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Abstract
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1. Introduction

Research and Development activities produce information — about the promise, feasibility
and interim experimental results of a project — that is private to the researcher. There are no in-
centives to disclose such information, but rather to carefully protect it from industrial espionage.2

Motivated by this observation, we theoretically investigate the effects of private information on
R&D activities. We find a strong herding effect, that we dub a ‘survivor’s curse’: firms may delay
exit until observing that the opponent quit the race, and then exit in regret of not having left ear-
lier. Unlike in the case of symmetric information, competing firms may abandon simultaneously
a line of research even if their R&D costs and benefits differ significantly. As we later explain in
details, our ‘survivor’s curse’ is more severe than the winner’s curse in standard auctions, all-pay
interdependent-value auctions and than in wars of attrition models, see [14]. This fact underlines
a key predictive distinction between our R&D game and wars of attrition.

Our analysis is staged in a simple analytical framework. We introduce private signals into the
framework first introduced by Reinganum [21,22], and then studied by Choi [7] in the case of
imperfect but symmetric information. Two firms challenge each other in a research race with
fixed experimentation intensity and winner-take-all termination. At each point in time, each firm
decides whether to quit the race or to keep paying a flow cost to stay in the race. Once a firm quits,
prohibitive sunk costs make re-entry infeasible.3 The prize can arrive to any player who is still in
the race. Research costs and value of the prize may differ across firms. The prize arrival rate may
change over time and comprises an idiosyncratic component (the firm’s specific R&D efficiency)
and a common unknown component (the ‘promise’ or feasibility of the research project). At the
beginning of the race, a private signal partially informs each player about the project’s common
component of the arrival rate, larger signals correspond to more optimistic beliefs. After that,
each firm only observes whether a prize has arrived and the opponent is still in the race. As
time goes by and no prize arrives, beliefs about the common component of the project grow
increasingly pessimistic.4

We analyze monotonic equilibria of this game: each firm optimally selects a quitting time that
is increasing in her own private signal realization and depends also on whether the opponent
is still in the race or not. Due to the interdependent-value nature of the game, the equilib-
rium displays a rather extreme ‘winner’s curse’ property, or more precisely a ‘survivor’s curse.’
Specifically, the firms herd on each other’s participation in the race, rationally presuming that the
opponent’s signal realization is larger than the signal that would make the opponent quit in the

2 When private corporations sponsor university research, as a norm they require the faculty and graduate students
involved to sign non-disclosure and exclusive-licensing agreements. Cohen et al. [8] conduct a survey questionnaire
administered to 1478 R&D labs in the U.S. manufacturing sector in 1994. They find that firms typically protect the
profits due to invention with secrecy and lead time advantages.

3 We interpret quitting the R&D race as publicly abandoning a line of research, hence dismissing project-specific
facilities and research teams. A temporary suspension is unlikely to be observed by competitors. Although irreversible
exit is a strong simplifying assumption, in this context it appears more natural than the opposite assumption of costless
re-entry. Indeed, R&D firms are seldom observed re-entering a line of research after dismissing it, possibly because of
the large costs involved.

4 A technically related model is the multi-armed bandit model studied by Keller et al. [12], who do not consider private
information. In this strategic multi-armed bandit literature (see also [4]), equilibrium experimentation is sub-optimal
because players cannot conceal their findings from each other. Essentially, under-experimentation consists of the under-
provision of a public good. In contrast, we study R&D races where private information is carefully protected. Among
other continuous-time models of multi-agent Bayesian learning, see also [2,3,13].
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immediate future. Because of monotonicity of equilibrium stopping times in signals, when a firm
quits, the ‘survivor’ discovers the quitter’s actual signal realization and discontinuously revises
her beliefs downward. If the opponent stops shortly before the player had planned to quit in case
the opponent was still in the race, then this negative surprise makes the survivor immediately quit
and regret not having quit the race earlier.5

To appreciate the effects of private information in R&D races, compare our results with the
case of public information, which extends the analysis in [7]. If the firms’ signals are public, then
each firm quits the game when growing sufficiently pessimistic about the project’s promise, at a
time that depends on own cost and benefit from R&D. When costs and benefits of research differ
across firms, they quit at different times. In our model, firms may quit simultaneously, rationally
herding on each other’s belief that the opponent’s private assessment of the project is more fa-
vorable than it truly is. This result provides a novel implication of private information in R&D
race models: When firms abandon simultaneously the same line of research, despite differences
in costs, benefits and efficiency of research, an outside observer may detect our survivor’s curse,
and conclude that there is evidence of private information about interdependent values.6 Private
information is also detected when firms that appear very similar in R&D efficiency and potential
returns are observed to quit at very different times.

Our work is related to several strands of literature. The benchmark are continuous-time R&D
races, modeled as either differential or stopping games. The differential game approach is put
forth in [21,22]. At each moment in time, each player selects an experimentation intensity that
affects linearly the arrival rate of the invention, at a quadratic cost. The simpler approach where
each player experiments with fixed intensity until quitting the race can be understood as a stop-
ping game. Choi [7] adopts this approach to study the case of uncertain arrival rate of innovation
with commonly known prior. This work is further extended by Malueg and Tsutsui [17] in a full-
fledged differential game. We adopt the stopping game approach to address the effects of private
information.7

Our study of private information in R&D races adapts and extends solution techniques from
auction theory. But, while our game shares many elements of an all-pay ascending auction, or
equivalently of a war of attrition with interdependent values, the models are significantly differ-
ent. Consider, for the purpose of comparison, the symmetric version of our model, where firms
have the same costs and benefits for research, and the same research efficiency. In this model,
each player selects her stopping time acting as if the opponent’s signal were larger than her own,
whereas in a symmetric war of attrition she selects her stopping time acting as if the opponent’s

5 As a mirror image of this survivors’s curse, a ‘quitter’s curse’ arises if a firm quits too soon and the opponent
does not follow suit. The quitter realizes having left the race too soon because, after it quits, the opponent holds perfect
information. In a previous working paper version [20], we perform welfare analysis for the parametric example illustrated
in Section 5. The two curses work in opposite directions towards making equilibrium R&D excessive or insufficient.

6 In fact, the history of R&D displays several lines of research that attracted the effort of several research teams to then
be abandoned as the promise of the projects did not materialize. As an example, consider the so-called fifth generation
computers initiative, simultaneously undertaken in the mid 80s by Japan’s Ministry of International Trade and Industry
(MITI), by the Microelectronics and Computer Technology Corporation (MCTC) in the US, by the Alvey team in the
UK, and by the European Strategic Program of Research in Information Technology (ESPRIT). This line of research,
which intended to develop a computing hardware that used massive parallelism, was abandoned by the competing teams
in the beginning of the early ’90s, as the few machines produced did not meet commercial success.

7 An alternative approach to modeling R&D competition is the “tug-of-war”: firms take turns in making costly steps
towards a “finish line” [10,11]. We are not aware of any analysis of private information in a tug-of-war.
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signal were smaller than her own [14].8 In the symmetric equilibrium of the war of attrition, in
fact, observing that the opponent has not left the game, conveys bad news about the chance of
winning, as the player with the higher signal will eventually win the contest. In our R&D race,
instead, the random prize arrivals are conditionally independent across players, and observing
that the opponent is still in the race only conveys good news on the player’s prize arrival rate.
As a result, players are willing to postpone exit much later in our R&D race than in wars of
attrition.9

The paper is organized as follows. Section 2 lays out the model, Section 3 characterizes
the monotonic equilibrium, Section 4 compares it with the equilibrium when signals are pub-
lic information, Section 5 illustrates and extends the results of the general model in a canonical
parametric example, Section 6 concludes. Appendix A contains the proofs.

