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Summary. Motivated by real-world information economics problems and by ex-
perimental findings on overconfidence, this paper introduces a general epistemic
construction to model strategic interaction with incomplete information, where the
players’ self-perception may be mistaken. This allows us to rigorously describe
equilibrium play, by formulating appropriate equilibrium concepts. We show that
there always exist "objective" equilibria, where the players correctly anticipate
each other’s strategies without attempting to make sense of them, and that these
outcomes coincide with the equilibria of an associated Bayesian game with subjec-
tive priors. In population games, these equilibria can also be always introspectively
rationalized by the players, despite their possibly mistaken self-perception.
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1 Introduction

In Bayesian games of private information that model adverse-selection problems,
some individuals’ unobservable characteristics (such as ability and intelligence)
influence the players’ payoff. It is customary to assume that informed players pre-
cisely assess their own characteristics. Well-established experimental evidence in
psychology contradicts this assumption: on average, individuals overestimate their
own personal characteristics.1 This paper introduces a general epistemic construc-
tion to model games of incomplete information, where the players’ self-perception
may be mistaken. This allows us to rigorously describe equilibrium play, by formu-
lating equilibrium concepts based on the players’ high-order beliefs with respect to
overconfidence and to each others’ strategies.

The need for such a rigorous construction naturally arises in simple signalling
problems à-la Spence (1974).2 We shall consider for concreteness two simple sce-
narios. Suppose that (i) an overconfident junior employee of a company or institu-
tion may attempt to signal her (perceived) ability by volunteering for the heaviest
and most difficult tasks; alternatively, consider (ii) a start up entrepreneur applying
for credit to a bank or to a venture capitalist: if overconfident, she may be tempted
to present a very bold company plan, in order to signal that her (perceived) skills
are better than the skills of the average applicant.3

By construction, the “informed” player cannot be aware that her self-perception
is mistaken, or else she would revise her self-judgement until correctly assessing
her characteristics. But her counterpart is likely aware of the possibility that her
opponent is overconfident. After all, the experimental evidence on overconfidence
is readily available to any company and credit institution manager. Since the over-
confident player is unaware of being overconfident, she is also likely to be unaware
that her counterpart knows that she is overconfident. It is an established experimen-

1 Among the numerous accounts of the so-called “illusion of absolute overconfidence,” Fischoff,
Slovic and Lichtenstein (1977) found that subjects’ hit rate when answering quizzes is typically 60%
when they are 90% certain; Buehler, Griffin and Ross (1994) found that people expect to complete
projects in less time than it actually takes; Radhakrishnan, Arrow and Sniezek (1996) found that stu-
dents expect to receive higher scores on exams than they actually receive; Hoch (1985) found that MBA
students overestimate the number of job offers they will receive, and the magnitude of their salary. Ac-
cording to DeBondt and Thaler (1995): “Perhaps the most robust finding in the psychology of judgment
is that people are overconfident."

2 Signalling problems have primal prominence in economics since the Nobel-prize winning piece by
Spence (1974). A large literature in social psychology addresses the set of strategies (self–promotion,
excuse–making, supplication, intimidation, ingratiation, etc.) adopted to manipulate others people’s
beliefs about oneself (see Wortman and Linsenmeier, 1977; Baumeister, 1998; for a review). The need
for formal modeling of signaling in relation to self-confidence is also stressed by Benabou and Tirole
(2003).

3 Entrepreneurs’ overconfidence is studied, for example, by Camerer and Lovallo (1999), Busenitz
and Barney (1997), and Cooper, Woo, and Dunkelberg (1988). To our knowledge, the effect of over-
confidence on entrepreneurs’ credit applications has not been explored.
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tal finding that normally healthy subjects systematically overestimate what other
subjects think about them.4

Describing the equilibrium of such an environment is not a conceptually easy
task. The overconfident individual is tempted to try and signal her perceived ability.
But suspecting that the individual may be overconfident, the counterpart is likely
to discount this signal. A venture capitalist would most likely dismiss a very bold
company plan, and infer that the applicant is likely to be self-deluded. Similarly,
an experienced manager would likely be skeptical of an overenthusiastic junior
employee who always volunteers for the most difficult tasks. But this response
should be anticipated in equilibrium. Our overconfident start up entrepreneur should
strategically present a more humble and conservative plan, whereas our junior
employee should strategically only volunteer for tasks that she feels she can easily
accomplish. Still, it is hard to see how an overconfident individual can correctly
anticipate that her costly signalling choices will not convince her counterpart of her
ability. This response is based on the knowledge that she may be overconfident, an
eventuality that the individual is not aware about.

Our formal epistemic construction superimposes to any incomplete-information
game, a layer of uncertainty about the players’ understanding of the game itself,
represented by appropriate beliefs operators. This allows us to provide two rigorous
definitions of equilibrium. We stipulate that the play is in a naive equilibrium when,
despite their possibly mistaken self-perceptions, the players are rational (i.e. utility-
maximizing) and correctly anticipate each other’s strategies, without attempting to
make sense of them. The play is in a sophisticated equilibrium, when the players’an-
ticipations of the opponent’s equilibrium strategies are correct and furthermore they
are rationalized by introspective reasoning. Specifically, we require that equilibrium
strategies and rationality are common knowledge among the players. Clearly the
set of sophisticated equilibria is a subset of the naive equilibrium set.

We show that naive equilibrium always exists and that it is equivalent to the
equilibrium of a reduced Bayesian game with multiple priors, generated by the
description of higher-order beliefs of overconfidence where the players agree to
disagree on the informed player’s ability.5 In the context of our motivating sig-
nalling examples, however, a sophisticated equilibrium does not exist, because the
objective requirement that strategies are in equilibrium is in conflict with the in-
formed player’s introspective rationalization of her opponent’s strategy.6

4 Lewinsohn, Mischel, Chaplin, and Barton (1980) had subjects rate each other along personality
dimensions, and found self-ratings significantly more positive than other subjects’ ratings. Mentally
depressed individuals displayed greater congruence between self-evaluations and evaluations of others
(see also Brown, 1986; Taylor and Brown, 1988).

5 Games without common priors are fairly common in epistemic game theory and in behavioral
economics (see for instance, Brandeburger and Dekel, 1987; Brandeburger et al., 1993, Eyster and
Rabin, 2003; Yildiz, 2003) and they are reviewed by Dekel and Gul (1997). One of the contributions of
this paper is to make the role of multiple priors games precise in relation to overconfidence.

6 This conflict has been recognized as a theoretical possibility also by Mertens and Zamir (1985),
who introduced the so-called “consistency” requirement on their universal type space to rule it out.
Their consistency requirement makes it impossible to study mistaken self perception, because it rules
out high-order beliefs that naturally arise in this context.
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We then turn from standard Bayesian games to population games. We imagine
a large replica population of informed players. The distribution of ability in the
population is common knowledge, and each informed player is aware that the other
players’ perception may be mistaken, while she thinks that her own self-perception
is correct. These assumptions are consistent with the overwhelming experimen-
tal evidence that subjects overestimate their own characteristics relative to other
subjects.7 Before the game is played, an informed player is anonymously and ran-
domly chosen. Her opponent’s strategy does not depend on the player’s individual
characteristics, but only on the distribution of characteristics in the population.
Hence there is no conflict in the mind of the player between her understanding
of the game and the anticipation of her opponent’s strategy. Our key result is that
a sophisticated equilibrium always exists in these population games, and that the
sophisticated equilibrium set and the naive equilibrium set coincide.

We conclude the analysis by studying the strategic value of mistaken self-
perception. As long as players cannot directly observe each other’s states of mind,
and may only try to infer whether their opponents are overconfident or unbiased by
observing their play, we show that they cannot be better-off by being overconfident.
While ex-post this result is fairly intuitive, it is natural to investigate the value of
mistaken beliefs in the context of behavioral economics. For example, experimental
studies (such as Busenitz and Barney, 1997) finding that successful entrepreneurs
are typically overconfident naturally suggest that overconfidence may be beneficial.
Our results suggest the contrary: over all overconfident start up entrepreneurs should
be less likely to be successful than unbiased ones. In fact, it is a well documented fact
that entry of new companies is excessive, and that a large number of (overconfident)
start up entrepreneurs are unsuccessful.8

This paper is presented as follows. Related literature is reviewed in the next
section. The third section lays down basic notation and introduces a simple sig-
nalling example. The fourth and fifth sections give a precise account of the players’
high-order beliefs and of equilibrium play, respectively in Bayesian and in popula-
tion games. The sixth section determines the strategic value of overconfidence, and
is followed by the conclusion. The Appendix presents omitted proofs, generalizes
the analysis, and reformulates the problem in the language of universal types à-la
Mertens and Zamir (1985).

