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Abstract

The issue of how players’ model of a game may evolves over time is largely unexplored.
We formalize this issue for games with perfect information, and show that small-probability
model deterioration may upset the complete-model backward induction solution, possibly
yielding a Pareto-improving long run distribution of play. We derive necessary and suf-
ficient conditions for the robustness of backward induction. These conditions can be
interpreted with a forward-induction logic, and are shown to be closely related to the
requirements for asymptotic stability of the backward induction path under standard evo-
lutionary dynamics.
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1 Introduction

Unlike formal games, most social interactions are not accompanied by a com-
plete list of written, fixed rules describing all actions that can be taken. While
many actions may be relevant, some are more salient, and others can be more
easily overlooked, depending on the context of the interaction. As a result, the
most di cult task faced by the players is often to formulate a model of the
interaction, a list of all actions relevant in the game. Once this modeling step
is accomplished, solving the model may be relatively easy. The players’ model
may change over time, and depend both on their past experiences and on the
context of the interactions they are involved in. The issue of how the players’
model of a game changes over time is largely unexplored. This paper presents
and analyzes a social learning construction that explicitly keeps track of the
evolution of models held by players who are able to solve games according to
the models they formulate, and whose models of the games depend on past
observation of play.
In our construction, players from continuous populations live for two pe-

riods. In the second period, they are randomly matched to play a perfect-
information extensive-form game. In the first period, they observe their par-
ents’ play. Matching is anonymous and independent across generations. After
being matched, each player formulates a model of the game, identified by a
subset of the action space and based on the play observed in her first life pe-
riod as well as on the information transmitted by her parent. Players do not
know or learn each others’ models while playing the game. A player whose
parent is unaware of a given action, will also be unaware of such action, un-
less she observes it in her parent’s match. At each decision node the player
plays the action corresponding to the unique backward induction solution of
her (possibly incomplete) model.
Information transmission across generations is imperfect: with small proba-

bility, models may deteriorate across generations, so as to exclude some feasible
actions. To account for the fact that some actions can be more easily over-
looked than others, we allow for di erent probabilities of forgetting di erent
actions. In order to highlight the e ect of model deterioration, we assume that
all players initially hold a complete model of the game, so that initially the play
established in each match coincides with the backward induction path of the
complete game. Our results are in terms of the aggregate long run distribution
of play, obtained by compounding the long run model distribution with the
play induced in each match. The core of our analysis restricts the possibility
of model deterioration to opponents’ actions not played in the parents’ match,
building on the supposition that one is usually less likely to forget one’s own
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possible choices or recently observed actions. We extend the analysis in an
extension section to allow for players to forget also their own actions, as long
as they were not played in their parents’ matches. We also discuss preliminary
results of a variation of our model where players tremble when making their
choices.

First, we show that while all players initially play the backward induction
path, and in each period all players observe all actions on path, the backward
induction path may be upset by small-probability model deterioration, and the
resulting long run distribution of play may be Pareto-superior. As long as the
o -path actions that support the complete-game backward induction path can
be more easily forgotten than the actions that upset it, model deterioration
generates more and more players who deviate from the backward induction
path. In some games these deviations prevent the players from regaining
awareness of the actions that their predecessors forgot. As a result, while
model deterioration occurs with small probability, the fraction of players who
do not play the backward induction solution increases over time, and eventually
overcomes the population. When this is the case, we say that the complete-
model backward induction path is upset by model deterioration.
We characterize games where the backward induction path may be upset.

It is necessary that the backward induction path admits “profitable devia-
tions” (i.e. by deviating from the backward induction path, a player enters a
subgame with a terminal node that makes her better o ). This condition is
also su cient when players can forget their own actions. When they can only
forget opponents’ actions, our su cient condition further requires that there
be a non-subgame perfect Nash equilibrium in any subgame originating on the
backward induction path at the deviation node or after such a node. This
su cient condition shows that the backward induction path may be upset by
model deterioration in any game that is complex enough. However, if the back-
ward induction path satisfies a strong forward-induction requirement, in the
spirit of Van Damme (1989), then it cannot be upset by model deterioration.1

This paper is related in scope to the literature on learning and evolution in
games (see Weibull 1992, Samuelson 1997 and Fudenberg and Levine 1998 for
comprehensive reviews). Strictu-sensu evolutionary game theory analyzes the

1Among evolutionary stability concepts that display forward-induction properties,
Swinkels (1992) proposes the concept of equilibrium evolutionary stable sets, and shows that
they are robust to iterated removal of weakly dominated strategies and satisfy the Never
Weak Best Response Property (see Kohlberg and Mertens 1986). The forward-induction
property displayed by our solution concept is closer to the property analyzed in Balkenborg
(1994).
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fitness of genes subject to natural selection forces. This is equivalent to study-
ing the learning process of non-strategic players. The literature on rational
learning (see for example Kalai and Leher 1993, Fudenberg and Levine 1993a
and 1993b, Nachbar 1997) focuses on how players learn opponents’ strategies.
We assume that players know how to fully solve game-theoretical models, and
hence play an equilibrium given their model of the game. We keep track of
how their models change over time. Our results imply that there are games
that players may never fully learn.
In comparing our framework and analysis with evolutionary game-theory

contributions, we should first point out that our learning dynamics are not
payo -monotonic. In evolutionary game theory, natural selection is assumed
to favor strategies yielding the highest payo . One rationale for such learning
dynamics is that people imitate those players who achieve the highest payo
(see Schlag 1998 for a formal argument). However, a player may not always
be able to observe the payo obtained by the other players in the population,
whereas she always observes the move made by the opponents with whom
she is matched. Consistent with that view, this paper focuses on the relation
between the players’ models and their past observation of play.
Despite this major di erence, our characterization of games where the back-

ward induction path is robust with respect to model deterioration unexpect-
edly turns out to be in close logical relation to standard evolutionary stability
analyses. The backward induction solution is not necessarily selected by Lya-
pounov stability under the replicator dynamics;2 Balkenborg and Schlag (2001)
fully characterize sets that are asymptotically stable with respect to any tra-
jectory in the mixed strategy profile space, under any evolutionary dynamics
that satisfies mild requirements.3 In the language of this paper, they show
that the backward induction Nash component of a game is asymptotically sta-
ble if and only if the game does not admit any profitable deviation.4 This

2Hart (2000), Hendon, Jacobsen and Sloth (1996) and Jehiel and Samet (2001) instead,
present di erent learning models that favor the backward induction solution in the long run.

3Specifically, they require that the dynamics be regular and that the growth rate of any
pure best reply be non-negative, and that it be strictly positive unless all strategies played
in the corresponding population are best replies. Such a class of dynamics is very large, as it
includes all regular payo -positive and payo monotonic-dynamics, and hence the replicator
dynamics.