2. The model

Two players, A and B, play the following stopping game. A prize bi > 0 arrives to player
i = A,B at a random time ti � 0, according to a cumulative distribution function Fi(ti |λ) that
admits a full support continuous density fi(ti |λ). We let the hazard rate of the prize be denoted
by ρi(ti |λ) = fi(ti |λ)/[1 −Fi(ti |λ)]. The term λ describes the common component of the arrival
process of the innovation (the promise of the project), but we allow for the arrival processes to
differ in order to cover the possibility that firms have different efficiency. The common promise
of either prize, λ ∈ Λ, is drawn by Nature, unobserved by the players, according to a distribution
with full support continuous density π(λ). Player i pays a flow cost ci > 0 to stay in the race.
We make a winner-take-all assumption: when a player receives his prize, the game ends. At each
point in time, each player may irreversibly quit the race. Costs and prizes are discounted at rate
r. Before starting to pay costs, each player i observes a private signal zi distributed according
to a cumulative distribution function Hi(zi |λ) that admits a continuous density hi(zi |λ) on the
support Zi = (zi, z̄i], where we assume that z̄i is finite, but we make no assumptions on zi . The
two private signals zA, zB are independent, conditionally on λ.

We let E
i
t,t ′ [ρi(τi |λ)|x, y], E

i
t,t ′ [ρi(τi |λ)|x, y−] and E

i
t,t ′ [ρi(τi |λ)|x, y+] be the expected

hazard rate at time τi, conditional on player i holding signals zi = x, on knowing respec-
tively that zj = y, zj � y, and zj � y, and on projects i and j not having delivered a prize
by times t and t ′, respectively. For future reference, we denote by πi

t,t ′(λ|x, y), πi
t,t ′(λ|x, y−),

and πi
t,t ′(λ|x, y+) the density functions of the posterior beliefs on λ, conditional on this infor-

mation.
We now introduce and then maintain two regularity assumptions on the expected hazard rates.

Under the first assumption, larger realizations x and y of the private signals make players more
optimistic about the arrival of the prizes.

8 Coincidentally, however, Bulow et al. [5] show that each bidder acts as if the opponent’s signal were larger than her
own, also when they are endowed with a share of the good auctioned off. In standard symmetric two-player common-
value ascending second-price auctions [19], instead, each player acts as if the opponent’s signal were equal to her own.

9 Our work is also related to the literature on information aggregation in timing games, e.g., [6,9]. But these papers
study coordination problems, where if players could share their private information, they would do so. In our R&D race,
the winner-take-all assumption induces strong incentives to conceal private information (see, e.g., [15]). Lambrecht and
Perraudin [16], Mariotti and Décamps [18] study continuous-time stopping games where private information is only of
private value; whereas in our game it has interdependent value. More distantly related, Aoki and Reitman [1] study a
two-stage model where firms first may invest to reduce their private-information production cost, and then compete à la
Cournot.



G. Moscarini, F. Squintani / Journal of Economic Theory 145 (2010) 639–660 643
Assumption 1 (Private good news). For any i = A,B, any t, t ′ � 0, x, y ∈ Zi the expected
hazard rates E

i
t,t ′ [ρi(t |λ)|x, y−], E

i
t,t ′ [ρi(t |λ)|x, y] and E

i
t,t [ρi(t |λ)|x, y+] are continuously dif-

ferentiable and strictly increasing in x and y.

As the expected hazard rate E
i
t,t ′ [ρi(t |λ)|x, y] increases in y, we now show that knowing that

the opponent’s signal realization exceeds y is better news than knowing it is exactly y, which in
turn is better news than knowing it is less than y.

Lemma 1 (Hazard rates order). For any i = A,B, any t, t ′ � 0, x, y ∈ Zi

E
i
t,t ′

[
ρi(t |λ)|x, y−]

< E
i
t,t ′

[
ρi(t |λ)|x, y

]
< E

i
t,t ′

[
ρi(t |λ)|x, y+]

.

Under our second assumption, as time goes by and no prize materializes, the players become
more and more pessimistic about the arrival rates of the prizes.

Assumption 2 (No news is bad news). For any i = A,B, any t, t ′ � 0, x, y ∈ Zi , the expected
hazard rates E

i
t,t ′ [ρi(t |λ)|x, y−], E

i
t,t ′ [ρi(t |λ)|x, y] and E

i
t,t [ρi(t |λ)|x, y+] are continuously dif-

ferentiable and strictly decreasing in t and t ′.

We now introduce our equilibrium notion. Each player’s strategy depends only on her own
private signal and on whether her opponent is still in the race. For each player i = A,B , a pure
strategy in this game is a pair of functions (σ1,i , σ2,i ), describing stopping behavior. The stopping
time function given one’s own private signal and given that the opponent is still in the race, is
denoted by σ1,i :Zi → R+. For any signal x ∈ Zi , the strategy σ1,i prescribes that player i stays
in the race until time σ1,i (x) unless observing that the opponent has left the race at any time
before σ1,i (x).10 Note that the stopping time σ1,i (x) = 0 prescribes that player i should not enter
the race at all. The stopping strategy given one’s own private signal and given that the opponent
has already left the game, is denoted by σ2,i :Zi × R+ → R+. Here, σ2,i (x, τ ) � τ describes
player i’s stopping time when holding signal x and after the opponent has quit at time τ.11

As it is standard in Bayesian games with a continuum of types (e.g. auctions and timing
games), we focus on monotonic differentiable equilibria. We denote equilibrium strategies as
(σ ∗

1,i , σ
∗
2,i ). Our monotonicity requirement is that there exist x∗

i , x̄∗
i such that σ ∗

1,i (x) = 0 if
x � x∗

i , σ ∗
1,i (x) is positive, differentiable and strictly increasing if x∗

i < x < x̄∗
i , and σ ∗

1,i (x) = ∞
if x � x̄∗

i . We denote by g∗
i the inverse function of σ ∗

1,i on the domain (x∗
i , x̄

∗
i ).

In order to guarantee existence, the following additional conditions on the primitives of the
model are sufficient (albeit not necessary):

10 The choice of the extended positive real numbers R+ as the range of σ1,i is made to allow for the possibility that a
player may decide to stay in the game and wait for the prize forever, given some signal realization x, and given that the
opponent is not leaving the game either.
11 When σ2,i (x, τ ) = τ, the player leaves the race immediately after seeing that the opponent left at τ. For-
mally, this continuous stopping time is derived from a finite-time approximation where each period lasts Δ, and
limΔ→0+ σ2,i (x, τ ) = τ+. Metaphorically, in the moment that a player leaves the race, the clock is ‘stopped for an
instant’ and the remaining player is left to choose whether to continue or follow suit. For a general treatment on how to
construct stopping time strategies in continuous time games and on their interpretation, see [23].
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Assumption 3 (Hazard rate derivatives). There exists G′ < 0 such that for any i = A,B, any
t, t ′ � 0, x, y ∈ Zi

d

dy
Ei

t,t

[
ρi(t |λ)|x, y+]

< G′ d

dt
Ei

t,t

[
ρi(t |λ)|x, y+]

<
d

dx
Ei

t,t

[
ρi(t |λ)|x, y+]

.

Finally, the following assumptions relate the expected hazard rates at the “boundaries” of the
signal sets Zi and of the time interval [0,+∞) to the cost benefit ratios ci/bi .

Assumption 4 (Boundary conditions). For each player i = A,B,

lim
t→+∞Et,0

[
ρi(t |λ)|z̄i , z̄i

]
< ci/bi,

lim
x→zi

E0,0
[
ρi(0|λ)|x, z̄i

]
< ci/bi < E0,0

[
ρi(0|λ)|z̄i , z̄i

]
.

The first inequality imposes that the expected hazard rate eventually becomes smaller than
the cost benefit ratio, as a player waits longer and longer for the arrival of the prize, even in
the case that private signals are as favorable as possible. This inequality will imply that for
any signal x, the stopping times σ ∗

1,i (x) and σ ∗
2,i (x, τ ) are finite, so that x̄∗

i = z̄i . The second
inequality requires that the expected hazard rate is smaller than the cost benefit ratio when a
firm’s signal is sufficiently unfavorable. It will imply that x∗

i > zi : for sufficiently low signals,
firms do not enter the race. Conversely, the third inequality requires that the expected hazard rate
exceeds the cost benefit ratio, in the case that signals are as favorable as possible, and that firms
have not entered the race yet. It will imply that there are sufficiently favorable signals to convince
the firms to enter the race, so that x∗

i < z̄i .