7 Many experiments find that well over half of subjects judge themselves in possession of more
desirable attributes than fifty percent of other individuals. For instance, people routinely overestimate
themselves relative to others in IQ (Larwood and Whittaker, 1977), driving (Svenson, 1981), and the like-
lihood that they will have higher salaries and fewer health problems than others in the future (Weinstein,
1980).

8 For example, in a sample of 2,994 entrepreneurs, Cooper, Woo, and Dunkelberg (1988) find that
81% believe their chances of success are at least 70%, and 33% believe their chances are a certain 100%.
But in reality, about 75% of new businesses no longer exist after five years. The experimental study
by Camerer and Lovallo (1999) suggests a relationship between excess entry of new companies and
entrepreneurs’ overconfidence.
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2 Literature review

In the recent wave of research on behavioral economics, some contributions have ex-
plored the economic consequences of overconfidence. Camerer and Lovallo (1999)
conduct an experimental study that suggests a relationship between excess entry
of new companies and entrepreneurs’ optimism with respect to their own ability,
relative to the ability of competitors. Babcock and Loewenstein (1997) review ex-
perimental work that suggests that parties to legal disputes are reluctant to settle out
of court because they hold overly optimistic beliefs about the merits of their case. In
a model where individuals repeatedly choose whether to take informative tests and
may override failed tests, Flam and Risa (1998) show that overconfident decision-
makers eventually hold a higher status than unbiased ones, but because of longer
periods of testing their ex-ante discounted utility is smaller. Benabou and Tirole
(2002) and Koszegy (2000) show that an overconfident time-inconsistent individual
may strategically choose to ignore information about her uncertain payoff.

Benabou and Tirole (2003) characterize some incentive schemes that an indi-
vidual may use to manipulate her opponent’s self-confidence to her own benefit.
They further study some self-representation problems that are close in spirit to
our motivating signalling environments. Specifically, they show that (i) depressed
individuals may adopt a self-deprecation strategy, that (ii) in a game of common in-
terest poor students may choose to call for leniency from an advisor who would like
to impose high standards, and that (iii) individuals who have a piece of favorable
verifiable information on their work may adopt a humble profile in the expectation
that this information will be later independently verified. In the general equilibrium
literature, Sandroni (2000) examines whether and when over-optimistic investors
survive in the long run. Moscarini and Fang (2003) interpret workers self-confidence
as their morale level, and assume that it is affected by wage contracts, which reveal
firms’ private information on the worker skills. They show that non-differentiation
wage policies may arise, so as to preserve some workers morale. Yildiz (2003)
analyzes a sequential bargaining game with multiple priors about the recognition
process, the value of outside offers, or the break-down probability of bargaining,
and shows that excessive optimism can cause delays in agreement.

3 The basic model

This section lays down basic notation and informally introduces the relevance of
mistaken self-perception in a simple adverse-selection, signalling interaction. For
simplicity, we consider only two players: it is straightforward to extend our analysis
to the case with arbitrarily many players. Player 1 has private information about
her own individual characteristics, summarized as θ ∈ Θ (which we will denote
for short as ability), where Θ is finite for simplicity. We may think that player 1 is
a junior employee whose performance is being evaluated by the employer, or an
entrepreneur who is applying for a credit line.

Her counterpart, player 2, is not informed about θ. It is common knowledge
among the players that θ is distributed according to the distribution φ ∈ ∆(Θ).
Each player j’s plan of action is denoted by sj ∈ Sj , and we specify nature’s
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actions s0 in the game, to allow for the possibility that the players learn about θ
while playing the game. Nature’s choice is denoted by µ ∈ ∆(S0), and it is common
knowledge.9 The strategy space is S = S0 ×S1 ×S2, and for simplicity we assume
it finite. The players’ payoffs u : S × Θ → R

2 depend on the players’ choices s1
and s2, on nature’s choice s0 and on player 1’s ability. In the case where player 1
knows the value of θ, this situation is represented by the 2-player Bayesian game
with common prior G = (Θ, φ, S, µ, u), and the associated equilibrium concept of
Bayesian Equilibrium is well understood.

This game-theoretical formulation is quite general. The ability θ need not be
a number, it may be a vector or a distribution over personal characteristics. Each
player j’s strategy sj need not be a single action, but may be a complicated strategy,
or even an infinite horizon policy. This framework thus applies both to one-shot and
to dynamic interactions. By explicitly including nature’s moves in the framework,
we allow for the possibility of experimentation and learning by the players. Since
our results hold for any equilibrium of a given Bayesian game, they hold a fortiori
for any equilibrium refinement motivated by robustness, or by a particular sequence
of choices in an underlying extensive form game.

In order to represent the case where player 1’s perception may be mistaken, we
distinguish between player 1’s actual ability, denoted by θ, and her perception, de-
noted by θ̂.10 Let φ ∈ ∆(Θ), where Θ = Θ2, denote the (full-support) distribution
over the pairs (θ, θ̂). We denote the players’ utility by u : S ×Θ1 → R

2, where Θ1
denotes the first component of space Θ. The distribution φ is commonly known,
and whenever player 1’s personal characteristics are (θ, θ̂), she is informed only of
θ̂. From the Bayesian game G = (Θ, φ, S, µ, u), we have obtained the augmented
Bayesian game G = (Θ, φ, S, µ, u). Let φ1 denote the marginal of φ on the ability
component, and φ2 the marginal of φ on the perception component.

In the next section we will formally represent the players’ beliefs about the
game they are playing. Here it suffices to say that, whenever the game G =
(Θ, φ, S, µ, u) is played, player 1 believes that she is instead playing the game
G0 = (Θ, φ0, S, µ, u), where the distribution φ0 ∈ ∆(Θ) is derived from φ ac-
cording to the rule that for any θ̂ ∈ Θ, φ0(θ̂, θ̂) = φ2(θ̂).11 By construction,
in game G0 player 1’s ability coincides with her perception. It is immediate to
see that the operator (·)0 maps Bayesian games into Bayesian games, and that
(G0)0 = G0. Our construction is appropriate to represent general games with
mistaken beliefs. Overconfidence may be represented by considering games G
such that φ({(θ, θ̂) : θ ≤ θ̂}) = 1.

The next example studies a simplified version of the signalling problems dis-
cussed in the introduction. It shows that the possibility of mistaken self-perception

9 We want to allow for the possibility that players learn about their abilities if presented with clear
evidence by nature. Thus we require that they are not mistaken about the move of nature µ.

10 For simplicity, the perception θ2 belongs to the same space as the ability θ1. Alternatively, we
could say that perception is a measure that belongs to ∆(Θ). It is easy to see that all our results can be
extended under this alternative formulation, but that they would be more difficult to state and interpret.

11 It is not enough to say that each player with characteristics (θ1, θ2) believes that θ1 = θ2, because
this allows for the possibility that she may think that, if her perception had been θ′

2 �= θ2, then she
would have believed that her ability would have been θ′

1 �= θ′
2.
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may overturn our understanding of even one of the simplest information economics
problems. The standard prediction of separating equilibrium may be upset when
player 2 is aware that player 1 may be overconfident. This instance is formalized by
assuming that, while player 1 thinks that she is playing game G0, player 2 knows
that she is playing game G.

Example 1. Player 1 ’s ability θ may be either high (θH) or low (θL). Player 2
prefers a high-profile policy yH (such as promoting player 1 or granting her a line
of credit) if the opponent’s ability is high, and a low-profile policy (yH) if the
opponent’s ability is low. Before player 2 chooses her policy, player 1 may either
send a costly signal sH (such as volunteering for a difficult task, or preparing a bold
company plan) or a default signal sL. The value of the policy yH makes up for the
cost of the signal if and only if player 1’s ability is high.12 As is well known, the
key result of this model is that there is a separating equilibrium (the so-called Riley
outcome) where type θH signals her ability by sending the costly signal sH , and
player 2 responds by implementing policy yH if and only if she is sent the signal
sH .

In order to introduce mistaken beliefs, we say that player 1 may be overconfident
(but not underconfident): φ(θL, θH) > 0, and φ(θH , θL) = 0. To make the issue
relevant we say that player 2 prefers the low-profile policy yL when she cannot tell
if player 1 has high ability or is just overconfident:

{yL} = arg max
y

φ(θH , θH)u2(s, y, θH) + φ(θL, θH)u2(s, y, θL), for any s.

