaining the value V (1 +dr).
For any 7 such that i weakly prefers not to patent, approximating e "% with 1 — rdt in the above equation, rearranging,
dividing by dt both terms, and taking limits, we obtain:

F(t+dt)—F(f) (1 —rd)U(T;a) =V (1)

0 = lim |:—c+
dt—0

dt 1-F(f)
L—F(i+dt) V(t+d)— V() 1—F(i+dt)
1=F(7) di ISR G) Vi)

Taking the limit, and rearranging, we obtain equation (), in which the hazard rate h(?) of the event that one of i’s

opponents ends the race at time 7 is defined as h (7)) =f (1) /[1-F (7)].
For any calendar time 7 > T as breakthroughs are independent and identically distributed across players,

F(i)=Pr(T+7 <i)=Pr(z <i—T)=1—¢ VH0-T)

where T denotes the first breakthrough arrival time among i’s opponents. Letting f (?) =Nie N(=T) denote the density
associated with F (), we conclude that the hazard rate h(?) =f (?) / [l —F (?)] equals N, thus deriving equation ().
Because F () =0 and f (f) =0 for 7 < T, the hazard rate is & (7) =0.

Proof of PropositionsMlandB Because limy_, +ooﬁ1 (T;a)=0 and limTHJrOCU(T; a)>limr_, 4o U(T; ), it follows
that limy— 4o [(NA+ P U (T; ) +¢(T)] > lim7— 400 [U} (T;a) +NAU(T; ). This condition, together with the condi-
tion that U (0;) >c+rU(0;a)+NA [U(O;a) —Q(O;a)], guarantees that equation @) has a finite, strictly positive
solution. Because U (T; ) > 0, the left-hand side of the equation strictly increases in 7', and because U1 (T; ) <0 and
U(T;a)-U 1 (T; &) > 0 the right-hand side strictly decreases in 7. Hence equation @) has a unique solution. This unique
solution is the stopping time associated with the unique symmetric, calendar-time independent equilibrium of our game.
When the condition U (0; @) >c+rU(0;a) +NA W(O; a)—U(0; a)] fails, the unique stopping time 7' equals zero. To
prove Proposition[3] let
¢ (T,a)=rU(T;0)+c—U1(T;) +NA[U(T;0) = U(T; )],

36. More involved modifications of our set up would allow for more detailed patent policy design. Our model
summarizes patent policy with a single parameter, patent strength. One possibility would be to make patent strength
depend on the equilibrium stopping time, as is the case for example when patents have finite length and novel innovations
displace previous innovations in the market. Within this context, it would also be interesting to study how patent strength
and equilibrium stopping times interact as the licence holder’s bargaining power varies in the bargaining game with the
licence buyer. Further, one could allow patent policy to modify the growth parameters, and especially the arrival rate of
the breakthrough, by modifying the length and breadth of patents.
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and note that, by the implicit function theorem,

o= ) T (T4 Ui (T0) = NA[D (T30~ Uy (T ).

I
Proof of Proposition] We first note that equation (3) has a real-valued solution because limzs_, 1 o U 1 (T*)=0, and
limp+_ 4 oo rU* (T*) > 0> — (N 4 1) c. Further, because rU} (T*) >0 and U}, (T*) <0, equation @) has a unique solution.
This solution is strictly positive when U} (0) > (N +1)c+rU* (0); otherwise it equals zero.
Further, if the term r[U* (T)-U(T; o:)] is strictly positive (negative), then the left-hand side of equation @) rU* (T)
is strictly larger (smaller) than the left-hand side at the equilibrium stopping time 7. Because U* (-) is strictly increasing
and equation @) holds at the optimal stopping time 7*, this implies that T* > T (respectively, that T* <T). ||

APPENDIX B — PROOFS OMITTED FROM SECTION 4

A. The relationship between 7 and g.
Differentiating g with respect to 7', we obtain:

iE[X(T?\] _ E|:i X(T)A]:E X(T)(T+7)—x(T)
dT | T+71 dT T+1 (T_,_f)z

o« E[#(T)(T+7%)—x(T)]|=x ()T —x(T)+E[2]x(T) =x (1) T —x(T)+

*(T)
AMN+1)

This quantity is negative whenever x is sufficiently concave, so that x (7)) T —x(T) is sufficiently negative, and A is not
too small, so that the term is not too large.