3. Equilibrium analysis

3.1. Equilibrium play after the opponent quits

We calculate equilibrium strategies by backward induction, starting from the equilibrium strat-
egy σ ∗

2,i of a player after the opponent left the race. Suppose that player j observes signal y,

enters the game at time 0, and then quits first according to the equilibrium strategy σ ∗
1,j at time

τ = σ ∗
1,j (y) > 0. In a monotonic equilibrium, the ‘survivor,’ player i, perfectly infers from τ

the signal y = g∗
j (τ ) privately held by her opponent j , and from that moment on she acts fully

informed. At any time t � τ, conditional on a true value of the prize hazard rate λ, unknown to
the player, and on the fact that no prize has arrived to date, the expected value of planning to stop
at some future date τ2 � t equals

Ui
2,t (τ2|λ) =

τ2∫
t

fi(s|λ)

1 − Fi(t |λ)

[ s∫
t

(−ci)e
−r(v−t) dv + e−r(s−t)bi

]
ds

+ 1 − Fi(τ2|λ)

1 − Fi(t |λ)

τ2∫
t

(−ci)e
−r(v−t) dv.

The first term in the expression corresponds to the expected value conditional on the prize ar-
riving before τ2, the second term on the expected value conditional on the prize not arriving
by τ2.
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At any time t � τ, player i plans to quit at the time τ2 � t that maximizes the expectation of
this value U2,t , conditional on all available information:

τ i
2,t

(
x,g∗

j (τ )
) = arg max

τ2�t

{
V i

2,t

(
τ2|x,g∗

j (τ ), τ
) =

∫
Λ

Ui
2,t (τ2|λ)πt,τ

(
λ|x,g∗

j (τ )
)
dλ

}
.

By inspection, we see that the expected value V i
2,t (τ2|x,g∗

j (τ ), τ ) is continuously differentiable

in τ2 for every τ2 � t and every x, τ , t . Hence, we can derive the optimal stopping time τ i
2,t by

differentiating V i
2,t (τ2|x,g∗

j (τ ), τ ) with respect to τ2.
12 After differentiating V i

2,t (τ2|x,g∗
j (τ ), τ ),

we substitute t with τ2, and delete the subscript t in τ i
2,t . This is the requirement of time consis-

tency: regardless of what she had planned earlier, player i must find it optimal to exit the race at
time τ i

2 when making her decision at time τ i
2. As we show in Appendix A, the expected marginal

value of waiting an extra instant before quitting takes the following simple form:

d

dτ2
V i

2,t

(
τ2|x,g∗

j (τ ), τ
)∣∣

t=τ2
= biEτ2,τ

[
ρi(τ2|λ)|x,g∗

j (τ )
] − ci . (1)

Intuitively, player i trades off the marginal cost of waiting ci with the marginal benefit, which
consists of the prize bi multiplied by its expected hazard rate conditional on all information
available at time τ2.

The second derivative of V i
2,t (τ2|x,g∗

j (τ ), τ ) is negative because the expected hazard rate is
decreasing in τ2 by Assumption 2, so the right-hand side of Eq. (1) is decreasing in τ2. Thus,
player i quits at the earliest time τ2 after τ when the right-hand side of Eq. (1) becomes negative.
We thus obtain the following result.13

Proposition 2 (Second quitter’s stopping time). In any monotonic equilibrium, after the opponent
j quits at any time τ > 0, a player i with private signal x quits at time

σ ∗
2,i (x, τ ) = min

{
τ2 � τ :

ci

bi

� Eτ2,τ

[
ρi(τ2|λ)|x,g∗

j (τ )
]}

.

If player j with signal y fails to join the game, then the remaining player i cannot perfectly
infer the opponent’s signal realization y, because the equilibrium strategy σ ∗

1,j is not invertible
for y � x∗

j ≡ g∗
j (0), but only learns that y � x∗

j . Calculations analogous to the ones leading to
Proposition 2 yield the following result.

Proposition 3 (Stopping time when racing alone). In any monotonic equilibrium, if the opponent
j fails to join the game, player i with signal x stops at the time

σ ∗
2,i (x,0) = min

{
τ2 � 0:

ci

bi

� Eτ2,0
[
ρi(τ2|λ)|x, x∗

j−
]}

.

12 Alternatively, we could differentiate the value V i
2,t

(τ2|x,g∗(τ ), τ ) with respect to current time t and obtain a dif-
ferential equation for the value, which is the continuous-time Hamilton–Jacobi–Bellman equation for this problem. We
choose to proceed through the sequential formulation of the problem because technically simpler and more instructive.
13 Note that we write min rather than inf because by Assumption 4 the expected hazard rate becomes smaller than ci/bi

as t → ∞, hence this stopping time for player i always exists.
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Since quitting the game at any time τ > 0 perfectly reveals player j ’s own private informa-
tion y, while not joining the game at all only reveals an upper bound x∗

j to y, there is a natural dis-
continuity in the equilibrium strategy σ ∗

2,i (x, τ ) at τ = 0. In fact, limτ↓0 σ ∗
2,i (x, τ ) > σ ∗

2,i (x,0),

because Eτ2,0[ρi(τ2|λ)|x,g∗
j (0)−] < limτ→0 Eτ2,τ [ρi(τ2|λ)|x,g∗

j (τ )] by Lemma 1.
For future reference, let x∗∗

i ≡ sup{x: σ ∗
2,i (x,0) = 0}, the lowest signal for which player i is

willing to stay in the race, upon seeing that the opponent j did not enter the game. To summarize:
if x > x∗∗

i then player i enters and stays in for some time regardless of what the opponent does;
if x∗

i � x � x∗∗
i then the player enters and quits immediately if and only if the opponent failed to

join; if x < x∗
i then the player does not enter at all.14

The comparative statics of strategy σ ∗
2,i (x, τ ) follow directly from Assumptions 1 and 2. The

quitting time σ ∗
2,i (x, τ ) increases in the signals, x, as conjectured, and g∗

j (τ ); it decreases in the
cost/benefit ratio ci/bi . The direct effect of the time τ the opponent stayed in the race without
receiving the prize, ignoring the indirect effect of τ via g∗

j (τ ), is to shorten the maximum time
σ ∗

2,i (x, τ ) that player i is willing to spend alone in the race.

3.2. Equilibrium play before the opponent quits

The most complex part of the equilibrium characterization concerns the instance where both
players are still in the game. Each player must plan an optimal stopping time based on the hy-
pothesis that the opponent will quit later, and on the resulting information about the opponent’s
signal.

Proceeding as in the previous part of the section, we denote by V i
1,t (τ1|x) the value function

of a player i = A,B at any time t > 0 for quitting at time τ1 � t, conditional on the facts that
opponent j has not quit yet at time τ1 and is adopting a monotonic strategy σ ∗

1,j , with associated

inverse g∗
j . We report the expression of V i

1,t (τ1|x) in Appendix A. We then differentiate the

expected value V i
1,t (τ1|x) with respect to the stopping time τ1, and apply time consistency to

substitute t with τ1. As shown in Appendix A, we obtain:

dV i
1,t (τ1|x)

dτ1

∣∣∣∣
t=τ1

= −ci + biEτ1,τ1

[
ρi(τ1|λ)|x,g∗

j (τ1)+
]

+ Eτ1,τ1

[
hj (g

∗
j (τ1)|λ)

1 − Hj(g
∗
j (τ1)|λ)

dg∗
j (τ1)

dτ1

∣∣∣∣x,g∗
j (τ1)+

]

× V i
2,τ1

(
σ ∗

2,i (x, τ1)|x,g∗
j (τ1), τ1

)
. (2)

The marginal value of waiting before quitting equals two flow expected benefit terms minus the
flow cost ci . The first benefits term is the prize bi times the expected hazard rate of prize arrival.
The second one is the expected hazard rate of the time when the opponent j quits, times the
continuation value of remaining alone.