(1)

Whenever player 2 is aware that player 1 may be overconfident, it is intuitive to see
that the Riley outcome is disrupted. By contradiction, suppose that player 2 plays
yH if and only if she is sent sH . Then the overconfident sender would play sH , as
she mistakenly thinks that this choice maximizes her utility. However, Condition (1)
implies that player 2 plays yL upon receiving sH . We shall formalize this intuition
in the next section. ��

4 The players’ understanding of the game

This section formally represent the players’ understanding of the game they are
playing. We fix any Bayesian game G and superimpose a layer of uncertainty about
the players’ understanding of the game itself, represented by appropriate beliefs
operators.13 Since the players’ perception of their own ability may be mistaken,
the players’ beliefs on each other’s understanding of the game cannot be common
knowledge. As a result, the original Bayesian game augmented with this layer of
uncertainty does not constitute itself a game. But our augmented model provides a
precise framework to describe equilibrium play, and determine whether high-order

12 While this game is sequential in essence, we can use the framework presented above, because this
game may be represented as a Bayesian game with a standard transformation.

13 An introduction to the formal representation of knowledge and beliefs may be found in Dekel and
Gul (1997).
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beliefs and mistaken self-perception preclude the players from making sense of
each other’s strategies. Obviously this can only be assessed from the standpoint of
an external observer: players whose self-perception is mistaken are not aware of
their own mistakes and cannot be aware that this induces a conflict with equilibrium
conjectures.14

Formally, we introduce an underlying (compact metric) state space Ω, an as-
sociated Borel σ-algebra on Ω, denoted by B(Ω), and a nature’s choice p on the
probability space (Ω, B(Ω)). We say that the nature selects the Bayesian game
G(ω) as a function of the state of the world. We thus introduce the measurable
relation G̃ : ω �→ G, and the event [G] = {ω|G̃(ω) = G}. We require that
Ω and G̃ are picked so that G̃ is surjective: for any game G, there must exist a
state ω such that G̃(ω) = G. Given the game G(ω), the nature then selects the
individual characteristics (θ, θ̂) according to the distribution φ(ω), and the strategy
s0 according to the distribution µ(ω).

In practice, for each state of the world, the nature determines what game G the
players will be playing, this description includes not only a distribution of possible
abilities of the informed player, but also the relation between her perceived ability
and her actual ability.15

The simplest way to represent players’ knowledge of the game that they are
playing in any different state of the world is by means of the information structures
Pj : Ω → B(Ω), j = 1, 2.16 In order to capture mistaken self-perception, we allow
for the possibility that j’s information is mistaken, i.e. ω /∈ Pj(ω). We denote by
information model the collection I= (Ω, P1, P2, p). It is useful to introduce the
certainty operators Cj : B(Ω) → B(Ω), such that, for any E ∈ B(Ω), CjE =
{ω|Pj(ω) ⊆ E} for j = 1, 2.17 The operator Cj associates to each event E ⊆ Ω
the set of states in which player j believed that the event E occurred with certainty.

14 Our belief construction is non-standard as it separates the subjective understanding of players from
the account of an omniscient external observer. This is unavoidable if one wants to study mistaken self
perception in a knowledge-based framework, because common knowledge of information structures
prevents mistaken self-perception. Since the Mertens and Zamir (1985) model closes the belief system
without explicitly assuming common knowledge of beliefs, it does not prevent the study of mistaken
self-perception, but only at the cost of making indirect arguments that make a precise account much
less transparent. Our analysis is reformulated in the language of Mertens and Zamir (1985) in the last
section of the Appendix.

15 While this implies that the description of the state of the world Ω is incomplete, as it does not
capture all uncertainty in the game, it is easy to see how to expand the state space to account for nature’s
choice of θ2 and s0. We adopt this “reduced” formulation of the state space to simplify the analysis,
and to focus our attention on the players’ understanding of the game.

16 When Ω is a finite set, information structures are defined as Pj : 2Ω → 2Ω . This definition is
an appropriate extension to transfinite spaces because it is straightforward to show that if Pj(ω) ∈ B,
then the restriction of B onto Pj(ω) is a σ-algebra (in fact the Borel σ-algebra on Pj(ω)).

17 Unlike the more well-known knowledge operators, certainty operators do not need to satisfy the
“truth” axiom C(E) ⊆ E, for any E. Instead of deriving certainty operators from information struc-
tures, one could also present certainty operators as a primitive concept. However this would make the
exposition more cumbersome, as the representation Pj : Ω → B(Ω) embeds consistency requirements
that would need to be explicitly spelled out if Cj were to be treated as primitive (see Dekel and Gul,
1997).
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While certainty operators differ from knowledge operators because they allow
that one’s information is mistaken, the construction of the common certainty oper-
ator CC : B(Ω) → B(Ω) is analogous to the construction of the common knowl-
edge operator (see Dekel and Gul, 1997; Monderer and Samet, 1989). We define
the sequence of operators {Cn}n≥0, where for any n, Cn : B(Ω) → B(Ω), and
specifically, C0E = C1E ∩C2E, and CnE = C1(Cn−1E)∩C2(Cn−1E) for any
n ≥ 1. Let the event “E is common certainty” be defined as CCE = ∩n≥0C

nE.
When considering high-order beliefs of overconfidence, for ease of exposition,

we focus on the crucial case that, as anticipated in the introduction, player 2 is
aware that player 1’s perception may be mistaken, and player 1 is not aware of
this.18 This event is described by means of an iterative construction similar to the
construction of common certainty operator.

Suppose that the players are playing an arbitrary Bayesian game G. We define
the events κ0

1[G] = C1[G0] ∩ C2[G0], κ0
2[G] = C1[G0] ∩ C2[G], and iteratively,

for any n ≥ 1, κn
2 [G] = C2κ

n−1
2 [G], and κn

1 [G] = C1κ
n−1
1 [G]. The set of states

of the world where player 2 knows that she is playing game G, that player 1 thinks
that player 2 thinks that player 1’s perception is correct (i.e. player 1 thinks that
player 2 thinks that she is playing game G0), that player 2 knows that player 1
believes that her perception is correct, (and so on...) is described by the event

E[G] =[G] ∩ C1[G0] ∩ C2[G] ∩ [∩n≥1 (κn
1 [G] ∩ κn

2 [G])].

If the event E[G] were empty for all information models, the task of describing
the play when the event E[G] takes place would be meaningless. The following
lemma exploits the iterated construction of the event E[G] to show that there exist
information models such that it is non-empty.

Lemma 1. There exist information models I= (Ω, P1, P2, p) such that, for any
game G, the event E[G] is non-empty.

The players’ strategies also depend on the underlying state of the world. Player
2’s strategy consists of the function σ̃2 : Ω → ∆(S2), measurable with respect to
the information structure P2. When choosing her action, player 1 is informed of θ̂ ∈
Θ. Her strategy is thus expressed by the function σ̃1 : Ω → ∆(S1)Θ, measurable
with respect to the information structure P1. We denote by σ1 any arbitrary element
of ∆(S1)Θ and by σ2 any arbitrary element of ∆(S2). The event that player j plays
a strategy σj is denoted by the notation [σj ] = {ω| σ̃j(ω) = σj}.19

Player j acts rational in a given state of the world if she maximizes her utility on
the basis of her information. Formally, we let the notation Supp(σ̃j(·, ω)) denote

18 In the Appendix we consider general descriptions of high-order beliefs.
19 Unlike Auman and Brandeburger (1995), in this formulation player i does not know the specific

action ai she takes at a certain state ω, but only the mixed strategy σi. It is assumed that after choosing
the state ω (which identifies which game G is played, and which mixed strategies σ are taken by the
players), nature moves again in the game G, operating the randomizing device identified by σ. It will
be seen that this formulation greatly simplifies our analysis.
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the support of strategy σ̃j(·, ω), and we define the events:

[R2] =
{

ω

∣∣∣∣Supp(σ̃2(·, ω)) ⊆ arg max
s′
2

E [u2(s1, s
′
2, θ)|P2(ω)]

}
(2)

[R1] =
{

ω

∣∣∣∣Supp(σ̃1(·, θ̂, ω)) ⊆ arg max
s′
1

E
[
u1(s′

1, s2, θ)|θ̂, P1(ω)
]}

. (3)

We say that the play is in equilibrium if the players are rational and correctly antic-
ipate each other’s strategies in the game. Without imposing further requirements,
one remains agnostic regarding the way in which these anticipations are formed.
Alternatively, one may require that the players formulate these anticipations by
introspective reasoning. To capture this distinction we introduce two concepts of
equilibrium.