B. Derivation of expression (§)
By definition, Q(T') takes the form:

g . T)—co+UL(T) N .
TY=E _ =75 s —r(r+T)ax(—0 N —r(r+T)UF T )
o [( /0 cePdste - e %)

The first term in parenthesis accounts for paying the cost ¢ until time 747, where 7 is the random time of the first
breakthrough arrival among the N +1 competitors at any given stage. Further, because the game and equilibrium are
symmetric, each firm wins the stage with probability 1/(N 4 1). If so, it gets the payoff ax (T') —co+ UL (T) at time £ 4T,
and this explains the second term in parenthesis; otherwise, with probability N /(N +1), the firm gets the payoff U (T)
attime T+ 7, and this is represented by the third term.

The expression for Q(T') can be simplified as:

c vt @XM —co e UK N
TV=E 77[17 r(r+T)] r(+T) r(E4T) G+ F oy ) |
o [( - e +e Nt +e | +N+le (1)

Using the notation &, we obtain:

O(T)=E |:_; [1 _e—"(f+7")j| +e—r(f+T)%j_ICO +€_r(f+T)§Q(T)j| ,

which yields the expression (8), when using the definition 8 (T)=E [e*"(”T)]. We conclude the proof by calculating

B(T). Because 7 is the earliest of N+ 1 independent breakthrough arrivals, identically exponentially distributed with
hazard rate A, we obtain:

E |:e—r(f+T)] — TR [e—rf] :e—rr/-ooe—rf(NJr I)M—(N+1)Afdf —T M
0 (N+D)A+r
Proof of PropositionH] Substituting the expressions for U (T;«) and U (T; ) in equation @), we obtain:
rlox(T) —co+ UH(T) | = —c+ak (T) —NA[ax (T) —co+ U (1) — UF (T)]

which yields equation (@, after substituting the expressions for U” and U* and rearranging.
It will useful for this proof to rewrite equation (@) as follows:

¢ (M) =(r+N)[ax(T)—col+[rp+Nr(o—)]1Q(T) +c—ax(T)=0. A1
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Note that x(7)— 0 and that Q(T) — —c/r for T — oco. Because ax(T)>c/r+co>(p— x)c/r+co for T sufficiently
large, it then follows that

(r+NA)[ax(T) — ol — ; [rp+NA(p— )] +c

= <r+Nx>[ax(T>—c01+§[r(1—p>—m(p—x>]>o,

and hence that ¢ (T') >0, for T sufficiently large.
Further, ax (0) — co <0 implies that

WN+DA
Q(0)<_f 1-8(0) __c l— & __c r
TUrI-EB0) r g T W DA —E)+r

and that

C r
0O =~ NTDM=E+r

r(d—p)+WN+DAI-5)-NrA(p—x) .
=c —ax(0) <0,
WN+DrA—=8)+r
because ax (0) > c. Because ¢ (0) <Oand ¢ (T) > 0, for T sufficiently large, it follows that there exists finite 7 > 0 such that
¢ (T)=0. For any such stopping time 7', there is a corresponding a symmetric, stage-stationary, calendar-time independent
equilibrium.

To prove uniqueness of the symmetric, stage-stationary, calendar-time independent equilibrium, we proceed as
follows.

First, we reconsider the function Q(-), which we introduced in expression (). Without restricting attention to
equilibrium strategies, the quantity Q(7) is the expected payoff of each firm at the beginning of each stage of the game,
when every firm adopts the symmetric, stationary, calendar-time independent strategies associated with the stopping time
7. Because the strategies are symmetric, though, each firm has equal probability of winning every stage of the game. So,
Q(7) can also be interpreted as each firm’s share of the joint payoff of all the firms who compete in any stage of the
game, at the beginning of the stage, when they adopt the strategy associated with the stopping time t. As a result, the
stopping time 7* which maximizes Q(t) corresponds to the Pareto-dominant equilibrium of the auxiliary ‘team problem’
game in which each ﬁr%aximizes the joint expected payoff of all the firms competing in that stage of the game (see

, ).

To characterize t™ more precisely, we now show that this team problem has a unique equilibrium. In fact, any

associated equilibrium value Q must satisfy the following Bellman equation:

)/3(7)+/3(T)SQ}-

[ro+Nx(p—x)1+c—ai(0)

ax(t)/r—co

Cc
Q=m3x{—;[1—ﬂ<r>]+( g

Because B(t)=e "7 (15/]141—7% is bounded above by m < 1, the above equation has a unique fixed point Q. Further,
for any value Q, there is a unique T maximizing the above expression. Hence, the unique equilibrium value Q of the team
problem is achieved by a unique equilibrium t*.