4Studying sets that are asymptotically stable with respect to trajectories starting in the
interior of the mixed strategy profile space, instead, Cressman and Schlag (1998) show that
the Nash Equilibrium component associated with the backward induction path is the unique
minimal interior asymptotically stable set in any perfect-information generic extensive-form
game where any path has at most one decision node o the backward induction path, and
this node has at most two choices.
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characterization is logically equivalent to our characterization of games where
model deterioration may upset the backward induction path, for the case when
players can forget their own actions. When players can only forget opponents’
actions, we show that the backward induction path of any game without prof-
itable deviations cannot be upset by model deterioration, but we also show
games with profitable deviations where the backward induction path cannot
be upset.
In the stochastic learning model by Noldeke and Samuelson (1993), each

player is endowed with a “characteristic” consisting of a strategy and a conjec-
ture on the opponents’ choices. In each period, she may reconcile her conjec-
tures with the opponents’ population play o path and choose a best-response.
But with small probability she may also randomly mutate her characteristic.
Our su cient condition for the robustness of the backward induction path with
respect to model deterioration is logically equivalent to their su cient condi-
tion (Proposition 7) for the backward-induction solution to be the unique lo-
cally stable component. Their necessary condition for the backward-induction
solution to be a locally stable outcome (Proposition 4) is that by deviating
from the backward induction path, any player cannot enter a subgame where
there is a (non-subgame perfect) Nash equilibrium that makes her better o .
Our necessary conditions for the backward-induction path to be robust to
model deterioration are tighter. When players can forget their own actions,
it is necessary that any player cannot enter a subgame where there is an out-
come that makes them better o . When players can only forget opponents’
actions, it is necessary that, by deviating from the backward-induction path,
any player cannot enter a subgame where there is a non-subgame perfect Nash
equilibrium, together with a possibly di erent outcome that makes the player
better o with respect to the backward-induction solution.5

The paper is presented as follows. The second section describes a simple ex-
ample leading to the subsequent analysis. The third section formally presents
our dynamic framework, and the fourth section contains our characterization
results. The fifth section discusses a few possible extensions. The sixth section
concludes, and it is followed by the Appendix, which lays out the proofs.
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Figure 1: Trust and Punishment Game

2 A Simple Example

Example 1 Two populations of players of size 1 are randomly matched to
play a version of the trust game (depicted in figure 1) which includes the
possibility of costly punishment.6 Each player from population 1 may either
trust ( ) her opponent, or not ( ). If trusted, the second player may honor
( ) the first player’s trust, or cheat ( ). In case her trust is abused, the first
player may decide to costly punish ( ) the opponent, or to acquiesce ( ).
The subgame-perfect equilibrium is ( ) with backward induction path
. The game has another Nash equilibrium component, which induces the

path and Pareto-dominates the backward induction path
We assume that with probability players from population 2 can forget

the possibility that action is played, and players from population 1 can
forget action , if they have not observed them in their parents’ match.7 To
simplify the calculations, we assume that each player’s model always include

5Unlike our characterization, their characterization is limited to the domain of games
where each player moves only once along each path. Hence the comparison is staged in that
domain only.

6The original trust game has been introduced by Kreps (1990). This expanded version
appears in Kohlberg and Mertens (1986), who show that its backward induction solution
fails to satisfy the Never Weak Best Response property together with Admissibility.

7If a player in population 1 is unaware of the possibility of being cheated, when
choosing whether to trust ( ) her opponent or not ( ) at her first decision node, then she
also does not consider the choice between punishing the opponent ( ) or acquiescing ( )
in the case that she is cheated. This choice is meaningful only if the opponent plays a
possibility of which she is unaware. This does not mean that she is unaware of her own
actions and If her opponent subsequently cheats her, the player will quickly realize
that she may respond by playing either or at her second decision node. This issue is
further clarified in the exposition of our general model at the beginning of section 3.2.
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all other actions.
We first present our results informally. In the initial match, all players hold

a complete model of the game. Players from population 1 play the backward
induction path and thus both and may be forgotten. Population-2
players unaware of play because the backward induction solution of their
incomplete model of the game is Their play prevents their o springs
from observing Because the o spring of a parent unaware of will also
be unaware of it, unless she observes , the fraction of players unaware of
increases over time. Since is the solution of the game where the con-

tinuation of action is deleted population-1 players unaware of play
Their opponents play only if they are aware of 8 Since the fraction of
these players decreases over time, the fraction of o springs who observe on
path decreases over time. In the long run, there are no players in population 1
whose model includes and no players in population 2 whose model includes
so that the Nash equilibrium path is established.
Formally, the populations dynamics are described by letting be the time-
proportion of population-2 players unaware of and be the proportion
of population-1 players unaware of :½

+1 = + (1 )(1 )

+1 = + (1 )
(1)

In the first equation, the proportion +1 of players unaware of at time +1
is determined as follows. The fraction of parents unaware of play hence
preventing their o spring from regaining awareness of A fraction 1 of
the 1 parents aware of is matched with fully aware opponents who
play : their o spring forget with probability The remaining o spring
of fully-aware parents maintain a complete model. In the second equation, a
fraction 1 of parents are fully aware and play : their o springs do not
observe and forget it with probability Of all the parents unaware of
a fraction is matched with opponents unaware of who play . All

their o springs remain unaware of The remaining (1 ) o spring regain
awareness of and become fully aware.

8Our model assumes that each fully-aware player in population 2 plays after her
opponent plays In the context of this example, this can happen because the player makes
sense of the opponent’s choice by concluding that the opponent is unaware of In our
general model (see section 3.2) we assume that when a player find herself at a decision
node that contradicts her model’s backward-induction solution, she expands her model by
conjecturing that the opponent is aware of actions that she is not aware of. We assume
that this model revision does not change her choice. This assumption is reasonable because
the revision does not generate any new information about the payo consequences of her
choices.
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It is immediate to see that is non-decreasing in Thus there must be
a value for all such that for Pick any arbitrary
since +1 +1 = (1 )(1 ) 0 it follows that 1 1

and hence that +1 + (1 )(1 ) In the limit for this
implies that + (1 )2 As long as 0 this condition is satisfied
only if = 1 Since 1 for it must also be the case that 1
System (1) asymptotically approaches the state ( = 1 = 1) At the state
( = 1 = 1) the path played in each match is : the Pareto-dominant
non-subgame perfect Nash equilibrium path. Also note that the state ( = 1
= 1) is the unique stationary state of the system, that it is asymptotically

stable, and that it is a global attractor. ¦

We conclude this section by underlying a key feature of the above example,
and of subsequent analysis: the possibility that the backward-induction path is
upset by model deterioration crucially depends on the relative likelihood that
di erent actions are forgotten by the players. In the above example, we study
the polar case where players only forget the actions and that belong
to the backward-induction solution. It is immediate to see that in the polar
opposite case where players forget actions and instead of and the long
run distribution of play coincides with the backward induction path. Because
players unaware of (respectively, of ) play the backward-induction solution
strategies and respectively the actions and are not observed on
path, and in the long run all players play the backward-induction solution
and are unaware of the opponents’ possible deviations. Formally, letting
be the time- proportion of population-2 players unaware of and be the
proportion of population-1 players unaware of , we obtain

½
+1 = + (1 )

+1 = + (1 )

The system converges to the steady state state ( = 1 = 1) and the
backward-induction path is established.
The relative likelihood that di erent actions are forgotten by the players

does not depend on the characteristics of the game form, but on the contex-
tual meaning of di erent actions in a social interaction. In its general game-
theoretical analysis, this paper is agnostic with respect to the issue of how the
relative likelihood of forgetting actions should be formulated in specific social
interactions.9 It is easy to show that in any game form, it is always possible to

9For this specific example, however, we can follow the guidance of the cognitive studies
on framing e ects (see Dawes 1988 for a comprehensive presentation). First, it appears
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assign model-deterioration probabilities in such a manner that the backward
induction path is not upset. This paper tackles the more interesting question
of identifying game forms where model deterioration may upset the backward
induction path for at least some forgetfulness probabilities across actions.