First, given the description of knowledge E[G], we define as naive equilibrium
any profile σ = (σ1, σ2) such that, upon knowing that player 2 plays σ2, player
1 rationally chooses σ1, and vice versa. Define the events [σ] = [σ1] ∩ [σ2], and
[R] = [R1] ∩ [R2].

Definition 1. For any arbitrary information model I and game G, the profile σ is
a naive equilibrium for E[G] if the event E[G]∩[R] ∩ [σ] ∩ C0[σ] is non-empty.

In practice, when the event E[G]∩[R]∩[σ]∩C0[σ] takes place, the players play
a naive equilibrium σ of the game G, where they correctly anticipate the opponent’s
strategies and maximize their utility, but do not necessarily rationalize the choice
of their opponents on the basis of their perception of the game that they are playing.

Second, we define as “sophisticated” an equilibrium play that is consistent with
introspective reasoning. For any game G, and description of knowledge of the game
E[G], we say that the profile σ is a sophisticated equilibrium if it is possible that
the players’ understanding of the game is described by E[G], while at the same
time it is common certainty that the players are rational, and that the play is σ. For
any event E ∈ B(Ω), we introduce the notation CC∗[E] = [E] ∩ CC[E].

Definition 2. For any arbitrary information model I and game G, the profile σ
is a sophisticated equilibrium for E[G] if the event E[G] ∩ CC∗[[R] ∩ [σ]] is
non-empty.

In practice, when the event E[G] ∩ CC∗[[R] ∩ [σ]] occurs, the players play a
sophisticate equilibrium σ of the game G. They do not only correctly anticipate the
opponent’s strategies and maximize their utility. They also rationalize the choice of
their opponents on the basis of their perception of the game that they are playing.
Since CC∗[[R]∩ [σ]] ⊆ [R]∩ [σ]∩C0[σ] for any profile σ, the set of sophisticated
equilibria is a subset of the naive equilibrium set.

We now proceed with our first characterization result. We show that naive equi-
librium is equivalent to the equilibrium of a reduced Bayesian game with multiple
priors, generated by the description of higher-order beliefs of overconfidence where
the players agree to disagree on the informed player’s characteristics.

Formally, we show that it is possible to construct an information model I such
that, for any game G, the naive equilibria for E[G] coincide with the equilibria
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of the Bayesian game with subjective priors G′ = (Θ, φ, φ0, S, µ, u), where φ
identifies both the move of nature and the prior of player 2, and φ0 identifies the
prior of player 1. The definition of Bayesian equilibrium in games of subjective
priors is omitted as it is well understood.

Proposition 1. There is an information model I= (Ω, P1, P2), such that for any
game G = (Θ, φ, S, µ, u), any strategy profile σ is a naive equilibrium for E[G]
if and only if σ is an equilibrium of the associated (subjective-prior) game G′ =
(Θ, φ, φ0, S, µ, u).20

It is well known that equilibrium exists in all finite Bayesian games with sub-
jective priors (see, for example, Dekel and Gul, 1997). It follows that there is an
information model I such that for any finite game G, there exists a naive equilib-
rium for E[G].

We conclude this section by showing that one can construct games G such that
for any information model I = (Ω, P1, P2), there does not exist any sophisticated
equilibrium for E[G]. Specifically, we consider a simplified version of the sig-
nalling games discussed in the introduction, and show that an overconfident sender
cannot correctly anticipate the receiver’s equilibrium strategy.

Example 2. Consider a signalling game G = (Θ, φ, S, µ, u) as de-
scribed in Example 1. Let player 2’s payoff be such that for any s,
u2(s, yH , θH) > u2(s, yL, θH), u2(s, yL, θL) > u2(s, yH , θL), {yL} =
arg max φ(θH , θH)u2(s, y, θH) + φ(θL, θH)u2(s, y, θL), and {yH} =
arg max(φ(θH , θH) + φ(θL, θH))u2(s, y, θH) + φ(θL, θL)u2(s, y, θL). Let
player 1’s payoff be such that for any y, u1(sL, y, θL) > u1(sH , y, θL), and that
u1(sL, yH , θH) < u1(sH , yL, θH) < u1(sL, yL, θH) < u1(sH , yH , θH).

Player 1 believes that the signalling game G0 is played, where player 1’s ability
is high with probability φ(θH , θH)+φ(θL, θH) and low with probability φ(θL, θL),
and that this is common knowledge. Simple calculations show that the unique
Bayesian equilibrium of this signalling game is the Riley separating outcome: if
player’s ability is high, she signals this by sending the signal sH , whereas if it is
low, she sends the signal sL. Therefore in any sophisticated equilibrium, it must
be the case that player 1 plays sH when overconfident. But then, as in Example 1,
the unique best response of player 2 is to play yL. However, if player 1 anticipates
that player 2 play yL, then she should play sL. This concludes by contradiction that
there is no sophisticated equilibrium for this signalling game.

Formally, first note that for any ω ∈ C2[G] ∩ [R2] and any distribution
σ′

1(ω) ∈ ∆(S1)Θ, under our assumptions, player 2 plays yL for any s and
hence σ̃2(yL|s, ω) = 1 for any s. Letting σ2(yL|s) = 1, we obtain that

20 If the underlying game G has complete information, it follows that σ is a naive equilibrium if and
only if it is a Nash Equilibrium of G. Aumann and Brandenburger (1995) show that, in 2-player games,
Nash Equilibrium conjectures follow from public knowledge of payoffs, rationality, and conjectures,
where a player j’s conjecture is a conditional distribution on the actions of her opponent, player l. Our
requirement that each player j knows that player l surely plays σl is stronger than just requiring that
player j’s belief over player l’s action coincides with σl. This allows to obtain Nash Equilibrium without
requiring public knowledge of rationality (see also Aumann and Brandenburger, 1995, p. 1167).
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C2[G] ∩ [R2] ⊆ [σ2], and because E[G] ⊆ C2[G], that E[G] ∩ [R2] ⊆ [σ2],
so that E[G] ∩ [R2] ∩ [σ′

2] = ∅ for any strategy σ′
2 ∈ ∆(S2), σ′

2 �= σ2.
��

Second, for any ω ∈ C1[G0]∩ [R1]∩C1[σ2], because player 1 best-responds to
yL by playing sL, σ̃1(sL|θ̂, ω) = 1 for any θ̂ ∈ {θL, θH}. So letting σ1(sL|θ̂) = 1,

for any θ̂ ∈ {θL, θH}, we obtain that C1[G0] ∩ [R1] ∩ C1[σ2] ⊆ [σ1], and since
E[G] ⊆ C1[G0], that [G]∩[R1]∩C1[σ2] ⊆ [σ1]. So for any strategy σ′

1 ∈ ∆(S)Θ,
σ′

1 �= σ1, it follows that E[G] ∩ [R1] ∩ C1[σ2] ∩ [σ′
1] = ∅.

Third, for any ω ∈ C2[G0] ∩ [R2] ∩ C2[σ1], under our assumptions, player 2
plays yH for any s, and hence σ̃2(yL|s, ω) = 0. This implies that C1C2[G0] ∩
C1[R2] ∩ C1C2[σ1] ∩ C1[σ2] = ∅, and since E[G] ⊆ C1C2[G0], that E[G] ∩
C1[R2] ∩ C1C2[σ1] ∩ C1[σ2] = ∅.

The above three conclusions imply that for any strategy pair σ′ = (σ′
1, σ

′
2),

E[G] ∩ [R] ∩ [σ′] ∩ C1[σ′
2] ∩ C1[R2] ∩ C1C2[σ′

1] = ∅,

and hence E[G] ∩ CC∗[[R] ∩ [σ′]] = ∅: a sophisticated equilibrium does not
exist. ��

We conclude the section by briefly discussing this result in the context of the
signalling problem of an overconfident junior employee discussed in the introduc-
tion. On the one hand, the employee is tempted to try and signal her perceived
ability by volunteering for the most challenging tasks, in the expectation of being
promoted by the company. On the other hand, suspecting that the individual may be
overconfident, the management is likely to discount the value of this risky conduct,
and choose not to promote the employee. But in equilibrium, the employee should
anticipate this and choose a more humble course of action. Still, it is hard to see how
the junior employee can make sense of the management equilibrium policy. This
is policy is based on the knowledge that she may be overconfident, an eventuality
that the individual is not aware about. A conflict is generated between the objective
requirement that strategies are in equilibrium, and the worker’s introspective ratio-
nalization of the management’s strategy. Hence a sophisticated equilibrium does
not exist. In practice, if the overconfident employee somehow manages to figure
out the company policy, she would not be able to make any sense of it.