One key result of this section is a “survivor’s curse.” Suppose that in the event that player j

remains in the race, player i plans to quit first at a time τ1 which satisfies the first-order condition

14 An alternative interpretation of results is that for x∗
i

� x � x∗∗
i

, player i enters the race if and only if observing player
j entering the race. This form of imitation is very common in real world R&D races. Effectively, player i is uncertain of
whether to enter the race or not, and is willing to invest in the project if and only if observing that player j invests in the
project.
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dV i
1,t (τ1|x)/dτ1|t=τ1 = 0. If j quits first at any time τ earlier than but close enough to τ1, then i

must also immediately leave the race, regretting not having left earlier.
The intuition behind this result is simple. When player i plans to leave the race at τ1, she

conditions on player j still being in the race and hence on the expectation E[y|y � g∗
j (τ1)] with

respect to j ’s signal y. If it happens that j quits first at a time τ close but smaller than τ1, then
i suddenly realizes that j had observed signal y = g∗

j (τ ), which is much smaller than E[y|y �
g∗

j (τ )]. This induces a sudden pessimistic revision of i’s beliefs with respect to the promise
of the project. Accordingly, i quits immediately after j , regretting her previous over-optimistic
expectation of the (rival’s assessment of the) project’s feasibility.15

Proposition 4 (Survivor’s curse). In any monotonic equilibrium, suppose that a player i with
signal x plans to quit first at time τ1 > 0 solving dV i

1,t (τ1|x)/dτ1|t=τ1 = 0. If the opponent quits
first at time τ < τ1, and τ is close enough to τ1, then player i’s best response is to immediately
follow suit: σ ∗

2,i (x, τ ) = τ.

Proposition 4 immediately implies that V2,τ1(σ
∗
2,i (x, τ1)|x,g∗

j (τ1), τ1) = 0, so that we can
delete the second line of Eq. (2), and derive the following equilibrium characterization. Recall
that g∗

j = σ ∗−1
1,j is the inverse of player j ’s stopping strategy as the first quitter.

Proposition 5 (First quitter’s stopping time). In any monotonic equilibrium, the stopping time of
a player i with signal x, conditional on the opponent j still being in the game, is

σ ∗
1,i (x) = min

{
τ1 � 0:

ci

bi

� Eτ1,τ1

[
ρi(τ1|λ)|x,g∗

j (τ1)+
]}

. (3)

This equilibrium stopping time σ ∗
1,i (x) is independent of r, decreases in the cost–benefit ratio

ci/bi and increases in the private signal x.
Having characterized all possible equilibria, we prove in Appendix A:

Proposition 6 (Existence of equilibrium). There exists a monotonic differentiable equilibrium
(σ ∗

1,i , σ
∗
2,i ), for i = A,B .

The assumptions guarantee that, given any well-behaved strategy gj by the opponent, as de-
fined in Eq. (3), the value V1,t of continuing has a unique local and global maximum, a best
response that is a continuously differentiable function of own signal x. The bounds on the slope
of the expected hazard rate in Assumption 3 are sufficient to avoid multiple local peaks in V1 and
resulting discontinuities in the best response. For example, if ρi(t |λ) was highly non-monotonic,
a small change in x may cause a jump in the best response, as it may become profitable waiting
much longer for a later increase in the hazard rate. In addition, the best response operator defined
in Eq. (3) is continuous in gj with respect to the sup norm, and preserves some regularity prop-
erties of a candidate strategy. This allows us to apply Schauder’s fixed point theorem. Notice that
the best response operator is not a contraction, so we cannot apply Banach fixed point theorem
to also obtain uniqueness. The reason is the underlying strategic complementarity of the game:

15 As a mirror image of this survivors’s curse, a ‘quitter’s curse’ arises if player j leaves the race at a time τ much
earlier than τ1, the planned stopping time of player i. In this case, player i remains in the race after τ1, and player j

regrets having left.
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a very aggressive strategy by the opponent, waiting for the opponent to give up first, may be met
by an even more aggressive best response, and so on.

4. Comparison with the symmetric information case

We now study the case where the signals x, y are public information. In equilibrium, the firms
run the projects independently and exit when the updated beliefs on λ make remaining in the
race unprofitable in expectation. In the following result, we denote as ‘firm 1’ the first firm that
quits the race, and as ‘firm 2’ the second firm that quits the race.

Proposition 7 (Public information equilibrium). In any equilibrium of the public information
game, for every pair of signals x, y, the first firm quits the race at time

T1(x, y) = min

{
t � 0:

c1

b1
� Et,t

[
ρ1(t |λ)|x, y

]}

and the second firm at the time

T2(x, y) = min

{
t � T1(x, y):

c2

b2
� Et,T1(x,y)

[
ρ2(t |λ)|x, y

]}
.

The two firms exit sequentially, T2(x, y) > T1(x, y), for almost all parameter configurations such
that T1(x, y) > 0.

Whether firm A or firm B will be the first firm to quit the race depends on the efficiency of the
two firms, expressed by the cost/benefit ratios ci/bi and on the shape of the hazard rate functions
ρi(·|λ). The smaller is the cost ratio ci/bi and the larger is the hazard rate ρi(τ |λ), the more
efficient is firm i. In the equilibrium of the public information game, the more efficient firm stays
longer in the race.

Proposition 8 (Exit sequence with public information). If cA/bA > cB/bB and ρA(τ |λ) <

ρB(τ |λ) for all τ , λ, then firm A quits before firm B in any equilibrium of the public information
game, when signals x, y are such that at least one firm enters the game.

We now compare the monotonic equilibrium in the private information game with the equi-
librium of the public information game. In the following discussion we assign signal x to
player A and signal y to player B, and restrict attention to the case where cA/bA > cB/bB

and ρA(τ |λ) < ρB(τ |λ) for all τ,λ, i.e. firm A is less efficient than firm B. For brevity, we only
describe results for signals x and y such that both players enter the race, whether the information
is private or public. The complete characterization is illustrated in Fig. 1, which is drawn for the
parametric example of Section 5, but holds more generally in a qualitative sense.

There are three cases. First, when y is sufficiently larger than x, in the private information
game player A exits before player B and regrets having left too early: σ ∗

1,A(x) < σ ∗
1,B(y) and

σ ∗
1,A(x) < σ ∗

2,B(y, σ ∗
1,A(x)). When quitting at time σ ∗

1,A(x), player A underestimates the oppo-
nent’s signal y and quits too soon with respect to the public information equilibrium. Second,
when x is sufficiently larger than y, player B exits first, unlike in the public information case:
σ ∗

1,B(y) < σ ∗
1,A(x) and σ ∗

1,B(y) < σ ∗
2,A(x, σ ∗

1,B(y)). Third, and most important, there is a set
of signal realizations of positive (unconditional) probability where x, y are such that either
σ ∗ (x) > σ ∗ (y) = σ ∗ (x, σ ∗ (y)), or σ ∗ (y) > σ ∗ (x) = σ ∗ (y, σ ∗ (x)). In this case,
1,A 1,B 2,A 1,B 1,B 1,A 2,B 1,A
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Fig. 1. Equilibrium outcomes in private signal space.

the survivor’s curse occurs. The two players exit simultaneously despite the fact that their ef-
ficiency in conducting R&D is different. This is a non-generic outcome when information is
public, as the least efficient firm will always leave the race earlier. Further, because of the
survivor’s curse, it must be the case that σ ∗

1,A(x) + σ ∗
2,A(x, σ ∗

1,B(y)) > TA(x, y) + TB(x, y),

when σ ∗
1,B(y) > σ ∗

1,A(x), and that σ ∗
1,B(y) + σ ∗

2,A(x, σ ∗
1,B(y)) > TA(x, y) + TB(x, y) when

σ ∗
1,A(x) > σ ∗

1,B(y). The aggregate durations conditional on no prize arrival are longer in the
private information game than in the public information game.

The above results highlight the effects of private information on the equilibrium of the R&D
race. Most importantly, for some signals (x, y), private information induces simultaneous exit.
This possibility is generically ruled out when information is public. This result provides a simple
test to identify private information of common value in R&D races. Further, when player A’s
signal x is sufficiently more optimistic than player B’s signal y, the latter exits the race before
player A. Again, this possibility is ruled out when information is public, in the case that player
A is less efficient than player B.

5. The Gamma-exponential model

To conclude, we present a canonical parametric example to sharpen our characterization of
equilibrium.