3 The Learning Model

3.1 Preliminaries

There is a finite set of populations of players. In each population there
is a continuum of players of size 1 At each period all players are ran-
domly matched to play the finite perfect-information “generic” game =
( u) without any chance move. Each match is anonymous and it
includes one player from each population; matches are independent over time.
Setting = the pair = ( ) represents a tree where is the set of
decision nodes, is the set of terminal nodes, and the set of arcs ×
is the action set. For any node ( ) is the set of arcs exiting For any arc

( ) we denote as ( ) the node successor of reached through arc
We denote by the transitive closure of by we mean that precedes
in the game tree, and by ¹ that either or that coincides with

The path a ( ) from node to node on the tree = ( ) is the (unique)
set of actions { 0 · · · } such that 0 = ( 1) 1 = ( 1 2) = ( )
for some set { 1 2 } Each terminal node uniquely identifies a path
from the initial node 0 and we can also call a path.
The assignment function : labels the decision nodes to players. It

is extended to actions in the standard fashion, and partitions the sets and
into { } and { } The function u : R represents the players’

payo s, and each player in the same population has the same utility function.
We assume that there are no ties in payo s, ( ) 6= ( 0) for any distinct
paths 0 and any ; the set of games satisfying this property is generic in
the set of finite perfect-information games. To avoid trivialities, we focus on
games where for any # ( ) 1 and for any ( ) ( ( )) 6= ( ) For
any node we introduce the sets = { 0 : ¹ 0} =
and = The subgame starting at consists of the game =
( | | u| )

that the possibility to punish unfair behavior is very salient and unlikely to be dismissed.
Second, dishonest and deviant behavior appears to be less salient than behavior conforming
to social norms. Applied to this game, these findings suggest that, consistently with our
analysis, the likelihood that players’ models include actions and should be larger than
the likelihood that actions and are included.
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For any game any profile a × ( ) is a pure-strategy profile (note
that a identifies a proper subset of ) the strategy associated to any index
is a = ( ) which identifies a proper subset of and the opponents’
strategy profile is a = ( ) \ which identifies a proper subset of
The path (or outcome) induced by a is the unique terminal node such that

0 = ( 0 1) 1 = ( 1 2) = ( ) for some set { 1 2 } and some
set of actions { 0 · · · } a The definition of outcomes and payo s are
extended as customary when introducing the behavioral strategies ×
( ( )) for any index and the behavioral strategy profiles × \

( ( )) and × ( ( )) Where for any finite set the notation
( ) denotes the set of distributions over
The backward induction solution a × ( ) is defined as follows. Let

0 = and for any 1 recursively define

= { \( 1
=0 ) : for all ( ) ( ) ( 1

=0 )}

Set u ( ) = u( ) for any For any 1 and any let

= arg max
( )

( )( ( )) and u ( ) = u ( ( ))

The associated backward induction path is denoted by

3.2 The Individual Game Models

In any period of play and any match, at the beginning of the game, each
player formulates a (possibly incomplete) model of the game, identified by a
(possibly proper) subset of the action space As the play develops in the
match, it may be that some players play actions not included in a player’s
initial model. Whenever this is the case, this player may find herself at a
decision node not specified in her initial model, and will need to formulate a
model of the subgame starting at that node. In order to give a well-structured
description of players’ models at each decision node, we first assume that in
any match each player is endowed with a framework consisting of a list of
actions in the game. A player’s framework does not only represent the actions
included in her initial model in the match, but also identifies the actions that
will be included in her model if the play reaches any of the decision nodes,
including nodes identified by paths that contain actions not included in her
initial model. In order to guarantee that all these models identify well-defined
subgames, we assume that each player’s framework includes at least one action

( ) for each node Furthermore we assume that players are aware
of all their own actions.
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Definition 1 For each population the set of admissible frameworks is
B = { : and for any ( ) 6= }

For future reference, we denote by = ( ) any arbitrary profile of
frameworks, by B = × B the set of frameworks profiles.
Given a player’s framework, we can determine her model at any of her de-

cision nodes. Pick an arbitrary player from an arbitrary population endowed
with framework and suppose that the play reaches her decision node
This player’s model of the subgame starting at is determined by all paths
that start at and that include only actions contained in In order to give a
formal definition, note that for any node the set × identifies all possible
arcs connecting the nodes in and that ( × ) thus identifies the set
of all actions contained in and connecting nodes in

Definition 2 Take any and At any of her own decision nodes the
model of any player in population with framework is denoted by ( )
and consists of the largest tree contained in the (not necessarily connected)
graph ( ( × ))

At each decisional node we assume that each player, given a possibly
incomplete model, solves the subgame according to the unique backward in-
duction solution. Specifically, given any model ( ) we let a ( ) be the
backward induction solution of the game ( ) =

¡
( ) | u|

¢
where = and = and we let u ( ) be the associated
backward induction values.

Assumption 1 Take any and Any player in population endowed with
framework plays the (unique) backward induction action ( ) at any
of her decision nodes

It is important to stress that when players make their choices, they have no
knowledge of the models of the other players in their matches. This assumption
is crucial for our analysis. If players knew everybody’s model in their match,
then they would share the same model of the game. Because each player is fully
aware of her actions, all her opponents would also know her actions, and all
the players’ models would be complete. While players may still forget actions
in the lapse of time between their parents’ match and the moment they are
called to play, such forgetfulness would have no bite. All players would regain
awareness of forgotten actions by observing their matched opponents’ models.
We also underline that each player plays the backward induction solution

of her (possibly incomplete) model even if she finds her at a decision node
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that contradicts her model’s backward-induction solution. This is crucial for
our characterization results. We shall now argue that it is reasonable in this
context. Suppose that the opponents’ choices leading to a node are incon-
sistent with the solution of a player’s incomplete model at To make sense
of these opponents’ choices, the player may either conjecture that the oppo-
nents do not know some actions that she is aware of, or revise her model
by conjecturing that they know some opponents’ actions of which she is not
aware.10 We assume that she does the latter: she expands her model at until
the backward-induction solution of the expanded model is consistent with the
play reaching node 11 This assumption is not innocuous; if the player were
to draw any inferences on the opponents’ models, she may want to change her
backward-induction solution.
As is shown below, any incomplete model at can be expanded in such a

way that the backward-induction solution of the expanded model is consistent
with the play reaching and still it yields the same choice at as the original
model. Indeed, one key observation is that making sense of the opponents’
choices before places no restrictions on —and hence provides no information
about— the player’s own payo s induced by the actions that are added to the
model. Because the player cannot acquire any additional information about
the payo consequences of her choices at through her model revision process,
it is reasonable to assume that after expanding her model, she makes the same
choice at that she would make with her original model.
Formally, the incomplete model of the subgame at node identified by

the game ( ) may be expanded into the rationalized model ˆ ( ) =
(( ˆ ˆ ) ˆ û) of the whole game as follows. Let ( ˜ ˜ ) be the largest
tree contained in ( a( 0 )) and a (ˆ ( )) the backward induction
solution of game ˆ ( ) Construct ˆ ( ) so that ( ˜ ˜ ) ( ˆ ˆ )
|̂ ˜ = | ˜ û| ˜ = u| ˜ a( 0 ) a (ˆ ( )) and a ( ) a (ˆ ( ))

It is immediate to see that a rationalized model ˆ ( ) exists for any and

10The issue is related to the literature on common certainty of rationality. There, the
game is common knowledge and, by finding herself o path, a player may only infer that
rationality is not commonly certain. Whether or not she will play according to the backward
induction solution depends on such inferences and on her higher order beliefs (see, for
example, Battigalli 1996, and Battigalli and Siniscalchi 2002). This paper assumes that
that it is common knowledge that players are rational, but that they may have di erent
models of the game.
11Alternatively, our assumption can be motivated in an extension of our model with

trembles. In such a setting, when a player observes opponents’ actions that are inconsistent
with her solution of the game, she can rationalize them them as opponents’ mistakes. Full
fledged analysis of a model with trembles is beyond the scope of this paper, but we discuss
this model further in Section 5.
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By construction, it yields the same backward induction solution as ( )
at and the node is reached on its backward-induction path.