5 Population games

In this section we turn from standard Bayesian games to population games. We
imagine a continuous population of informed players indexed by i ∈ I = [0, 1].
Each pair (θ, θ̂) is interpreted as the actual characteristics of any individual i in
the population I. The characteristics are assigned by the (measurable) function ζ:
I → Θ, where ζ(i) denotes the ability of sender i, and ζ̂(i) denotes her perception.
Given the assignment ζ, the distribution φ(ζ) : Θ → [0, 1] over the pairs (θ, θ̂) is
derived according to the rule:

φ(ζ)(θ, θ̂) = ν{i : ζ(i) = (θ, θ̂)}, (4)
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where ν denotes the Lebesgue measure. Intuitively, we imagine a large replica
population of informed players where the relative fractions of individuals with
different abilities and perceptions are the same as the distribution described by φ.

The sequence of moves in population games is as follows. At the first period,
a single informed player i ∈ I is randomly chosen by nature according to the
uniform distribution on [0, 1]. At the second period, player i plays against nature
and player 2 a Bayesian game G = (Θ, φ, S, µ, u). The strategy space of each
player i coincides with S1, her utility is denoted by ui(s, ζ) and coincides with
u1(s, ζ(i)) for each strategy profile s ∈ S. We have associated a population game
Γ = (Θ, I, ζ, µ, S, u) to each Bayesian game G.

As in the previous section, we represent the players’ knowledge of the game by
means of an information model I, and a measurable surjective relation Γ̃ : ω �→ Γ,
where the relation Γ̃ includes the relation ζ̃: ω �→ ζ. For any Γ and ζ, we define
the events [Γ ] = {ω|Γ̃ (ω) = Γ}, and [φ(ζ)] = {ω|φ(ζ̃(ω)) = φ(ζ)}. Nature first
chooses the population game Γ, then selects player i according to ν, and finally
she takes µ in the game G. The certainty and common certainty operators are
constructed as in the previous section. For any game Γ = (Θ, I, ζ, µ, S, u), we
restrict attention to information models I for which the collection (Θ, I, µ, S, u)
is common certainty on [Γ ].

We want to represent instances where player 2 is not able to distinguish the
identity of the players in the pool I, but knows the aggregate distribution of the in-
dividual characteristics (θ, θ̂). This makes sure that player 2’s equilibrium strategy
does not depend on the player’s individual characteristics, but only on the distribu-
tion of characteristics in the population. We thus make the following assumption
on player 2’s information.

Assumption 1. The information model I= (Ω, (P i)i∈I , , P2, p) is such that
P2(ω) ⊆ [φ(ζ)] for any game Γ and any state ω ∈ [Γ ]; and such that
p(ζ(ι(B)) ∈ Θ′|P2(ω)) = p(ζ(B) ∈ Θ′|P2(ω)) for any ν-preserving isomor-
phism ι : B[0, 1] → B[0, 1], any set B ∈ B[0, 1], and any set Θ′ ⊆ Θ.

The key assumption of our construction is that each informed player acknowl-
edges that the other informed players are on average overconfident, while she thinks
that her own self-perception is correct. Formally, while each informed player i be-
lieves that her ability ζ(i) coincides with perception ζ̂(i).

Assumption 2. For any game Γ, the information model I= (Ω, (P i)i∈I , P2, p) is
such that for any ω ∈ [Γ ], and any i ∈ I, P i(ω) ⊆ {ω′ :ζ̃(ω′)(i) = (ζ̂(i), ζ̂(i))}∩
[φ(ζi)], where the function ζi : [0, 1] → Θ is such that ζi(j) = ζ(j) for any j �= i,

and ζi(i) = (ζ̂(i), ζ̂(i)).

Under these assumptions, by construction, any player i is overconfident (and
unaware of this) whenever ζ(i) �= ζ̂(i). It is immediate to see, in fact, that for
any perception θ̂, at any state ω such that ζ̃(ω′)(i) = (θ, θ̂), it is the case that
ω ∈ Ci{ω|ζ̃(ω′)(i) = (θ̂, θ̂)}, regardless of player i’s actual ability θ. Nevertheless,
the following Lemma verifies that there are information models satisfying our
assumptions, where the players always share common knowledge of the aggregate
distribution of individual characteristics.
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Lemma 2. There is an information model I= (Ω, (P i)i∈I , P2, p) satisfying As-
sumptions 1 and 2 such that for any game Γ =(Θ, I, ζ, µ, S, u), it is the case that
[Γ ]⊆CC∗[φ(ζ)].

For any i ∈ I, we let the function σ̃i : Ω → ∆(S1), measurable with respect to
the information structure P i, be the strategy of player i. As in the previous section,
player 2’s strategy is described by σ̃2 : Ω → ∆(S2) measurable with respect to P2.
We denote by σ1 any arbitrary element of ∆(S1)I and by σ2 any arbitrary element
of ∆(S2). Since the players in population I and we have assumed that player 2’s
information satisfies an anonymity requirement, it is natural to restrict attention to
symmetric strategy profiles, where all players with the same ability and assessment
choose the same strategy.

Definition 3. A strategy profile σ ∈ ∆(S1)I × ∆(S2) is symmetric if for any pair
(i, j) ∈ I2, it is the case that σi = σj whenever ζ̂(i) = ζ̂(j).

The definitions of the events [σ1], [σ2], [σ], [R2], [Ri
s] for any i, and [R] are

immediately extended from the analogous definition in the previous section, and so
are the definitions of naive and sophisticated equilibrium. Because of Lemma 2, for
each game Γ , we are interested in the naive and sophisticated equilibria associated
with the event [Γ ], under information models satisfying Assumptions 1 and 2.

Our key result is that a sophisticated equilibrium always exists in these popula-
tion games, and that the sophisticated equilibrium set and the naive equilibrium set
coincide. In order to derive this result, we first associate, to any population game
Γ = (Θ, I, ζ, µ, S, u), a 2-player Bayesian game G′ = (Θ, φ, φ0, S, µ, u), where
for any pair (θ, θ̂), nature’s choice (and player 2’s prior) is φ(θ, θ̂) = ν{i : ζ(i) =
(θ, θ̂)}, and the prior of player 1 is φ0(θ̂, θ̂) = ν{i : ζ̂(i) = θ̂}. Each symmetric
strategy profile σ of a game Γ identifies a unique strategy profile σ′ of G′ according
to the rule σ′

2 = σ2, and σ′
1(·|θ̂) = σi if ζ̂(i) = θ̂. Up to equivalence classes, each

strategy profile σ′ of G′ identifies a symmetric strategy profile σ of Γ .
Proposition 2 below shows that, within the restrictions imposed byAssumptions

1 and 2, it is possible to construct information models such that the symmetric
naive equilibria of any game Γ coincide with the subjective Bayesian equilibria of
the associated game G′. Moreover, the symmetric naive equilibria of any game Γ
coincide with the symmetric sophisticated equilibria of Γ.This immediately implies
the existence of sophisticated symmetric equilibrium in all population games with
finite characteristics and strategy spaces.

Proposition 2. There is an information model I= (Ω, (P i)i∈I , P2, p) satisfying
Assumptions 1 and 2 such that, for any game Γ = (Θ, I, ζ, S, µ, u), the set of
symmetric sophisticated equilibria for [Γ ] coincides with the set of symmetric naive
equilibria for [Γ ], which is isomorphic (up to equivalence classes) to the set of
equilibria of the subjective-prior game G′ = (Θ, φ(ζ), (φ(ζ))0, S, µ, u).

Unlike the case studied in the previous section, no conflict arises in the mind of
the player between her understanding of the game and the anticipation of her oppo-
nent’s strategy. In practice, she rationalizes the equilibrium choice of her opponent
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with the following consideration: “My opponent is acting as if I were not as good
as I am, because there are many overconfident individuals in my population, and
my opponent does not know that I am not one of them...”

This construction is apt to represent our signalling and overconfidence examples
discussed in the introduction.

Example 3. Reconsider the signalling problem described in Example 1, and for-
malize it as a population game Γ = (Θ, I, ζ, µ, S, u) such that φ(ζ)(θL, θH) > 0
and φ(ζ)(θH , θL) = 0. Each player i in population 1 perceives that her ability
is ζ̂(i), while in fact it is ζ(i). Because of anonymity, however, she also knows
that player 2’s strategy depends only on the distribution of abilities and percep-
tions φ(ζ), and not on her own specific individual ability. The distribution φ(ζ) is
common knowledge among all players.