The arrival time is exponentially distributed, with Fi(ti |λ) = 1 − e−(ζi+λ)ti and fi(ti |λ) =
(ζi + λ)e−(ζi+λ)ti for all ti � 0, and hence the hazard rate of prize arrival is constant: ρi(ti |λ) =
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ζi + λ � 0, with ζi � 0 and λ � 0. The term ζi represents the firm specific component of the
arrival rate, i.e. firm i’s research efficiency, and is public information. For future reference, we
let the adjusted cost/benefit ratio be qi = ci/bi − ζi; and without loss of generality assume that
qA � qB . The λ � 0 component is uncertain and distributed according to a gamma distribu-
tion π(λ) = e−αλλβ−1αβ/Γ (β), for α > 0, β > 0. Finally, the two private signals zA and zB

are exponentially distributed: for every zi � 0, H(zi |λ) = eλzi with density h(zi |λ) = λeλzi .

Derivations available upon request show that this model satisfies Assumptions 1–3, and that As-
sumption 4 is satisfied whenever ζi < ci/bi < [β + 2]/α + ζi .

The optimality conditions in Propositions 2 and 3 can be solved explicitly. The equilibrium
strategy of a player i with signal x after the opponent quits at time τ > 0 is:

σ ∗
2,i (x, τ ) = max

{
τ,

1

qi

(β + 2) + x + g∗
j (τ ) − α − τ

}
,

whereas when the opponent fails to join the game:

σ ∗
2,i (x,0) = max

{
0,

1

qi

(β + 1) + x + x∗
j − α

}
.

By specializing Proposition 5 to this example, we show that the strategy of a player i with
signal x, conditional on the opponent j being still in the game, is σ ∗

1,i (x) = max{0, τ1} where τ1
is a solution of

qi = (β + 1)
[(α + 2τ1 − x)−β−2 − (α + 2τ1 − x − g∗

j (τ1))
−β−2]

[(α + 2τ1 − x)−β−1 − (α + 2τ1 − x − g∗
j (τ1))−β−1]

and, whenever positive, it is the inverse of g∗
i . For τ1 = 0 this implicit equation pins down the

signal realization that makes player i indifferent between entering the race or not, x∗
i = g∗

i (0).
It can be shown that this equilibrium is unique (proof available upon request). Hence, in

the symmetric Gamma-exponential model where qA = qB, there do not exist any monotonic
asymmetric equilibria.

In the public information case, assume that firm A has a higher adjusted cost ratio qA > qB.

Propositions 7 and 8 imply that firm A quits the race first, at time TA(x, y), and then firm B quits
the race at time TB(x, y), where

TA(x, y) = max

{
0,

1

2

[
1

qA

(β + 2) + x + y − α

]}
,

TB(x, y) = max

{
0,

1

qB

(β + 2) + x + y − α − TA(x, y)

}
.

Inspection of these expressions immediately shows that the public information equilibrium is
unique.

To compare the private and public information equilibrium, we focus on the case where both
players receive sufficiently favorable private information to join the R&D race, whether the in-
formation is private or public, x + y � α − 1

qA
(β + 2), x > x∗

A and y > x∗
B . We have three

subcases.
First, when y is sufficiently larger than x, player A quits first at time σ ∗

1,A(x), followed by
player B at time σ ∗

2,B(y, σ ∗
1,A(x)) > σ ∗

1,A(x), and the aggregate durations conditional on no prize
arrival are the same in the private and public information games:

σ ∗
2,B

(
y,σ ∗

1 (x)
) + σ ∗

1,A(x) = 1
(β + 2) + x + y − α = TA(x, y) + TB(x, y).
qB
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Second, when x is sufficiently larger than y, player B exits first, unlike in the public informa-
tion case, followed by player A at time σ ∗

2,A(x, σ ∗
1,B(y)) > σ ∗

1,B(y), and the aggregate durations
conditional on no prize arrival are smaller with private information than with public information:

σ ∗
2,B

(
y,σ ∗

1 (x)
) + σ ∗

1,A(x) = 1

qA

(β + 2) + x + y − α <
1

qB

(β + 2) + x + y − α

= TA(x, y) + TB(x, y).

Finally, for signal realizations (x, y) such that the survivor suffers the curse and follows the oppo-
nent suit, aggregate durations conditional on no prize arrival are longer in the private information
game than in the public information game.

6. Conclusions

This paper studies a winner-take-all R&D race where firms are privately informed about the
arrival rate of the invention. Due to the interdependent-value nature of the problem, the equilib-
rium displays a strong herding effect. When the opponent is still in the race, each player presumes
that her opponent’s signal is larger than the signal that would induce exit in the immediate future.
Hence, upon seeing that the opponent leaves the race, a player discontinuously revises her belief
on the opponent’s signal downwards. If the opponent exits at a time close to the time at which
the player planned to stop conditional on the opponent being in the race, then the player will
exit immediately after the opponent, in regret of not having left before. As a consequence of this
survivor’s curse, unlike models of symmetric information, firms may exit nearly simultaneously
even when their cost and benefits for research differ significantly. This provides a simple test for
private information in R&D races.

Appendix A

Proof of Lemma 1. Let p denote the density of the opponent j ’s signal z conditional on zi = x,
on ti � t and on tj � t ′. Note that:

Et,t ′
[
ρi(t |λ)|x, y−] =

y∫
zj

Et,t ′ [ρi(t |λ)|x, z]p(z|x, t, t ′) dz∫ y

zj
p(z|x, t, t ′) dz

,

Et,t ′
[
ρi(t |λ)|x, y+] =

z̄j∫
y

Et,t ′ [ρi(t |λ)|x, z]p(z|x, t, t ′) dz∫ z̄j

y
p(z|x, t, t ′) dz

.

The result that E
i
t,t ′ [ρi(t |λ)|x, y−] < E

i
t,t ′ [ρi(t |λ)|x, y] < E

i
t,t ′ [ρi(t |λ)|x, y+] follows immedi-

ately from the assumption that Et,t ′ [ρi(t |λ)|x, z] increases in z. �
Proof of Proposition 2. Differentiating V i

2,t (τ2|x,g∗
j (τ ), τ ) at t = τ2 we find:

dV i
2,t (τ2|x,g∗

j (τ ), τ )

dτ2

∣∣∣∣
t=τ2

=
∫
Λ

d

dτ2
Ui

2,t (τ2|λ)πt,τ

(
λ|x,g∗

j (τ )
)
dλ|t=τ2

=
∫ [

fi(τ2|λ)

1 − Fi(τ2|λ)

( τ2∫
(−ci)e

−r(v−τ2) dv + e−r(τ2−τ2)bi

)

Λ τ2
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− fi(τ2|λ)

1 − Fi(τ2|λ)

τ2∫
τ2

(−ci)e
−r(v−τ2) dv

+ 1 − Fi(τ2|λ)

1 − Fi(τ2|λ)
(−ci)e

−r(τ2−τ2)

]
πτ2,τ

(
λ|x,g∗

j (τ )
)
dλdλ

= biEτ2,τ

[
fi(τ2|λ)

1 − Fi(τ2|λ)

∣∣∣∣x,g∗
j (τ )

]
− ci . � (4)

Proof of Proposition 3. At time t, player i plans to stop at time

τ i
2,t

(
x,g∗

j (0)−)

= arg max
τ2�t

{
V i

2,t

(
τ2|x,g∗

j (0)−,0
) =

∫
Λ

Ui
2,t (τ2|λ)πt,0

(
λ|zi = x, zj � g∗

j (0)
)
dλ

}
.