Now, we compare the dynamic programming equation characterizing the unique equilibrium 7* of the team problem,
with the dynamic programming equation characterizing the equilibrium stopping time 7" in our multistage patent race.
Proceeding as we did for equation (I}, we obtain:

1V (t*)=—c+ V' (T*)+NA[V (*) =V (z*)],
where V (t*)=ax(t*)—co+£Q(t*), because each firm maximizes the per-capita joint payoff of all the firms that
compete in the stage. Substituting and rearranging, we obtain that the unique equilibrium 7* of the team problem is the
unique solution of the function
k(t)=rlax(t) —col+c—ax(r)+rEQ(7).
Further, because t* maximizes Q(t), the envelope theorem implies that «’ (t*) = rax(t*) —aX(t*); as this quantity is
strictly positive, it follows that « (t) <0 if and only if T < 7*.

Because all equilibrium stopping times T of our multistage patent race solve equation (&), we can sign « (-) at any

such T by subtracting the expression for ¢ (T') from « (T):

k(T) = rlax(T)—col+c—ax(T)+r&Q(T)
—{r+NV)[ax(T)—col+[rp+Nr(p—x)1Q(T)+c—ax(T)}
= —r(p—8§)Q(T)—Nilax(T)—co+(p—x)Q(T)] <0.

Because « (7) <0 if and only if 7 <t*, this concludes that any equilibrium stopping time 7 of our multistage game is
strictly smaller than t*.
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This result implies that Q' (T) > 0, because, as we verify below, Q' (t) >0 if and only if T <7*. In fact, because

B ()=-rp(v),

0 = %iﬁ?+%{ﬂ(r)%—g[l—ﬁ(r)]}%ﬂ’(r)
+{ﬂ(ﬂ%f§[lfﬂ(r)]}%(]_Slﬂ(r))ﬁ’(r)
= #;)(‘[)(;\;ij]) _rﬂ(r)[ax;;j-_lco +;i| l—flﬂ(‘[)
—rﬁ(r){ﬁ(r)%—g[l—ﬂ(m}“_;w

rlox(t) —col +(N + De(1 — &) — (1 —£B)ai (1)
[1-£B(DP(N+1)
o —rlax(t)—col = (N +De(1 —£)+ (1 —EP)ai (),

which is strictly decreasing in 7. So, because Q' (t*) =0, it follows that Q' () > 0 if and only if T < 7*.

Once concluded that Q' (T') > 0 for any T such that ¢ (T) =0, inspection of equation (A.I) shows that ¢’ (T) > 0 at
any such 7', because x(7') >0 and ¥(7) <0. Hence there is a unique 7 that solves ¢ (7) =0.

We have thus concluded that there is a unique equilibrium of our multistage patent race game, with symmetric,
stage-stationary, calendar-time independent stopping time strategies.

The proof of PropositionHlis completed by establishing the stated comparative statics results. This is achieved with
simple but long and tedious calculus manipulations, which are omitted and available upon request. ||

=8

Proof of PropositionBl Because the previous uniqueness proof has shown that ¢’ (T) > 0, the implicit function theorem
implies that dT /da has the same sign as
rp+Ni(p—x)  B(D)

N+1 1-¢8(T)

Hence, when p=£& =y, there is a threshold function é:NHE, such that dT /da <0 if & >§(N), and dT /da >0 if
& <&(N). In fact, when p=£& =,

d
f£¢(T)=f(r+Nk)x(T)f x(T)+x(T).

A Lgin]r LD
d§ | da (A=) (N+1)

As well as determining d7T /dc, this calculus also pins down the sign of the derivative dg/do because

Q—iE["(T)}T%a),

da dT | T+%
x(T)
T+t
The relationship between the equilibrium value Q and « is determined by the decomposition:
dQ _ 901

da do
Finally, we know from the proof of uniqueness that Q' (T') > 0. Hence, dQ (T) /0o = “ig()% > Oimplies thatdQ/do >

0 whenever dT /do >0, whereas dQ/dw is indeterminate if d7 /da <0. ||

and we earlier concluded that %E[ ] is negative when x is sufficiently concave and A not too small.