We shall now show that in the unique symmetric sophisticated and naive equi-
librium of this game, all players i in population 1 play sL, and player 2 responds by
playing yL. First, note that for all players i such that ζ̂(i) = θL, playing sL is strictly
dominant. Second, suppose that all players i such that ζ̂(i) = θH played sH with
positive probability. Then because {yL} = arg max φ(ζ)(θH , θH)u2(s, y, θH) +
φ(ζ)(θL, θH)u2(s, y, θL), player 2 would respond to the signal sH by playing yL.
Because the distribution φ(ζ) is common knowledge among all players, each player
i would anticipate player 2’s best response and conclude that it is optimal play sL.
Hence there is no symmetric equilibrium where any player i in population 1 with
ζ̂(i) = θH plays sH with positive probability.

Third, suppose that all players i in population 1 play sL. Then player 2 re-
sponds to the signal sL by playing yL. Say that player 2 plays yL upon re-
ceiving the signal sH off the equilibrium path: for this to be the case, it is
enough that her off-path beliefs are induced by symmetric strategy σ1, because
then σi is constant for all player i with the same perception ζ̂(i) and {yL} =
arg maxy φ(θH , θH)u2(sH , y, θH) + φ(θL, θH)u2(sH , y, θL). Then, because the
distribution φ(ζ) is common knowledge, the players in population 1 correctly an-
ticipate player 2’s response, and hence have no reason to deviate to sH . Hence the
strategy profile such that all players in population i play sL and player 2 responds
by playing yL is the unique equilibrium. ��

We conclude this section by discussing our findings in relation to the signalling
problems discussed in the introduction. Consider the scenario where a start up
entrepreneur applies for credit. The analysis of Example 3 suggests that a sophisti-
cated overconfident entrepreneur will strategically choose to present a conservative
and sound company plan. She does not question her own skills, but she is aware
that many applicants for credit are self-deluded in their ambitions, and she does not
want to be confused with them. Thus our analysis provides a rigorous theory for
strategic humbleness (on this, see also Benabou and Tirole, 2003).

While the problem of a start up entrepreneur applying for credit can be ap-
propriately modelled as a population game, this is less plausible for a scenario
where an overconfident employee would like to signal her exceptional abilities to
the management, especially in relatively small companies. Whenever this scenario
is more appropriately represented by the construction in Example 2, our analysis
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suggests that an overconfident employee would not be able to make any sense of
company policy, even if she manages to figure it out. By comparing the analyses of
Example 2 and 3, we have therefore uncovered a key difference between our two
motivating problems. Previous work that did not include the possibility of over-
confidence deemed these two problems as equivalent manifestations of the same
adverse-selection model.

6 Utility comparisons

This section studies the strategic value of mistaken beliefs. It is not difficult to
conceive environments where prima facie intuition suggests that overconfidence is
beneficial. Experimental findings suggest that successful entrepreneurs are over-
confident with respect to the general population (see for instance, Busenitz and
Barney, 1997). It is tempting to conclude that such overconfidence is beneficial as
it allows these individuals to work hard, overcome obstacles and eventually make
their companies successful. But our analysis yields a different result. As long as
players cannot directly observe each other’s states of mind, and may only try to infer
whether their opponents are overconfident or unbiased by observing their play, we
show that they cannot be better-off by being overconfident. Over all, overconfident
start up entrepreneurs should be less likely to be successful than unbiased ones. This
suggests that the observed relation between overconfidence and entrepreneurial suc-
cess is largely due to a selection bias: also unsuccessful entrepreneurs are likely
overconfident. In fact, it is a well documented fact that entry of new companies
is excessive and that a large number of (overconfident) start up entrepreneurs are
unsuccessful (see for instance Cooper et al., 1988; Camerer and Lovallo, 1999).

The intuition for our result is simple and compelling. In equilibrium, each player
correctly anticipates her opponent’s strategy, which must be the same regardless
of the player’s state of mind. While the player’s choice depends on her perceived
characteristics, her actual utility depends on her actual characteristics. If overcon-
fident, the player mistakenly plays a strategy that would be optimal if her own
characteristics were better than they actually are. Hence her actual utility cannot be
larger than the utility of an unbiased player with the same characteristics, correctly
playing her optimal strategy.

For any population game Γ = (Θ, I, ζ, S, µ, u), and any symmetric equilibrium
σ, we introduce the notation ui(σ) which identifies player i’s actual payoff (in ex-
ante terms) at the equilibrium σ:

for any i, ui(σ) =
∑

s2∈S2

∑
s1∈S1

∑
s0∈S0

ui(s0, s1, s2, ζ)µ(s0)σi(s1)σ2(s2).

Proposition 3. In any symmetric equilibrium σ of any population game Γ = (Θ,
I, ζ, S, µ, u), for any level of ability θ ∈ Θ, and any pair of players (i, j) such
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that ζ(i) = (θ, θ) and ζ(j) = (θ, θ′) with θ′ �= θ, it must be the case that ui(σ) ≥
uj(σ).21

Proof. Consider any symmetric equilibrium σ of any population game Γ = (Θ, I,
ζ, S, µ, u). By Proposition 2, σ identifies a naive equilibrium σ for E[G]. For any
ω ∈ [Γ ] ∩ [R1] ∩ Ci[σ2], player i plays strategy σ̃i(·|ω), such that σ̃i(s1|ω) > 0
only if

s1 ∈ arg max
s′
1∈S1

∑
s2∈S2

∑
s0∈S0

u1(s0, s
′
1, s2, θ̂)µ (s0) σ2(s2). (5)

It follows that any s1 ∈ Supp(σi) must satisfy Condition (5).
For any arbitrary level of activity θ, pick any pair of players (i, j) ∈ I2 such

that

ζ(i) = ζ̂(i) = ζ(j) = θ, and ζ̂(j) = θ′, where θ′ �= θ.

Since ζ(i) = ζ(j) = θ, it follows that for any profile of pure strategies s, ui(s, ζ) =
uj(s, ζ) = u1(s, θ).

Condition (5) implies that for any s1 ∈ Supp(σi),∑
s2∈S2

∑
s0∈S0

u1(s0, s1, s2, θ)µ (s0) σ2(s2)

≥
∑

s2∈S2

∑
s0∈S0

u1(s0, s
′
1, s2, θ)µ (s0) σ2(s2), for any s′

1 ∈ S1,

this condition holds a fortiori for any s′
1 ∈ Supp(σj). It follows that

ui(σ) =
∑

s1∈Supp(σi)

σi(s1)
∑

s2∈S2

∑
s0∈S0

u1(s0, s1, s2, θ)µ (s0) σ2(s2)

≥
∑

s′
1∈Supp(σj)

σj(s′
1)

∑
s2∈S2

∑
s0∈S0

u1(s0, s
′
1, s2, θ)µ (s0) σ2(s2) = uj(σ).

��
Proposition 3 compares the utility of overconfident and unbiased players for

any fixed game and equilibrium. This result would not be valid if a player could
directly observe her opponent’s state of mind. Equivalently put, the result is not valid
if one compares the players’ payoffs across different games, where the frequency
of overconfidence in the informed players’ population may differ. One may specify
a game where informed players are likely to be unbiased, and a game where they
are likely to be overconfident. It may then be possible that an overconfident player
in the second game fares better than unbiased players in the first game, because the
opponent’s strategy is modified by the knowledge that the informed player is more

21 Proposition 3 may be equivalently restated for naive equilibrium of Bayesian games involving only
a single “informed” player (see Proposition 7, in theAppendix). Since sophisticated equilibrium may fail
to exist in that environment, we choose to present this result for population games, where sophisticated
equilibrium always exists and coincides with naive equilibrium.
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likely to be overconfident. Such a comparison across different games, however, does
not allow us to conclude that overconfidence is beneficial, because any unbiased
player playing in the second game would fare at least as well as this overconfident
player. To substantiate this point, we present the following example.