3.3 Dynamics

The framework distribution in the populations at any time is identified by
where for each (B ) In order to describe its dynamic transition

between time and time + 1 we need to specify the framework transition
of each player in each population. Each player’s framework always include all
actions observed on path in her parent’s match. Of those actions that were not
observed, the player is unaware of all the actions that her parent is unaware
of. In addition, the player may randomly forget some unobserved actions, so
that her model randomly deteriorates.
For simplicity, we assume that forgetfulness occurs with probabilities fixed

over time and across players of the same population. For any population
and framework we introduce the probability distribution (·| ) with

support { ˆ B : ˆ } The o spring of each player with framework
may forget actions according to the probability distribution (·| ) Because
all frameworks in the collection B include all actions of the players in
population and at least one action at each node, players cannot forget their
own actions, and cannot forget all actions at any node. Restricting the support
to sets ˆ represents the assumption that players cannot become aware
of actions their parents are unaware of, unless they observe them on path.
Because for any population and framework the choice ( ) is

unique at each decision node the path observed by each player in her parent’s
match is uniquely pinned down by the frameworks of the players in the match.
Hence, for any matching time a player’s stochastic framework transition
between and + 1 is only a function of her parent’s framework at time
, and of the frameworks of the players in her parent’s match. This leads
us to the following assumption which also incorporates the restrictions that
observed actions cannot be forgotten. While possibly deteriorating according
to the probability system each player’s model always includes the actions
observed in her parent’s match.

Assumption 2 Take any time and any match where the players’ frameworks
are For any the o spring of the player in population is endowed with
framework ˆ B at time + 1 with probability

X
˜ : ˜ ˆ = ˜ a( )

( ˜ | )
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This assumption, together with a standard “Law of Large Number” argu-
ment (see Alos-Ferrer, 1999), allows us to derive the framework distribution
transition function ( ) : × (B ) × (B ) such that

( )( ˆ ) =
X

( ˜ ) : ˜ ˆ = ˜ a( )

( )
³
˜ |

´
for any and ˆ

Our construction determines a family { ( )} of dynamic systems parametrized
in the profile of forgetfulness probability systems Fixing an initial state
0 each system ( ) determines a solution { ( 0)} 0 and thus we have
obtained a family of solutions {{ ( 0)} 0} parametrized in
For any type distribution we let ( ) be the aggregate play induced

by :

( ) =
X

{ : ( )= }

( ) for any

This paper investigates whether complete game models (and hence the induced
backward induction path) can be upset by small-probability model deteriora-
tion.12 Formally, we study the families of solutions {{ ( 0)} 0} where
0( ) = 1 for all for close to the family = ( ) such that

¡
|
¢
= 1 for all B

As already pointed out, the limit solution may depend on the relative probabil-
ities of forgetting di erent actions in the limit. Therefore our results are given
for specific sequences { } 0 of model-deterioration probability profiles. We
say that the backward induction path is fragile, if it di ers from the long run
play for some sequence { } 0 approaching in the limit.

Definition 3 The backward induction path may be upset by model dete-
rioration if there is a sequence of model-deterioration profiles such
that

lim inf lim inf
¡
( 0)

¢
( ) 1

12It would be inappropriate to study the persistence properties of outcomes allowing for
initially incomplete models. Whenever assuming that players are initially unaware of some
relevant actions, and do not have a chance to observe and learn them, the analysis would be
more appropriate to describe the e ect of model deterioration on a smaller game where these
actions are simply impossible. A fortiori, it would be inappropriate to study the stability
of the backward induction path in terms of (Lyapounov or asymptotically) stable states
without explicitly considering the initial model distribution.
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4 The Characterization

This section characterizes necessary and su cient conditions for the backward
induction path of a game to be upset by small-probability model deterio-
ration. Our necessary condition builds on the following simple observations.
Players cannot forget observed actions and the backward induction path is
initially played by all players. Because players cannot forget actions on the
backward induction path, they may decide to deviate only in the hope of im-
proving their payo . A player will never deviate from the backward induction
path if all the terminal nodes that follow the deviation make her worse o
with respect to the backward induction path. To give a formal account of this
intuition, we introduce the concept of profitable deviation.

Definition 4 Let ( ) be called a (profitable) deviation whenever
( ) ± and ( )( ) ( )( )

13

Theorem 1 For any game the backward induction path may be upset
by small-probability model deterioration only if admits a profitable deviation
( )

The above result implies that if the backward induction path satisfies a
forward-induction requirement similar in spirit to (but stronger than) the one
introduced by Van Damme (1989), then it cannot be upset by model deteri-
oration. Van Damme (1989) defines a subset of the Nash equilibrium set
consistent with forward induction in 2-person generic games if there is no equi-
librium in such that some player can take a deviation leading with certainty
to a subgame in which she is better o under one equilibrium of the subgame
and worse o under all the others. We modify this forward induction require-
ment by stipulating that a subset of the Nash equilibrium set is consistent
with strong forward induction if there is no equilibrium in such that some
player can take a deviation leading with certainty to a subgame in which she
is better o given any strategy profile of the subgame. Evidently, this require-
ment is stronger than the one introduced by Van Damme (1989). Theorem 1
states the backward induction path cannot be upset by model deterioration if
the associated Nash equilibrium component is consistent with strong forward
induction.

13The concept of profitable deviation is closely related to the concept of strict outcome
path introduced by Balkenborg (1995). It is immediate to show that the backward induction
path of a perfect-information generic game is a strict outcome path if and only if the game
does not admit deviations.
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1 T          2         C

           0, 3

N      H 

1, 1       2, 2

Figure 2: Trust Game

While profitable deviations are necessary for the backward-induction path
to be upset by small-probability model deterioration, the next example shows
that they are not su cient. When a forgetful player deviates from the back-
ward induction path in the beliefs of improving her payo s, the opponent plays
the forgotten backward-induction solution actions and reminds her that she
would be better o staying on the backward induction path. Thus, the fraction
of forgetful players cannot accumulate and will remain negligible over time.

Example 2 The trust game represented in Figure 2 has a unique Nash Equi-
librium ( ) with path If players in population 1 forget then they
deviate and play but regardless of her model, each player in population 2
plays if her decisional node is reached. As a result the unaware player 1 is
immediately reminded of action and she switches back to Formally, we
let (respectively ) denote the time- fraction of players that are unaware
of (respectively ) and obtain:

½
+1 = (1 )

+1 = + (1 )

where we use the shorthand notations and to denote the probability
that a player from population 1 forgets action and respectively. For any
choice of the parameters 1 0 and 1 0 in the long run, the system settles
on the state ( ) such that 1 (1 + 1 ) Since 1 is negligible, the
long run distribution of play is indistinguishable from the backward induction
path. ¦

The key feature of Example 2 that makes the backward-induction path
robust to model deterioration is that, once any forgetful player deviates from
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the backward induction path, she is immediately reminded of the forgotten ac-
tions, so that unawareness cannot accumulate over time. This stands in sharp
contrast to our motivating Example 1, where the backward induction path
is upset because players in population 1 who are unaware of deviate from
in the hope of reaching path and players in population 2 who forget

action indeed play so that their forgetful opponents remain unaware of
As a result, the proportion of matches inducing the path increases over

time and the backward induction path is upset by small-probability model
deterioration.
The salient features of the path are that (i) it induces a profitable devi-

ation, (ii) it is induced by the non-subgame perfect Nash equilibrium ( )
Hence, the forgetful players’ models of the game are consistent with the oppo-
nents’ play, and they do not regain awareness of the actions they have forgot-
ten. Proposition 2 shows that model deterioration may upset the backward-
induction path in all games with a path that has the same characteristics as

We call a Nash path of a game any path that is associated with a Nash
equilibrium component of 14

Proposition 2 If a game has a deviation ( ) such that is a Nash path
of the subgame then the backward induction path of may be upset by
small-probability model deterioration.