Proceeding as in Eq. (4), we obtain:

dV i
2,t (τ2|x,g∗

j (0)−,0)

dτ2

∣∣∣∣
t=τ2

= biEτ2,0

[
fi(τ2|λ)

1 − Fi(τ2|λ)

∣∣∣∣x,g∗
j (0)−

]
− ci . � (5)

Calculations leading to expression (2). The value function of a player i = A,B at any time
t > 0 for quitting at time τ1 � t, conditional on the facts that opponent j has not quit yet at time
τ1and is adopting a monotonic strategy σ ∗

1,j , with associated inverse g∗
j , is as follows:

V i
1,t (τ1|x) =

∫
Λ

Ui
1,t (τ1|λ)πt,t

(
λ|x,g∗

j (t)+)
dλ,

where Ui
1,t (τ1|λ) denotes the expected value at time t for planning to stop at time τ1 > t , condi-

tional on the opponent being still in the game at time τ1, and conditional on λ. Specifically:

Ui
1,t (τ1|λ) =

τ1∫
t

fi(s|λ)

1 − Fi(t |λ)

1 − Fj (s|λ)

1 − Fj (t |λ)

1 − Hj(g
∗
j (s)|λ)

1 − Hj(g
∗
j (t)|λ)

×
[ s∫

t

−cie
−r(v−t) dv + e−r(s−t)bi

]
ds

+
τ1∫

t

fj (s|λ)

1 − Fj (t |λ)

1 − Fi(s|λ)

1 − Fi(t |λ)

1 − Hj(g
∗
j (s)|λ)

1 − Hj(g
∗
j (t)|λ)

[ s∫
t

−cie
−r(v−t) dv

]
ds

+
τ1∫

t

(
1 − Fi(s|λ)

1 − Fi(t |λ)

)(
1 − Fj (s|λ)

1 − Fj (t |λ)

)
hj (g

∗
j (s)|λ)dg∗

j (s)/ds

1 − Hj(g
∗
j (t)|λ)

×
[ s∫

−cie
−r(v−t) dv + e−r(s−t)V i

2,s

(
σ ∗

2,i (x, s)|x,g∗
j (s), s

)]
ds
t
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+
(

1 − Fi(τ1|λ)

1 − Fi(t |λ)

)(
1 − Fj (τ1|λ)

1 − Fj (t |λ)

)1 − Hj(g
∗
j (τ1)|λ)

1 − Hj(g
∗
j (t)|λ)

τ1∫
t

−cie
−r(v−t) dv.

The first line expresses the possibility that player i’s prize arrives at ti ∈ [t, τ1), before the prize
arrives to the rival and before the opponent quits. In this case, player i wins the race, pays costs
up to that time ti and collects the prize b. The second line illustrates the case when player j ’s
prize arrives at tj ∈ [t, τ1), before i’s prize arrives and before i quits. As a result, j wins the
race at time tj and player i just pays costs. Third, player j quits at τ ∈ [t, τ1) before either prize
arrives. Then the signal y is revealed to i by inverting y = g∗

j (s). Player i pays costs and collects
V2,s(σ

∗
2 (x, s)|x,g∗

j (s), s), the continuation value of going on alone optimally. Fourth and last,
nothing happens in the time interval [t, τ1): no one quits and no prize arrives. In this case player
i quits at τ1 and just pays costs.

Differentiating the value V i
1,t (τ1|x) with respect to τ1, we obtain:

d

dτ1
V i

1,t (τ1|x) =
∫
Λ

[
fi(τ1|λ)

1 − Fi(t |λ)

1 − Fj (τ1|λ)

1 − Fj (t |λ)

1 − Hj(g
∗
j (τ1)|λ)

1 − Hj(g
∗
j (t)|λ)

×
[ τ1∫

t

−cie
−r(v−t) dv + e−r(τ1−t)bi

]

+ fi(τ1|λ)

1 − Fi(t |λ)

1 − Fj (τ1|λ)

1 − Fj (t |λ)

1 − Hj(g
∗
j (τ1)|λ)

1 − Hj(g
∗
j (t)|λ)

[ τ1∫
t

−cie
−r(v−t) dv

]

+
(

1 − Fi(τ1|λ)

1 − Fi(t |λ)

)(
1 − Fj (τ1|λ)

1 − Fj (t |λ)

)
hj (g

∗
j (τ1)|λ)dg∗

j (τ1)/dτ1

1 − Hj(g
∗
j (t)|λ)

×
[ τ1∫

t

−cie
−r(v−t) dv + e−r(τ1−t)V i

2,τ1

(
σ ∗

2,i (x, τ1)|x,g∗
j (τ1), τ1

)]

−
(

fi(τ1|λ)

1 − Fi(t |λ)

)(
1 − Fj (τ1|λ)

1 − Fj (t |λ)

)1 − Hj(g
∗
j (τ1)|λ)

1 − Hj(g
∗
j (t)|λ)

τ1∫
t

−cie
−r(v−t) dv

−
(

1 − Fi(τ1|λ)

1 − Fi(t |λ)

)(
fj (τ1|λ)

1 − Fj (t |λ)

)1 − Hj(g
∗
j (τ1)|λ)

1 − Hj(g
∗
j (t)|λ)

τ1∫
t

−cie
−r(v−t) dv

−
(

1 − Fi(τ1|λ)

1 − Fi(t |λ)

)(
1 − Fj (τ1|λ)

1 − Fj (t |λ)

)

× hj (g
∗
j (τ1)|λ)dg∗

j (τ1)/dτ1

1 − Hj(g
∗
j (t)|λ)

τ1∫
t

−cie
−r(v−t) dv

−
(

1 − Fi(τ1|λ)

1 − Fi(t |λ)

)(
1 − Fj (τ1|λ)

1 − Fj (t |λ)

)

× 1 − Hj(g
∗
j (τ1)|λ)

1 − Hj(g
∗(t)|λ)

cie
−r(τ1−t)

]
πt,t

(
λ|x,g∗

j (t)+)
dλ.
j
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Simplifying and specializing the expression at t = τ1 by the requirement of time consistency
gives:

d

dτ1
V i

1,t (τ1|x)|t=τ1 =
∫
Λ

[
fi(τ1|λ)

1 − Fi(τ1|λ)

1 − Fj (τ1|λ)

1 − Fj (τ1|λ)

1 − Hj(g
∗
j (τ1)|λ)

1 − Hj(g
∗
j (τ1)|λ)

bi

+
(

1 − Fi(τ1|λ)

1 − Fi(τ1|λ)

)(
1 − Fj (τ1|λ)

1 − Fj (τ1|λ)

)
hj (g

∗
j (τ1)|λ)dg∗

j (τ1)/dτ1

1 − Hj(g
∗
j (τ1)|λ)

× V i
2,τ1

(
σ ∗

2,i (x, τ1)|x,g∗
j (τ1), τ1

)
−

(
1 − Fi(τ1|λ)

1 − Fi(τ1|λ)

)(
1 − Fj (τ1|λ)

1 − Fj (τ1|λ)

)1 − Hj(g
∗
j (τ1)|λ)

1 − Hj(g
∗
j (τ1)|λ)

ci

]

× πτ1,τ1

(
λ|x,g∗

j (τ1)+
)
dλ.

We further simplify to obtain Eq. (2). �
Proof of Proposition 4. By definition of σ ∗

2,i (x, τ ) and by continuity, we only need to
show that ci > biEτ1,τ1 [ρi(τ1|λ)|x,g∗

j (τ1)]. Since τ1 > 0 solves the first-order condition

dV i
1,t (τ1|x)/dτ1|t=τ1 = 0, using Eq. (2), we obtain:

0 = biEτ1,τ1

[
ρi(τ1|λ)|x,g∗

j (τ1)+
] − ci

+ Eτ1,τ1

[
hj (g

∗
j (τ1)|λ)

1 − Hj(g
∗
j (τ1)|λ)

dg∗
j (τ1)

dτ1

∣∣∣∣x,g∗
j (τ1)+

]
V i

2,τ1

(
σ ∗

2 (x, τ1)|x,g∗
j (τ1), τ1

)
� biEτ1,τ1

[
ρi(τ1|λ)|x,g∗

j (τ1)+
] − ci > biEτ1,τ1

[
ρi(τ1|λ)|x,g∗

j (τ1)
] − ci,

where the first inequality follows because
hj (g∗

j (τ1)|λ)

1−Hj (g∗
j (τ1)|λ)

dg∗
j (τ1)

dτ1
> 0 and V i

2,τ1
(σ ∗

2 (x, τ1)|x,

g∗
j (τ1), τ1) � 0, whereas the second inequality follows from Lemma 1: knowing that the oppo-

nent j ’s signal is exactly g∗
j (τ1) is bad news with respect to knowing that it is at least g∗

j (τ1). �
Proof of Proposition 5. In light of Proposition 4, for any x, the first-order condition
dV i

1,t (τ1|x)/dτ1|t=τ1 = 0 can be rewritten simply as:

ci = biEτ1,τ1

[
ρi(τ1|λ)|x,g∗

j (τ1)+
]
. (6)

The following lemma establishes two “corner properties” of any equilibrium strategy σ ∗
1,i (x). As

a result, the equilibrium strategy σ ∗
1,i (x) must satisfy the first-order condition, Eq. (6), whenever

x � x∗
i and must equal zero when x < x∗

i .