Example 4 (Take-It-or-Leave-It Offer). Consider a family of population games Γα

indexed in α ∈ (0, 1). An employer (player 2) makes a take-it-or-leave-it offer w
to a worker i randomly selected from a large pool I. For example, imagine that a
large company has opened a new plant in town I. The company is now hiring local
employees, and its high bargaining power is due to being the only large employer
in town. If the worker accepts the offer, she produces the output π > 0. If she
rejects, she will take an outside option of value θL < π.A fraction α of the workers
overestimates the value of the outside option: ζ̂(i) = θH ∈ (θL, π) for any i ≤ α,

and ζ̂(i) = θL for any i > α.
Each game Γα allows for a plethora of equilibria, however only one of them

is consistent with sequential rationality, and we will focus on that equilibrium.22

Player i rejects the offer w if w < ζ̂(i), and hence player 2 offers

w =




θL if α ≤ θH − θL

π − θL

θH if α ≥ θH − θL

π − θL
.

For any fixed α, each player in pool I achieves the same payoff, regardless of
whether she is overconfident or unbiased. However, their payoff is larger if α ≥
θH−θL

π−θL
.

The workers in a largely overconfident pool cut a better deal than the workers
in a mostly unbiased pool, because the employer’s offer strategy is modified by the
knowledge that the randomly selected worker is more likely to be overconfident. In
this sense, overconfidence acts as a collective commitment device. This suggests
that it is in the best interest of an employer to set up a plant in an area where
prospective local workers are, on average, less overconfident. ��

Our results on the strategic value of self-perception in games may be related to
the literature on the value of information initiated by Hirshleifer (1971): while the
value of information is positive in any decision problem, less informed players are
better off in certain games, as their opponents’strategy is modified by the knowledge
that the players are less informed.23 The key difference with the case of mistaken
self-perception lies in the plausibility of the assumption that players know each
other’s information quality. While it is easy to identify instances where an agent’s

22 One can also describe games where the equilibrium is unique and again the player’s payoff increases
in the population’s aggregate overconfidence. This analysis is available upon request to the author.

23 Neyman (1991) however underlines that such a result depends on the assumption that the informa-
tion structure is common knowledge at the beginning of each game, and hence it cannot be said that
a player’s information is modified without changing her opponent’s information. This makes the exer-
cise in Hirshleifer (1971) logically equivalent to comparing the equilibrium of different games. Neyman
(1991) shows that if one compares equilibria of interactions embedded in the same fully-specified game,
a player whose information is unilaterally refined cannot be worse off in equilibrium.



Mistaken self-perception and equilibrium 633

informational advantage is common knowledge among the players (e.g. it may
be known that an agent has access to superior sources of information), it is less
plausible to think that a player may read the mind of her opponents and directly
observe whether their self-perception is correct or mistaken. As a consequence,
while less information can plausibly make agents better off, it is less likely that
overconfidence makes a player better off.

A second comment is in place. Proposition 3 presumes that self-perception does
not directly influence the player’s payoff, and can only have an indirect effect on
utility by modifying the player’s behavior. Conceivably, overconfidence may also
have a direct psychological effect on a player’s utility: common wisdom deems that
confident people feel better about themselves. We rule this out from our analysis to
clearly identify the role of self-perception, which is a payoff-irrelevant property of
beliefs, and distinguish it from the direct effect that self-esteem may possibly have
on one’s welfare.24

7 Conclusion

Motivated by information economics problems of adverse selection and by experi-
mental findings on overconfidence, we have formalized in this paper a general epis-
temic model to represent strategic interaction with incomplete information, where
the players’ self-perception may be mistaken, and specifically overoptimistic. Our
construction allows us to rigorously describe equilibrium play. Specifically, we have
introduced formal equilibrium concepts based on the players’ high-order beliefs of
overconfidence, and on the knowledge of each others’ strategies.

We have determined that there always exist “objective” equilibria, where the
players correctly anticipate each other’s strategies without attempting to make
sense of them, and that these outcomes coincide with the equilibria of an asso-
ciated Bayesian game with subjective priors. However, we have described simple
signalling scenarios where the players cannot introspectively rationalizing each
other’s strategies. For instance, this occurs if the informed player is overconfident,
and her counterpart is aware of this, but the informed player is unaware of her
counterpart’s assessment. In population games, instead, the objective equilibrium
outcome can be always rationalized by the players, despite their possibly mistaken
self-perception.

Finally, we have shown that the players cannot be made better-off in equilib-
rium by overestimating their characteristics, unless their opponents can recognize
overconfident players prior to observing their equilibrium actions. This suggests
that the strategic value of mistaken self-perception is less preponderant than the
strategic value of incomplete information.

24 Note, however, that if one understands the beneficial effect of overconfidence on welfare as the
result of incorporating high expectations on future achievements, then such an effect is captured in our
framework. If instead self-confidence is assumed to directly improve one’s proficiency in a task, then
Compte and Postlewaite (2003) show that it is optimal to hold mistaken, overconfident beliefs.
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A Omitted proofs

Proof of Lemma 1. Pick an information model I = (Ω, P1, P2, p) such that for
any game G, and any ω ∈ [G], P2(ω) ⊆ [G], and P1(ω) ⊆ [G0]; hence [G] ⊆
C2[G] ∩ C1[G0]. Notice that [G] ⊆ C2[G] and [G] ⊆ C1[G0] imply [G] ⊆
C2[C1[G0] ∩ C2[G]] = κ1

2[G]; while [G] ⊆ C1[G0] and [G0] ⊆ C2[G0] imply
[G] ⊆ C1[C1[G0] ∩ C2[G0]] = κ1

1[G]. Since [G0] ⊆ C1[G0], for any n ≥ 1,
[G] ⊆ κn−1

1 [G] implies [G] ⊆ κn
1 [G]. Since [G0] ⊆ C2[G0] and [G] ⊆ C2[G],

for any n ≥ 1, [G] ⊆ κn−1
2 [G0] implies [G] ⊆ κn

2 [G0]. The result is then obtained
by induction. ��
Proof of Proposition 1. The profile σ is an equilibrium of G′ = (Θ, φ, φ0, S, µ,

u) if for any θ̂,

Supp(σ1|θ̂) ⊆ arg max
s′
1∈S1

∑
θ∈Θ

∑
s2∈S2

∑
s0∈S0

u1(s0, s
′
1, s2, θ)µ(s0)σ2(s2)

φ0(θ, θ̂)

φ2(θ̂)
,(6)

Supp(σ2) ⊆ arg max
s′
2∈S2

∑
(θ,θ̂)∈Θ

∑
s1∈S1

∑
s0∈S0

u2(s0, s1, s
′
2, θ)µ (s0) σ1(s1|θ̂)φ(θ, θ̂).(7)

Take the information model I such that [G] ∩ [σ] �= ∅ for any game G and any
strategy profile σ of G, and such that P1(ω) = [σ] ∩ [G0] and P2(ω) = [σ] ∩ [G]
for any ω ∈ [G] ∩ [σ]. By Lemma 1, E[G] �= ∅, and since [G] ∩ [σ] ⊆ C0[σ], the
profile σ is a naive equilibrium if and only if [G] ∩ [σ] ∩ [R] �= ∅. Suppose that
this is the case: there is a ω such that G(ω) = G, σ̃(ω) = σ, and that for every θ̂,

Supp(σ̃1(θ̂, ω)) ⊆ arg max
s′
1

E
[
u1(s′

1, s2, θ)|θ̂, P1(ω)
]
, (8)

Supp(σ̃2(ω)) ⊆ arg max
s′
2

E [u2(s1, s
′
2, θ)|P2(ω)] . (9)

Since σ̃(ω) = σ, by plugging the expressions P2(ω) = [σ] ∩ [G] and P1(ω) =
[σ] ∩ [G0] in Conditions (8) and (9), we obtain that σ satisfies Conditions (6) and
(7), i.e. σ is an equilibrium of G′. Conversely, if σ is a subjective equilibrium of G′,
then it must satisfy Conditions (6) and (7), and hence ω ∈ [R] for any ω ∈ [G]∩[σ];
thus σ is a naive equilibrium of G. ��
Proof of Lemma 2. By Condition (4) and Assumption 2, for any pair (θ, θ̂),

φ(ζi)(θ, θ̂) = ν{j∈[0, 1] : ζi(j)=(θ, θ̂)}=ν{j∈[0, i) ∪ (i, 1] : ζi(j)=(θ, θ̂)}
= ν{j ∈ [0, i) ∪ (i, 1] : ζ(j) = (θ, θ̂)} = φ(ζ)(θ, θ̂).