For an intuitive explanation, let be the action at such that ( ) ¹ , and
consider any node 0 that lies on the path between and By construction
0 is o the backward induction path and all actions in the subgame 0

can be forgotten, as long as players play at Let 0 be the action at 0

such that 0( 0) ¹ and consider any alternative action 00 Once a player
forgets all opponents’ actions in the subgame 00( 0) that do not belong to the
Nash equilibrium supporting and all opponents’ actions that do not lead
the play into at any nodes between 0 and she will choose 0 whenever
the node 0 is reached. This precludes the player from ever recollecting such
forgotten actions, as they are o the path established by action 0 Hence the
frequency of these forgetful types cannot decrease in time, and it is strictly
increasing as long as node 0 is not reached with probability one. Since the
node 0 is arbitrary, this shows that the path is established in the long run,
if the action is played at node

14In generic games of perfect information, any Nash equilibrium component identifies a
unique (degenerate) path of play see Kreps and Wilson (1982), and Kohlberg and Mertens
(1986).
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Suppose that a player at node forgets all the opponents actions in ( )

that do not lead the play into Since ( ) is a profitable deviation, she
chooses at In the long run, these forgetful types most likely observe actions
on the path from to and will not be reminded of forgotten actions. As
a result, these forgetful types eventually overcome the population. Since they
deviate the play from to whenever they are called to play at node the
backward induction path is upset.

While the argument is less transparent, the characterization of Proposition
2 can be extended also for the case in which the profitable deviation ( 0 0) that
lures players o path does not induce a Nash path in 0 as long as there is a
Nash path di erent from in any subgame such that either coincides
or comes after 0 on the backward induction path. The result is driven by the
observation that, when players deviate from the backward induction solution
at node 0 they make it possible to forget all actions on the backward induction
path that starts at Once players forget all opponents’ action that do not
induce the Nash path in the subgame they will believe that is reached
in that subgame. Hence they either do not enter the subgame or they establish
the path In either case, they deviate from the backward-induction path

Theorem 3 If a game has a deviation ( 0 0) and for some : 0 ¹
the subgame has a Nash path 6= , then the backward induction path of
may be upset by small-probability model deterioration.

Obviously, the su cient condition of Theorem 3 is stronger than the nec-
essary condition of Theorem 1. While the latter only requires that a game
admits a profitable deviation ( 0 0) Theorem 3 further requires that there
is a non-subgame perfect Nash equilibrium in a subgame where comes
after 0 on the backward induction path, or coincides with 0 This naturally
begs the question of whether the backward induction path is upset by small-
probability model deterioration when there are not any non-subgame perfect
Nash equilibrium in any such subgames, but still the game has non-subgame
perfect Nash equilibria. As it turns out, the backward induction path may or
may not be upset depending on further characteristics of the game. The issue
is best illustrated by the following two examples.

Example 3 Consider the game presented in figure 3. The backward induction
solution is ( ) with path The Nash equilibrium ( ) induces the
Nash path there are no further Nash paths. The players in population 1 have
no profitable deviations from the backward induction path, whereas the players
in population 2 may deviate and play if they expect their opponents to play
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1 B 2         D 1 F

           0, 2

A      C         E

2, 0       3, 1        1, 0

Figure 3: The Backward induction path is persistently upset.

The profile ( ) is not a Nash equilibrium in the subgame starting with
the choice of players in population 2. Despite this, the backward induction
path may be upset. Suppose that actions and can be forgotten with
probability 0 and that no other action can be forgotten.
Initially, players in population 2 play ; their o spring do not observe

and may forget it. Players unaware of play their opponents’ o springs
do not observe and may forget it. In such a case, they play thus prevent-
ing their o springs and their opponents’ forgetful o springs from recollecting
forgotten actions. Hence the fraction of players playing grows over time and
eventually takes over the population.
Formally, let be the time- proportion of players unaware of and

be the time- proportion of players unaware of :½
+1 = + (1 )

+1 = + (1 )

This system asymptotically approaches the state ( = 1 = 1) the long
run path of play is .

Example 4 The backward induction solution of the game in figure 4 is ( )
with path The players in population 1 have no profitable deviations, and
those in population 2 may only profitably deviate by playing in expectation
that their opponents play The profile ( ) is not a Nash equilibrium in
the subgame starting with the choice of players in population 2, but the Nash
equilibria ( ) and ( ) induce the path
The backward induction path of this game cannot be upset by model dete-

rioration. Intuitively, each type from population 2 chooses to play either or
Hence any player from population 1 either observes or on path. Since
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she does not expect her opponent to ever play she plays If a player from
population 2 is unaware of and plays her o spring observes As in
Example 2, the long run path of play is indistinguishable from the backward
induction path
Formally, we suppose that action cannot be forgotten, so as to give the

best fighting chance to the Nash path Without loss of generality, we fur-
ther simplify the analysis by assuming that the probability of forgetting either
action E or action D is independent of the players’ model. Letting (respec-
tively ) be the time- fraction of players unaware of (respectively

) we obtain:

½
+1 = (1 ) ( + ) ; +1 = ( + ) ;

+1 = (1 ) ; +1 = + (1 )

where we use the shorthand notations and to denote the probability that
a player from population 2 forgets action F or G respectively, and the notations
, and to denote the probability that a player from population 1

forgets either action D or E only, or both actions D and E at the same time.
For any forgetfulness profile in the long run, the system settles on a

steady state ( ) where (1 + ) and ( + ) (1 +
) Since and are all negligible, the long run distribution of play

approximates the backward induction path
This example is extreme because C is conditionally dominated by both

E and D: if a player in population 2 is called to play, she prefers and
over regardless of her opponents’ choice (see Shimoji and Watson (1998),
page 169, for the formal definition of conditional dominance). Nevertheless
this game is suggestive of why it may be that the backward induction path
is not persistently upset in games outside the class identified by Theorem 3.
Moreover, it is not di cult to expand this game, so that C is not dominated
by either D or E, and so that the same result still obtains. ¦

We conclude this section by studying a simple version of centipede game
(see Rosenthal, 1982), a well known perfect-information game that is not cov-
ered in our characterization. Despite the often questioned plausibility of its
backward-induction solution, we find that model deterioration cannot upset
the backward-induction path.

Example 5 Figure 5 represents a 3-leg version of the centipede game: the
backward-induction solution ( ) yields path even though the players
may achieve a higher payo by proceeding in the game until the last decision
node. We will show that the backward-induction path cannot be upset. To
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1 B 2         D 1 G

           1, 2

A      C       E           F

1, 1       0, -1     2, 1       2, 0

Figure 4: The Backward induction path is not persistently upset.