Lemma A.1. Suppose that player j plays a monotonic strategy σ ∗
1,j with inverse g∗

j . For any
signal realization x observed by player i, there exists a time τ̄ > 0 large enough that player
i’s marginal value of waiting dV i

1,t (τ1|x)/dτ1|t=τ1 is negative for any τ1 � τ̄ . For any signal
realization x such that biE0,0[ρi(0|λ)|x,g∗

j (0)+] > ci, there exists τ > 0 small enough that

dV i
1,t (τ1|x)/dτ1|t=τ1 > 0 for any τ1 � τ .

Proof. To prove the first result, note that for τ1 sufficiently large,

biEτ ,τ

[
ρi(τ1|λ)|x,g∗(τ1)

] − ci � biEτ ,τ

[
ρi(τ1|λ)|x,0

] − ci < 0
1 1 j 1 1
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because Eτ1,τ1[ρi(τ1|λ)|x, y] < ci/bi as τ1 → ∞, for all x, y, by Assumption 4. So,
σ ∗

2,i (x, τ1) = τ1 and hence V i
2,τ1

(σ ∗
2,i (x, τ1)|x,g∗

j (τ1), τ1) = 0. It follows that

d

dτ1
V i

1,t (τ1|x)

∣∣∣∣
t=τ1

= biEτ1,τ1

[
ρi(τ1|λ)|x,g∗

j (τ1)+
] − ci

� biEτ1,τ1

[
ρi(τ1|λ)|x,0+] − ci < 0

for τ1 large enough by Assumptions 2 and 4 combined.
The second result follows from

d

dτ1
V i

1,t (τ1|x)

∣∣∣∣
t=τ1

� biEτ1,τ1

[
ρi(τ1|λ)|x,g∗

j (τ1)+
] − ci

together with continuity of Eτ1,τ1[ρi(τ1|λ)|x,g∗
j (τ1)+]. �

To conclude that this strategy σ ∗
1,i identified by the first-order condition, Eq. (6), induces a

monotonic equilibrium, we are only left to determine the optimal decision at the very beginning
of the game, i.e. at time t = 0. The next lemma verifies that if the opponent j enters the game
whenever x > x∗

j , then it is optimal to enter the race if and only if x > x∗
i .

Lemma A.2. Suppose that player j plays the first-quitter stopping strategy σ ∗
1,j . If player i holds

a signal x � x∗
i , then at time 0 she optimally chooses not to enter the game. Whereas if x > x∗

i ,

then player i enters the game at time 0, and optimally selects the stopping time σ ∗
1,i (x).

Proof. Consider the choice at time t = 0 of player i with a signal x. If she chooses not to enter
the game and set τ1 = 0, her payoff is V i

1,0(0|x) = 0. If she chooses to enter the game, and
sets τ1 > 0, then she will observe whether j enters the game or not. This allows us to write i’s
expected payoff for playing any τ1 > 0 as

V i
1,0(τ1|x) = Pr

(
zj � x∗

j |x
)

lim
t↓0

V i
2,t

(
σ ∗

2,i (x,0)|x, x∗
j−,0

)
+ [

1 − Pr(zj � x∗
j |x)

]
lim
t↓0

V i
1,t (τ1|x).

Suppose first that x is such that biE0,0[ρi(0|λ)|x, x∗
j+] � ci; and hence that the equilibrium

prescription is σ ∗
1,i (x) = 0. This implies that for any τ1 > 0, dV i

1,t (τ1|x)/dτ1|t=τ1 < 0. Since for
all τ1 > 0,

Eτ1,τ1

[
ρi(0|λ)|x, x∗

j−
]
< Eτ1,τ1

[
ρi(0|λ)|x, x∗

j

]
< Eτ1,τ1

[
ρi(0|λ)|x, x∗

j+
]
,

it follows that σ ∗
2,i (x,0) = 0 by Proposition 3, and hence limt↓0 V i

2,t (σ
∗
2,i (x,0)|x, x∗

j−,0) = 0.

So player i optimally chooses to follow the equilibrium prescription σ ∗
1,i (x) = 0.

Second, suppose that x is such that biE0,0[λ|x, x∗
j+] > ci; the player will comply with the

equilibrium prescription σ ∗
1,i (x) > 0 because limt↓0 V i

2,t (σ
∗
2,i (x,0)|x, x∗

j−,0) � 0 and for any τ1

small enough limτ1↓0 dV i
1,t (τ1|x)/dτ1|t=τ1 > 0. �

Proof of Proposition 6. To ease notation, for all t � 0, x, y, i = A,B , we introduce the function

μi(t, x, y) := Ei
t,t

[
ρi(t |λ)|x, y+] − ci

.

bi
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The existence of equilibrium strategies σ ∗
2,i (x, τ ) is not an issue. We now show that there exist

strategies σ ∗
1,i (x) � 0, i = A,B , that satisfy Eq. (3), i.e. such that

μi

(
σ ∗

1,i (x), x, σ ∗
1,j

−1(
σ ∗

1,i (x)
))

� 0

for i 	= j = A,B , with equality if the equation has a positive solution σ ∗
1,i (x) > 0. Let the Q

operator be the best-response correspondence: if player i plays σ1,i , player j replies with τ1,j :(
τ1,A

τ1,B

)
= Q

(
σ1,A

σ1,B

)
.

An equilibrium is a fixed point of Q. We show it exists.
Let KG be the set of differentiable functions mapping R+ into itself, that are uniformly

bounded below and above and have derivative that are uniformly bounded below by zero and
above by G > 0. Given these properties, by the Arzelà–Ascoli theorem KG is compact. Be-
cause convex combinations preserve the properties that define KG (i.e., differentiability, uniform
boundedness below and above, and uniform boundedness below and above of the derivative),
KG is also convex. A representative member of KG is an inverse strategy gj , with the interpre-
tation that if player j quits first at time t his private signal realization is gj (t). We aim to show
that the best response operator Q maps strategies that are the inverse of functions in KG into the
same set.

First, a first-order condition for a best response to gj (·) is t = τ1,i (x) where

μi

(
t, x, gj (t)

) = 0. (7)

Let μ
(k)
i , k = 1,2,3, denote the partial derivative of μi w.r. to its k-th argument, so that Assump-

tion 3 is equivalent to

μ
(3)
i

(
t, x, gj (t)

)
< G′μ(1)

i (t, x, y) < μ
(2)
i (t, x, y)

for some G′ < 0. Let G = −1/G′ > 0. For every gj ∈ KG, which has g′
j (t) < G, the following

inequality:

μ
(1)
i

(
t, x, gj (t)

) + μ
(3)
i

(
t, x, gj (t)

)
g′

j (t) < 0 (8)

is always satisfied given Assumption 3 and μ
(3)
i > 0. So μi is decreasing in t near every solution

t = τ1,i (x) to Eq. (7). By Assumptions 3 and 4, Eq. (7) then has one and only one solution, which
is both a local and a global maximum of the value V1,t of being the first to quit. This implies that
there exists a unique best response τ1,i (x) � 0, which is a continuous function of x, and that Q

is a continuous functional: a perturbation of gj in the sup norm can only change τi continuously
in the same norm.

By the implicit function theorem, the properties of μi , and the strict inequality in Eq. (8), the
best response τ1,i (·) is also differentiable and strictly increasing. We showed that the inverse of
the best response is uniformly bounded below by the lowest signal realization that makes any
player ever enter the race, and above by the upper bound to the signal space.

To establish that the inverse of τ1,i is in the set KG we need to show that this inverse best
response has derivative bounded above by G. Differentiating the first order condition, we re-
quire

G >
dτ−1

1,i (t)

dt
= 1

τ ′ (τ−1(t))
= −μ

(1)
i (t, τ−1

1,i (t), gj (t)) + μ
(3)
i (t, τ−1

1,i (t), gj (t))g
′
j (t)

μ
(2)

(t, τ−1(t), g (t))
.