. ar
+Q' (M)

C. Derivation of Expression (II) and proof of Proposition[6]
We recursively set up the equation pinning down US(T*), and obtain:

T*+1
US(ry = E {—/ (N+1)ce Pds+e " T [x(T*) —co+ U’ (T*)]}
0

= (=B W+ DE+B(T) [x(1) o] +8 () US (7).

where the simplification uses E [e’r(T*”)] =B(T*). Solving for US (T'*), we obtain expression ([ID.

By plugging this expression and the definition U* (T*) =x(T*) —co+ US (T*) in equation @), we obtain:

NS
’[X(T )=t g

which yields equation with simple algebra permutations.

[x(7*) —co] —(N+l)ﬂ =—(N+Dec+x(T*),
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Letting
’
D(T*)= ———[x(T*) —col —x(T"),
() = 1 () ol —5(r")
it is immediate to see that 3 (T*) /dT* > 0 so that equation (I2) has a unique finite and strictly positive solution, as long
as ®(0) <0and ®(7T*) >0 for T* large enough. The first condition is obviously satisfied because x (0) < ¢ and x(0) > 0,
whereas the second one is satisfied because x (7*) — 0 for 7* — oo and x (T™*) > ¢( for T* large enough.

Proof of Propositionll To see that there is a threshold function & : N+ &, such that T <T* if £ >&(N) and T'>T* if
& <E£(N), note that T decreases in & by Proposition @l whereas T* is independent of &. Likewise, increasing p — x
decreases T relative to 7* because T* is independent of p— x and T decreases in p — x by Proposition[0

The proof of the remaining statements in Proposition[dis tedious and not very informative, so we make it available
only upon request. ||

Proof of Proposition Set p=y =&. First, we plug expression [ into the equilibrium equation (@), and simplify to

obtain: . - .

|:(r+N)»)—|— _L M) e

N+11-§8(T) 1-£B(T)

Plugging expression (&2 into the left-hand side of inequality (I, and simplifying, we obtain that dT /de =0 if and
only if:

][ax(T)—co]-‘r c=ax(T). (A.2)

B AP [<r+m>+ 1 D } ». A3)
1=g()& N+11-§8(T)
Further, the proof of Proposition[@implies that T < T* if and only if
r .
————[x(T) —col <x(T), (A4)

1-8(T)
where the time T in the above inequality is the equilibrium stopping time pinned down by equation (&2). Plugging
equation into inequality (&), simplifying, and rearranging o yields:

ar 1 réB(T) 1-&
=g [x(T)—col < [(rJrN)»HNi_H T_£8(D) _gﬁ(T)][M(T)*CoHi] —F e c.
‘We now suppose that dT' /da =0, so that & :é(N ). Plugging equation (A3) in the above inequality, and simplifying, we
btain:
obtain . . . v 1 V6B (T) .
=5 [x(T) —col < [(r+ )+N—+l 7175,30)}6( ).

‘We now note that left-hand side of the above inequality increases in &, so the worst-case scenario is when £ =0 and the
above inequality takes the simpler form

L [e(T)—co] [( a4 LB ] @)
———[x(T)—col< | (r — —— |x
1-B(T) 0 N+11-8()
which can be rearranged as follows:
r 1 rB(T) ] [ 1 rB(T) ]
————(+NV)— —— ———— |[x(T)—col < | r+NA)+ —— ——F | co.
|:1—/3(T) ( T NFI =y | D mel=|( N —pm |
To show that this inequality holds, it is enough to show the negativity of the multiplier on the left-hand side,
1 T
[;_(Hm)_iﬂ],
1-8(T) N+11-8(T)
And this can be shown as follows:
1 T T N
#—[(MNA)JF—&] = N DN
1—B(T) N+11-8(T) 1—-B(T)N+1
T 1
o —npr DL
1-B8(T) N+1
(N+Dr —
— tr WN+DA+r € "’ 1
- (N+Dr
]_(N-H)M—re T N+1
N+1)A
- —A(l—e”T)%<O.

(N+Dr(1—eT)+r

We have concluded that inequality &4) holds—that is, that T < T* and hence that £ > & (N), for the values of £ such
that dT /do = 0—that is, such that £ =&(N). In other terms, we have concluded that £(N) > & (N).
Now, using Propositions Bland 7] we see the following:
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e For &€ <min{& (N),é (N)}=E (N), it is the case that T > T* and dT /da > 0.
e For & >max{& (N),E(N)}=E(N), it is the case that 7 < T* and dT /da <.
e For the remaining intermediate case, & (N) <& <&(N), it is the case that T < T* and dT'/da > 0.
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