1        B          2 D          1       F

3, 5

A C E

2, 0    1, 3 4, 2

Figure 5: A simple version of centipede game.
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give model deterioration the best fighting chance in upsetting the backward-
induction path, we assume that actions and cannot be forgotten.
Players in population 2 may forget because their fully-aware parents

play If their decision node is reached, such forgetful players play . Their
o spring are then reminded of because all players in population 1 play
regardless of their model of the game. Players in population 1 may forget
because their fully-aware parents play Such forgetful players play : if

matched with fully-aware opponents, their o springs observe and become
fully aware. In sum, it cannot be the case that the path of play di ers from
and that at the same time model deterioration accumulates in the popu-

lations. Hence the backward-induction path cannot be upset by small model
deterioration.
Formally, letting be the time- proportion of players unaware of and
be the time- proportion of players unaware of , we obtain:½

+1 = + (1 )

+1 = (1 ) + (1 ) ;

where denotes forgetfulness of action and forgetfulness of For any
forgetfulness profile in the long run, the system settles on a steady state

( ) where 1
2( +1)

h
(1 )

p
4 + 2 + 2 2 + 2 2

i
Since is negligible, the long run distribution of play approximates the back-
ward induction path ¦

5 Extensions

Our construction and results can be extended in several directions. We shall
now discuss some of the most interesting ones.

Players’ forgetfulness of their own actions. In order to allow players
to forget also their own actions within our dynamic construction, it is just
su cient to lift the restriction that admissible framework always contain all
players’ own actions in Definition 1. For each population we let the set of
admissible frameworks be B = { : for any ( ) 6= } and
again consider any forgetfulness systems with support { ˆ B : ˆ }
for any probability distribution (·| ) any and any We maintain the
assumption that a player cannot forget any action observed in her parent’s
match.
When players can forget their own actions, we can provide a complete

characterization of the games where the backward-induction path may be upset
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by small-probability model deterioration. The condition identified in Theorem
1 is necessary and su cient: the backward-induction path may be upset if and
only if the game admits profitable deviations. This characterization is logically
equivalent to the characterization by Balkenborg and Schlag (2001) of games
where the backward induction Nash component of a game is asymptotically
stable in a general class of evolutionary dynamics.

Theorem 4 Suppose that players can forget all actions not observed in their
parents’ matches, including their own. For any game the backward induction
path may be upset by small-probability model deterioration if and only if
admits a profitable deviation ( )

Because actions observed in the parents’ match cannot be forgotten, the
backward-induction path will not be upset by small forgetfulness if all the
terminal nodes that follow a player’s deviation make her worse o with respect
to the backward-induction path. Suppose that there is a profitable deviation
( ) for players in an arbitrary population Say that the forgetfulness profile
is such that all players that do not belong to population forget all actions in

subgame (including their own) that do not lead to much faster than the
players in population . These actions are initially o path, because players in
population play the backward induction action at Hence unawareness
of these actions accumulates over time. Eventually the players in population
forget these actions too, and deviate at node Because the opponents have
become largely unaware, the path reaches the terminal node Because
makes them better o with respect to the original backward-induction outcome
, they have no reason to switch back.

A variation of our model with trembles. While the above variation
of our model is easily solvable, introducing trembles in the players’ decisions
leads to cumbersome calculations. A model with trembles could be formulated
as follows. Given a game an arbitrary tremble profile is = ( ) where

(0 1) for any action In order to keep the focus of the analysis on
model deterioration, it is worth assuming that trembles are smaller than model
deterioration probabilities. Formally, this is done by restricting attention to
perturbation sequences { } 1 such that ( ˆ | ) for any

for any B and any ˆ B : ˆ i.e. any ˆ in the support
of (·| ) Any player in population endowed with framework plays at
each of her decision nodes the (unique) backward induction action ( )
with probability 1

P
( )\{ ( )} and any other action ( ) with

probability The remainder of the construction is unchanged.
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Our preliminary analysis, available upon request, reconsiders the introduc-
tory Example 1, and derives the dynamic system that describes the evolution
of framework distributions over time. While we do not derive analytical con-
clusions, our numerical simulations strongly suggest that along some sequences
{ } 1 the system converges in the long run to a fixed point such that
all players in population 2 are unaware of and all players in population
2 are unaware of Hence the path is established in the long run, and
backward-induction path is upset by model deterioration.
Intuitively, small trembles counteract the accumulation of model incom-

pleteness in the populations because they give a chance to players in popu-
lation 2 unaware of to play instead of Because their opponents play
if receiving these players’ o spring will regain awareness of and be-

come fully aware. This in principle can undo the forces of model deterioration,
because fully-aware players in population 2 play hence reminding unaware
players in population 1 that they should play the backward-induction path
instead of But if the trembles and the probabilities that players forget

the backward induction actions and are su ciently small relative to the
probabilities that they forget and the e ect of trembles is small relative
to the accumulation of unawareness of In the long run, almost all players
in population 2 are unaware of 15

Technical generalizations. A possible technical extension of this paper
would be a general analysis of our dynamic construction. The assumption that
all players initially hold complete models is made here to highlight our results
on the robustness of complete model solutions. One may want to address the
question of whether players may learn the game starting from a situation of
partial awareness. The key issue then becomes the analysis of the basin of
attraction of any stable states of the dynamics, without restricting attention
to those reached from an initial state of full awareness. The characterization
of stable sets, and of their attraction sets, would then complete the analy-
sis. Because this general analysis is quite complex, we postpone it to further
research.
Another possible extension would be a dynamic construction that considers

general extensive-form games. The di culty with this extension lies in the

15While we cannot provide formal proofs, we do not see any reason why this logic should
not extend to the constructions in the proof of our Proposition 2 and Theorem 3, which
identify su cient conditions for model deterioration to upset the backward-induction path.
Instead we have derived a formal argument (available upon request) of a result that extends
Theorem 1. Also in the presence of trembles, the backward induction path of any game
without profitable deviations cannot be upset by small-probability model deterioration.
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fact that, unlike perfect-information generic games, general games may possess
multiple solutions, so that in our dynamic construction the evolution of models
depends on past play. Thus, the dynamic construction would not be well
specified unless a unique solution is selected for each profile of models at each
period of play.

6 Conclusion

This paper has presented and analyzed a social learning construction that ex-
plicitly keeps track of the evolution of models held by players who are able to
solve perfect-information extensive-form games according to the models they
formulate, and whose models of the games depend on past observation of play.
We have introduced the possibility of small-probability model deterioration
and have shown that it may upset the complete-model backward induction
path, even when the deterioration is restricted to only the opponents’ unob-
served actions. Necessary and su cient condition for the backward induction
path to be upset have been presented. When players can only forget oppo-
nents’ actions, this characterization shows that model deterioration may upset
the complete-model backward induction path in a smaller class of games than
the class of games where the backward induction Nash component is asymp-
totically stable under standard evolutionary dynamics. Still, it also shows that
model deterioration may upset the backward induction path in all games that
are complex enough.

Appendix: Omitted Proofs

Proof of Theorem 1. Pick an arbitrary time 1 and suppose that
1( ) = 1: the “complete-model” BI path is established in all matches

at time 1 We will show that this implies that is played in any match
such that ( ) for all and that hence ( ) = 1 This result

proves our claim by induction over because the initial condition 0( ) = 1
implies that 0( ) = 1
We order the set of nodes on the BI path = { : } by assigning

for each set the index min{ : 6= }+1 to the node
Consider 1 the last decision node on the BI path . By construction, each

player in population ( 1) is aware of her own actions: ( 1)
( 1) for any

( 1) B ( 1) Because 1 is the last node on the BI path, 1
( 1) = and

thus ( 1)
( ( 1)

1)( 1
( 1)) = ( 1)( ) Because game has no profitable
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deviations, it must be the case that ( 1)(
0) ( 1)( ) for all terminal

nodes 0 such that ( 1) ¹
0 for some ( 1) 6=

1
It follows that

( 1)
( ( 1)

1)( 1
( 1)) = ( 1)

( 1) ( 1)
( ( 1)

1)( ( 1)) for any

( 1) 6=
1
; and hence the BI choice at node 1 of any player in population

( 1) with any possible framework
( 1) B ( 1) is

1
( ( 1)