1,i 1,i i 1,i j
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As μ
(2)
i (t, τ−1

1,i (t), gj (t)) > 0, this chain of (in)equalities is equivalent to

Gμ
(2)
i

(
t, τ−1

1,i (t), gj (t)
)
> −μ

(1)
i

(
t, τ−1

1,i (t), gj (t)
) − μ

(3)
i

(
t, τ−1

1,i (t), gj (t)
)
g′

j (t).

As g′
j (t) > 0 and μ

(3)
i > 0, this is true under the second part of Assumption 3.

Finally, we have to show that the map Q preserves convexity of KG. Namely, for all α ∈ [0,1]
the inverse of the function τα

1,i (x) uniquely defined by

μi

(
τα

1,i (x), x,αgj

(
τα

1,i (x)
) + (1 − α)nj

(
τα

1,i (x)
)) = 0

is also in KG: differentiable (obvious), increasing (obvious), bounded below and above (obvi-
ous), and with derivative bounded above by G, that is

G >
d(τα

i )−1(t)

dt
= 1

τα′
1,i ((τ

α
1,i )

−1(t))

= −μ
(1)
i (t, (τα

1,i )
−1(t), αgj (t) + (1 − α)nj (t))

μ
(2)
i (t, (τα

1,i )
−1, αgj (t) + (1 − α)nj (t))

− μ
(3)
i (t, (τα

1,i )
−1, αgj (t) + (1 − α)nj (t))[αg′

j (t) + (1 − α)n′
j (t)]

μ
(2)
i (t, (τα

1,i )
−1, αgj (t) + (1 − α)nj (t))

.

Rearranging, this is true again under Assumption 3.
Hence Q :KG → KG where Q is a continuous map and KG is a compact, convex subset

of the complete metric space of continuous functions on a bounded set endowed with the sup
norm. By Schauder’s fixed point theorem an equilibrium exists and the inverse strategies are
in KG. �
Proof of Proposition 7. We want to determine the equilibrium strategy Ti(x, y) of player i.

Suppose that the opponent, player j stops at time T . If player i quits at any time T1 � T , the
conditional value evaluated at any time t > 0, is

Ui
t (T1|λ) =

T1∫
t

fi(s|λ)

1 − Fi(t |λ)

1 − Fj (s|λ)

1 − Fj (t |λ)

[ s∫
t

−cie
−r(v−t) dv + e−r(s−t)bi

]
ds

+
T1∫
t

fj (s|λ)

1 − Fj (t |λ)

1 − Fi(s|λ)

1 − Fi(t |λ)

[ s∫
t

−cie
−r(v−t) dv

]
ds

+
(

1 − Fi(T1|λ)

1 − Fi(t |λ)

)(
1 − Fj (T1|λ)

1 − Fj (t |λ)

) T1∫
t

−cie
−r(v−t) dv.

Taking an expectation w.r. to the posterior beliefs πt,t (λ|x, y) that neither prize has arrived by
time T1 and signals are x, y, we study the derivative with respect to T1, as long as T1 � T , we
obtain:

V i
t (T1|x, y) =

∫
Ui,t (T1|λ)πt,t (λ|x, y) dλ.
Λ
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Hence the first-order condition is:

dV i
t (T1|x, y)

dT1
=

∫
Λ

[
fi(T1|λ)

1 − Fi(t |λ)

1 − Fj (T1|λ)

1 − Fj (t |λ)

[ τ1∫
t

−cie
−r(v−t) dv + e−r(T1−t)bi

]

− fj (T1|λ)

1 − Fj (t |λ)

(
1 − Fi(T1|λ)

1 − Fi(t |λ)

) τ1∫
t

−cie
−r(v−t) dv

−
(

1 − Fi(T1|λ)

1 − Fi(t |λ)

)(
1 − Fj (T1|λ)

1 − Fj (t |λ)

)
cie

−r(T1−t)

]
πt,t (λ|x, y) dλ.

Time consistency requires that we set t = T1 at the maximum. Hence,

dV i
t (T1|x, y)

dT1

∣∣∣∣
t=T1

=
∫
Λ

[
fi(T1|λ)

1 − Fi(T1|λ)
bi − cie

−r(T1−t)

]
πT1,T1(λ|x, y) dλ

= biET1,T1

[
ρi(T1|λ)|x, y

] − ci . (9)

By Assumption 2, this quantity is strictly decreasing at T1. Hence, first and second order condi-
tions imply that the above equation identifies the unique maximum over the range T1 ∈ [0, T ].

The value of stopping at any time T1 > T, evaluated at time t is:

Ui
t (T1|λ) =

T∫
t

fi(s|λ)

1 − Fi(t |λ)

1 − Fj (s|λ)

1 − Fj (t |λ)

[ s∫
t

−cie
−r(v−t) dv + e−r(s−t)bi

]
ds

+
T∫

t

fi(s|λ)

1 − Fi(t |λ)

1 − Fj (s|λ)

1 − Fj (t |λ)

[ s∫
t

−cie
−r(v−t) dv

]
ds

+
T1∫

τ

fi(s|λ)

1 − Fi(t |λ)

1 − Fj (τ |λ)

1 − Fj (t |λ)

[ s∫
t

−cie
−r(v−t) dv + e−r(s−t)bi

]
ds

+ 1 − Fi(T |λ)

1 − Fi(t |λ)

1 − Fj (T1|λ)

1 − Fj (t |λ)

T1∫
t

−cie
−r(v−t) dv.

Taking an expectation w.r. to the posterior beliefs πt,t (λ|x, y), and differentiating with respect
to T1, we obtain:

dV i
t (T1|x, y)

dT1
=

∫
Λ

[
fi(T1|λ)

1 − Fi(t |λ)

1 − Fj (T |λ)

1 − Fj (t |λ)

[ T1∫
t

−cie
−r(v−t) dv + e−r(τ1−t)bi

]

− fi(T1|λ)

1 − Fi(t |λ)

1 − Fj (T |λ)

1 − Fj (t |λ)

T1∫
t

−cie
−r(v−t) dv

− 1 − Fi(T1|λ)

1 − Fi(t |λ)

1 − Fj (T |λ)

1 − Fj (t |λ)
cie

−r(T1−t)

]
πt,t (λ|x, y) dλ.
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Simplifying [1 − Fj (T |λ)]/[1 − Fj (t |λ)] with the expression for πt,t (λ|x, y), we obtain:

dV i
t (T1|x, y)

dT1
=

∫
Λ

[
fi(T1|λ)

1 − Fi(t |λ)

[ T1∫
t

−cie
−r(v−t) dv + e−r(T1−t)bi

]
− fi(T1|λ)

1 − Fi(t |λ)

×
T1∫
t

−cie
−r(v−t) dv − 1 − Fi(T1|λ)

1 − Fi(t |λ)
cie

−r(T1−t)

]
πt,T (λ|x, y) dλ;

substituting t with T1, we obtain:

dV i
t (T1|x, y)

dT1

∣∣∣∣
t=T1

=
∫
Λ

[
fi(T1|λ)

1 − Fi(T1|λ)
bi − ci

]
πT1,T (λ|x, y) dλ

= biET1,T

[
ρi(T1|λ)|x, y

] − ci . (10)

By Assumption 2, this quantity is strictly decreasing T1. Hence, first and second order conditions
imply that the above equation identifies the unique maximum over the range T1 ∈ [T ,+∞). �
Proof of Proposition 8. By contradiction, suppose TA(x, y) � TB(x, y). Then, omitting the
arguments of TA,TB ,

ETB,TB

[
ρB(TB |λ)|x, y

]
� ETA,TB

[
ρB(TA|λ)|x, y

]
> ETA,TB

[
ρA(TA|λ)|x, y

]
= cA/bA > cB/bB

where the first inequality uses TA � TBand Et,TB
[ρB(t |λ)|x, y] decreasing in t by Assumption 2,

the second uses the assumption ρA(τ |λ) < ρB(τ |λ), the equality uses the optimality of TA and
TB > 0 to avoid the trivial case of no entry, the last one uses the assumption cA/bA > cB/bB .
But ETB,TB

[ρB(TA|λ)|x, y] > cB/bB contradicts the optimality of TB . �
Appendix B. Supplementary material

The online version of this article contains additional supplementary material.
Please visit doi:10.1016/j.jet.2009.12.001.
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