1) = 1
the

complete-model BI action at node 1

For any arbitrary node with 2 and framework ( ) ( ( ))

consider the BI solution a ( ( ) ) Pick any node on the BI path
with index : 1 Because 1 ( ) = 1 i.e. the “complete-model”
BI path is observed in all matches at time 1 it must be the case that

( ) Because game has no profitable deviations, it must be the case
that ( )(

0) ( )( ) for all terminal nodes 0 such that ( ) ¹ 0 for
some ( ) 6= Proceeding by backward induction along the nodes

with : 1 the BI solution a ( ( ) ) must be such that

( )(
( ) )( ) = ( ) ( ) and hence ( ( ) ) = for all

Because the game has no profitable deviations, and every player in pop-
ulation ( ) is aware of her own actions, i.e. ( ) ( ) it must be
the case that ( ( ) ) = : every player with framework ( )

( ( )) plays the “complete-model” BI action at node Because

and ( ) ( ( )) are arbitrary, this concludes that the BI path

is established in all matches such that ( ) for any and
hence that ( ) = 1

The proof of the remaining results is simplified by the following Lemma,
its proof is available upon request.

Lemma 1 Any Nash equilibrium component of a perfect-information game
without chance moves and with no ties in the payo s contains a pure-strategy
Nash equilibrium a

Proof of Proposition 2. Let ( ) be to simplify notation. Let a0 be
a pure-strategy Nash equilibrium of subgame that induces the path Let
be the Nash equilibrium action at node (i.e. ( ) a) and a be the

restriction of a0 on the subgame ( )

Step 1. Construction of the forgetfulness probability profiles { } 1

For any player let ¯ = \( |
( )
) a Each player of type ¯ is

unaware of any opponent’s action that does not support the Nash equilibrium
path in subgame ( ) Clearly, all actions on the path belong to ¯

Moreover, it is also the case that
¡
¯
¢
= the path is established if

25Squintani: Backward Induction and Model Deterioration

Produced by The Berkeley Electronic Press, 2005



all players in the match are of type ¯ for all population This is because
(i) the profile a is a Nash equilibrium of the subgame ( ) that induces
and (ii) any player in population who believes that the terminal node is
reached if playing will deviate from the BI action to play at node
since ( ) ( ) by definition of deviation ( )
For any index 1 and any framework B ¯ ( we let¡
¯ |

¢
= 1 and ( | ) = 1 1 ; for any other type we

let ( | ) = 1 For any population 6= and any framework B
¯ ( we let

¡
¯ |

¢
= 1 and ( | ) = 1 1 for any other

type we let ( | ) = 1 Intuitively, we let players in population forget
the actions in ( |

( )
) \a infinitely slower than the players in population

6= forget the actions in ( |
( )
) \a This will give the time to players

in population 6= to accumulate unawareness in the subgame ( ) When
the players in population deviate from the BI path at node and play
they will most likely be matched with unaware opponents so that the path
=

¡
¯
¢
is established.

Step 2. For any 1 0 there exists a large enough, and a 1( 1 )
large enough, such that 1( ¯ ) 1 1 for any 6=
Any player in population 6= in a match where ( ) 6= will not

observe any action in ( |
( )
) \a It follows that, for any as long as

X
B : ( )6=

( ) (1 1)

the type transition in population is approximated by the equation

+1( ¯ ) = ( ¯ ) +
X
: ¯ (

( ) + (1 1) (2)

Given the forgetfulness probability system and because 0( ) = 1 for any
( ) = 0 unless ¯ Because 0( ) = 1 ( ) = 6= and

+1( ) = ( ) + (1 1)

the recursive application of Equation (2) implies the result.

Step 3. For any 2 0 there exists a large enough, and a 2( 2 )

1( 1 ) large enough, such that ( ¯ ) 1 2 for any 2

Pick any 1( 1 ) because 0( ) = 1 for any ( ) = 0 unless
¯
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For any player in population of any type such that ( ) 0 any
action 0 ( ) 0 6= and any node 0 º 0( ) it is the case that ( 0)
and hence that

( )( ) = ( ) ( 0) = ( )( 0)

Thus any player of type such that ( ) 0 either plays or at node
If she plays then all actions that do not belong to ¯ are o -path by

construction. If she plays with probability (1 1) she is matched with the
profile of types ¯ In such a case, as we have previously shown,

¡
¯
¢
=

and all actions that do not belong to ¯ are o path by construction. Be-
cause 1 can be taken arbitrarily small, the type transition in population is
approximated by the equation

+1( ¯ ) = ( ¯ ) +
X
: ¯ (

( )

The result is again implied by the recursive application of this Equation.

The proof is then concluded because
¡
¯
¢
= 6= and so ( ) 2

for any 2 the BI path is upset by small probability model deterioration.

Proof of Theorem 3. The proof extends the construction of the proof
of Proposition 2 in two Lemmata.

Lemma 2 If has a deviation ( 0) and the subgame has a Nash path
6= then may be upset by small probability model deterioration.

Proof. As in the proof of Proposition 2, let ( ) = The case where
( ) ( ) has already been covered in Proposition 2.
Let a be a pure-strategy Nash equilibrium of subgame that induces the

path and 0 be the action in ( ) such that 0 ( ) 0 Let + be the node
¹ + and + 0 where there are distinct actions in ( +), called

+ and
0
+, such that

0
+ (

+) 0
+ (

+)
For index let

= { ( 0) : + ¹ 0 0 ( 0) ± 0}

be the set of opponents actions that deviate from the path 0 and

+ = { ( 0) : + ¹ 0 0 ( 0) ¹ 0}
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be the set of opponents actions on the path 0

Case 1. Suppose that ( +) =
For any 6= let the type ¯ = \( |

( )
) a For index we

introduce the framework ¯ = \( |
( )
) a \ +: a player of type

¯ believes that the opponents will not deviate from the path 0 if she plays
action 0

+ at node
+ For any let the assignments be the same as the

ones defined in the proof of Proposition 2.
Step 2 in the proof of Proposition 2 extends without modifications: for any

1 0 there are 1( 1 ) such that 1( ¯ ) 1 1 for any 6= Pick
any 1( 1 ) Any player in population of type such that ( ) 0
either plays 0 or (or + in the case that

+ = ) at node If the player
plays then her o spring may forget all actions in subgame 0( ) and in the

subgame +( ) and become of type ˆ = ¯ a( ) note that she cannot
forget the actions on the BI path Because ( 0) is a profitable deviation,
any player of type ˆ plays 0: she is lured o the BI path by the prospect
of obtaining a payo at least as large as ( 0) With probability (1 1) she is
matched with the type profile ¯ and the node + is on the path ( ˆ ¯ )
Her o spring does not observe the BI path and, with positive probability,
she may forgets actions in the set a( ) including all the actions that do not
belong to the Nash equilibrium a in the subgame ( ) This player believes
that the payo achieved when reaching path (or path 0) is larger than the
payo she achieves by playing the BI action at node Because she deviates
from the BI path at node her o spring cannot regain awareness of any
actions in the subgame ( ) In particular, she cannot regain awareness of
the actions that do not punish her for playing at node including those
on the BI path
Since 1 can be taken arbitrarily small, we conclude that for any 2 0

there exists a large enough, and a 2( 2 ) 1( 1 ) large enough, such
that such that

X
B : ( )=

¡ ¢
2 for any 2

and hence ( ) 2 for any 2 analogously to step 3 in the proof of
Proposition 2.

Case 2. Suppose that ( +) = 6=
For any 6= let the type ¯ and the assignments be defined as in the

proof of Proposition 2. For player let ¯ = \ ( | ) a \ + as
in case 1 and ¯

2 = ¯ { +}\{
0
+} A player of type ¯ believes that the
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opponents will not deviate from the path 0 if she plays action at node A
player of type ¯2 instead believes that the path is established if she plays
action at node For any index 1 and any framework B ¯ (
or ¯2 ( we let

¡
¯ |

¢
= 1

¡
¯
2|

¢
= 1 2 and ( ˆ | ) = 0

for any type ˆ { ¯ ¯
2 } For any other type we let ( | ) = 1

For approaching zero, we let players in population forget actions in ¯ \ ¯2
infinitely faster than actions in ¯2\ ¯

Again, step 2 in the proof of Proposition 2 extends without modifications.
Pick any 1( 1 ) Any player in population of type such that ( )
0 either plays 0 or at node Consider the o spring of any player that plays
at node For any small enough, the probability that she forgets actions

in ¯
2\ ¯ (leading to path ) is infinitesimal with respect to the probability

that she forgets actions in ¯ \ ¯2 (leading to path
0) and becomes of type

ˆ = ¯ a( ) Because ( 0) is a profitable deviation, any player of
type ˆ plays action 0 at node With probability (1 1) she is matched
with the profile of types ¯ so that the path ( ˆ ¯ ) = is established.
With positive probability, her o spring forgets the action 0

+ (leading to path
0) as well as all actions in ( ) other than those in the Nash equilibrium
profile a thus becoming of type ¯2 In such a case, she plays

0 at node
because she believes to obtain a payo at least as large as ( ) which is larger
than the payo that she believes to obtain by playing action Because this
player plays 0 at her o spring cannot regain awareness of any actions in the
subgame ( ) With probability (1 1) she is matched with the profile of

types ¯ so that the path ( ˆ ¯ ) = is established and she cannot regain
awareness of any forgotten action in 0( ) Since 1 can be taken arbitrarily
small, for any 2 0 there exists a large enough, and a 2( 2 ) 1( 1 )
large enough, such that ( ) 2 for any 2 analogously to case 1.

Lemma 3 If has a deviation ( 0 0) and for some : 0 the
subgame has a Nash path 6= then may be persistently upset.

Proof. The cases such that there is a deviation ( 00) or the subgame
0 has a Nash path 00 6= are covered in Lemma 2. Let a be a pure-strategy

Nash equilibrium of subgame that induces the path be the action in
( ) such that ( ) and 0 be the action in ( 0) such that 0 ( 0) 0

As in the proof of Lemma 2, let ( 0) = and introduce

= { ( 00) : 0 ¹ 00 0 ( 00) ± 0}

be the set of opponents actions that deviate from the path 0
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Case 1. Suppose that ( ) =
For any 6= let the type ¯ = \( | ) a For index we introduce

the framework ¯ = \( | ) a \ : note that the path 0 does not reach
the subgame hence there are no actions in a that prevent reaching 0

For any let the assignments be the same as the ones defined in the
proof of Proposition 2.
The second step in the proof of Proposition 2 extends because all actions

in ( ) are o path in any match where the population- player plays Pick
any 1 ( 1 ) any type such that ( ) 0 either plays 0 or 0

at node 0 If she plays 0 her o spring may forget all actions in subgame
0( 0) and become of type ˆ = ¯ a( ) Because ( 0 0) is a profitable

deviation, this o spring then plays 0 With positive probability, her o spring
forgets actions in including those on the path ; she thus become of a
type ¯ a( ˆ ) depending on the type profile she is matched with.
Regardless of the path ( ˆ ) does not reach the subgame ( ) So
this player does not play action the BI action at node as she believes that
the payo of path is larger than the payo obtained when playing As she
deviates from the BI path at node her o spring cannot regain awareness
of any actions in the subgame ( ) Since 1 can be taken arbitrarily small, for
any 2 there exists a large enough, and a 2( 2 ) 1( 1 ) large enough,
such that X

B : ( )=

¡ ¢
2 for any 2

In any match such that the player from population does not play at
node either the path ( ) does not reach the node or it deviates from
the BI path at node In either case, ( ) 2 for any 2

Case 2. Suppose that ( ) 6=
For any index the type ¯ and forgetfulness profiles are defined

as in case 1. Step 2 in the proof of Proposition 2 extends with the fol-
lowing modification: for any 1 0 there exists a large enough, and a

1( 1 ) large enough, such that 1( ¯ ) 1 1 for any { } andP
B : ¯

1( ¯ ) 1 1 The index has been changed with and
players in population (who may forget actions in the subgame 0( 0)) may
be unaware of a larger set of actions than ¯

Pick any 1 ( 1 ) any player in population of type such that
( ) 0 either plays 0 or 0 at node 0 If the player plays 0 her o spring

may forget all actions in subgame 0( 0) and become of type ¯2: note that
because 6= there are no actions on the path in \ ¯2 Because (

0 0) is
a profitable deviation, a player of type ¯2 plays

0 deviating from the BI path

30 Advances in Theoretical Economics Vol. 4 [2004], No. 1, Article 2

http://www.bepress.com/bejte/advances/vol4/iss1/art2



at the node 0 that precedes The o spring of the player in population
matched with such a player of type ¯2 may forget with positive probability
all the actions on including those on the path thus becoming of type
¯ With probability (1 1) this o spring in population is then matched
with a type profile such that ¯ and = ¯ for all 6= In
such a match the path

¡
¯

¢
= is established. Again, since 1 can

be taken arbitrarily small, for any 2 0 there exists a large enough, and a

2( 2 ) 1( 1 ) large enough, such that
P

B : ( )=

¡ ¢
2

and hence ( ) 2 for any 2, analogously to case 1.

Proof of Theorem 4. Necessity follows from the proof of Theorem 1.
In order to prove su ciency, let ( ) be to simplify notation, let be

the action at node that leads into the terminal node and a be the set of
actions in the subgame ( ) that lead into the terminal node i.e. ( )
such that ( ) ¹ and 0

a if there is a node 0 such that ( ) ¹ 0

and 0 ( 0) ¹ For any population let ¯ = \( |
( )
) a Each player

of type ¯ is aware only of the actions that lead into the terminal node in
subgame ( )

Note that
¡
¯
¢
= the path is established if all players in the match

are of type ¯ for all population This is because (i) all players at nodes
other than think they have no choice but to play the action leading in
(ii) because ( ) is a profitable deviation, the players in population prefer
to play at and lead the path into rather than playing the backward-
induction action
For any index 1 and any framework B ¯ ( we let¡
¯ |

¢
= 1 and ( | ) = 1 1 ; for any other type we

let ( | ) = 1 For any population 6= and any framework B
¯ ( we let

¡
¯ |

¢
= 1 and ( | ) = 1 1 for any other

type we let ( | ) = 1
Intuitively, we let players in population forget the actions in ( |

( )
)\a

infinitely slower than the players in population 6= forget the actions in
( |

( )
)\a This will give the time to players in population 6= to accumulate

unawareness in the subgame ( ) When the players in population deviate
from the BI path at node and play they will most likely be matched with
unaware opponents so that the path =

¡
¯
¢
is established.

Indeed, steps 2 and 3 in the proof of Proposition 2 extend without modi-
fication. For any 1 0 there exists a large enough, and a 1( 1 ) large
enough, such that 1( ¯ ) 1 1 for any 6= For any 2 0 there
exists a large enough, and a 2( 2 ) 1( 1 ) large enough, such that
( ¯ ) 1 2 for any 2 It follows that the BI path is upset by small
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probability model deterioration because
¡
¯
¢
= 6= and so ( ) 2

for any 2
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