Pick an information model I such that P2 satisfies Assumption 1, and such that
P i(ω) = P2(ω) ∩ {ω′ : ζ̃(ω′)(i) = (ζ̂(i), ζ̂(i))} for any i ∈ I; since P i(ω) is
non-empty, I is well-defined and satisfies Assumption 2. We have shown that for
any ω ∈ [Γ ], for any i, P i(ω) ⊆ P2(ω) ⊆ [φ(ζ)], where the latter relation follows
by Assumption 1. Since P i(ω) ⊆ [φ(ζ)] for any i, and P2(ω) ⊆ [φ(ζ)], it follows
that ω ∈ CC[φ(ζ)] for any ω ∈ [Γ ]. ��
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Proof of Proposition 2. Take a model I such that [Γ ] ∩ [σ] �= ∅ and P2(ω) =
[σ] ∩ [φ(ζ)] for any ω ∈ [Γ ] ∩ [σ], any game Γ, and any symmetric profile σ of Γ,
such that p(ζ(ι(B)) ∈ Θ′|P2(ω)) = p(ζ(B) ∈ Θ′|P2(ω)) for any isomorphism
ι : B[0, 1] → B[0, 1], any set B ∈ B[0, 1], and any set Θ′ ⊆ Θ, and such that
P i

s(ω) = {ω′ : ζ̃(ω′)(i) = (ζ̂(i), ζ̂(i))} ∩ P2(ω) for any i. Because [φ(ζ)] =
[φ(ζi)] for any i, I satisfies Assumptions (1), and (2).

Take a game Γ = (Θ, I, ζ, S, µ, u), and say that σ′ is an equilibrium of G′ =
(Θ, φ(ζ), (φ(ζ))0, S, µ, u). Up to equivalence classes σ′ identifies a symmetric
profile σ of Γ . Say that ω ∈ [Γ ] ∩ [σ]: hence ω ∈ [R2] if and only if

Supp(σ̃2(·, ω)) (10)

⊆ arg max
s′
2∈S2

Eζ

[∫
I

∑
s1∈S1

∑
s0∈S0

u2(s0, s1, s
′
2, ζ(i))µ(s0)σi(s1|ω)dν(i)

∣∣∣∣∣ P2(ω)

]
.

By construction, σ′
1(s1|θ̂) = σi(s1|ω) whenever ζ̂(i) = θ̂. Since P2(ω) ⊆ [φ(ζ)]

and p(ζ(ι(B)) ∈ Θ′|P2(ω)) = p(ζ(B) ∈ Θ′|P2(ω)) for any B ∈ B[0, 1], any
Θ′ ⊆ Θ, and any isometry ι : B[0, 1] → B[0, 1], it follows that φ(ζ) is a sufficient
statistic of player 2’s information on the assignment ζ. Thus the expression (11)
can be summarized by aggregating the players in I across the characteristics (θ, θ̂).
Substituting the expressions for φ(ζ) and for σ′

1, we thus obtain:

Supp(σ̃2(·, ω)) (11)

⊆ arg max
s′
2∈S2

∑
(θ,θ̂)∈Θ

∑
s1∈S1

∑
s0∈S0

u2(s0, s1, s
′
2, θ)µ (s0) σ′

1(s1|θ̂)φ(θ, θ̂).

This condition coincides with Condition (6), which σ′ satisfies by definition. It
follows that [Γ ] ∩ [σ] ⊆ [R2].

For any i, and any ω ∈ [Γ ] ∩ [σ], it is the case that ω ∈ [Ri] if and only if

Supp
(
σ̃i(·|ω)

) ⊆ arg max
s′
1∈S1

∑
θ∈Θ

∑
s2∈S2

∑
s0∈S0

ui(s0, s
′
1, s2, θ)µ(s0)σ2(s2|ω)p(ζ(i)

= θ|ζ̂(i))

= arg max
s′
1∈S1

∑
s2∈S2

∑
s0∈S0

u1(s0, s
′
1, s2, ζ̂(i))µ (s0) σ2(s2|ω). (12)

By construction, σ̃i(·|ω) = σi(·) = σ′(·|ζ̂(i)), thus σ1 satisfies Condition (12) for
every i if and only if σ′ satisfies Condition (7) for every θ̂, which is the case by
definition. It follows that [Γ ] ∩ [σ] ⊆ [R1].

The above arguments have shown that [Γ ] ∩ [σ] ⊆ [R]. Since [Γ ] ⊆ [φ(ζ)],
it follows that P2(ω) ∩ [R] �= ∅ for any ω ∈ [Γ ] ∩ [σ]. To show that for any i, it
is also the case that P i

s(ω) ∩ [R] �= ∅, pick any state ω′ such that ζ̃(ω′) = ζi. By
construction, ω′ ∈ P i

s(ω) and, moreover, the 2-player subjective-priors Bayesian
game associated with Γ̃ (ω′), coincides with G′. It follows that [Γ̃ (ω′)]∩ [σ] ⊆ [R];
and hence by construction of I, that [Γ̃ (ω′)] ∩ [σ] �= ∅ and that P i

s(ω) ∩ [R] �= ∅.
Thus we can refine (P i)i∈I and P2, by defining P̂2(ω) = P2(ω)∩[R], and P̂ i

s(ω) =
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P i
s(ω) ∩ [R], for every i ∈ I. Letting [R̂] be the event that the players are rational

relative to (P̂ i)i∈I and P̂2, we can show that [Γ ]∩ [σ]∩ [R] = [Γ ]∩ [σ]∩ [R̂]: since
[Γ ] ∩ [σ] ⊆ [R2], it is rational for player 2 to play σ2 on the event [Γ ] ∩ [σ]. As a
result, the information that player 2 is rational does not add anything to the belief
that she plays σ2, and so E[ui(s1, s

′
2, θ)|P i(ω)] = E[ui(s1, s

′
2, θ)|P̂ i(ω)] for any

ω ∈ [Γ ] ∩ [σ]. Conversely, E[u2(s1, s
′
2, θ)|P2(ω)] = E[u2(s1, s

′
2, θ)|P̂2(ω)] for

any ω ∈ [Γ ] ∩ [σ], because [Γ ] ∩ [σ] ⊆ [Ri] for any i.
Since, by construction, P̂ i(ω) ⊆ P̂2(ω) ⊆ [R̂] ∩ [σ] for any i, it follows that

ω ∈ CĈ[[R̂]∩[σ]]. In summary, we have shown that [Γ ]∩[σ] ⊆ [R̂]∩CĈ[[R̂]∩[σ]].
Because, by construction, [Γ ] ∩ [σ] is non-empty, we conclude that if σ′ is an
equilibrium of G′, then σ is a sophisticated equilibrium of Γ.

If σ is a sophisticated equilibrium of Γ , then it is also a naive equilibrium of Γ,
because [Γ ] ∩ CC∗([R] ∩ [σ]) ⊆ [Γ ] ∩ [R] ∩ [σ] ∩ C0[σ].

We are left to show that if σ is a naive equilibrium of Γ (under the information
model Î), then σ′ is an equilibrium of the associated game G′. Since [Γ ] ∩ [σ] ⊆
Ĉ0[σ], σ is a naive equilibrium if and only if [Γ ]∩[σ]∩[R̂] �= ∅; i.e. there is a ω such
that Γ̃ (ω) = Γ, σ̃(ω) = σ, Supp(σ̃2(·,ω)) ⊆ arg maxs′

2
E[u2(s1, s

′
2, θ)|P̂2(ω)]

= E[u2(s1,s
′
2,θ)|P2(ω)], andSupp(σi(s1,ω))⊆ arg maxs′

1
E[ui(s′

1,s2, θ)|P̂ i(ω)]
= E[ui(s′

1, s2, θ)|P i(ω)], for any i. Since σ̃(ω) = σ, we obtain Conditions (12)
and (12) by plugging in the expressions for P2(ω) and P i(ω). This implies that σ′

satisfies Conditions (6) and (7), i.e. σ′ is a subjective equilibrium of G′. ��

B General high-order beliefs of self-perception

This part of the Appendix studies self-perception and equilibrium, for general de-
scriptions of the players’ understanding of the game. The players play a game
G = (Θ, φ, S, µ, u), but player 1 believes that she is playing game G0: her per-
ception may be mistaken. A description of the players’ understanding of the game
is generated by the events [G], and [G0], and by the iterated application of the
operators C1, C2, as well as complementation and intersection. Given the space Ω,
and the relation G̃ : ω �→ G, for any game G = (Θ, φ, S, µ, u), we consider the
space ΩG = [G] ∪ [G0]. We introduce the algebra A1

G = {∅, [G], [G0], ΩG}, and
for any n ≥ 1, the algebra An

G generated by An−1
G ∪ {CiE| E ∈ An−1

G , i = 1, 2}.
The algebra that includes all the descriptions of players’ knowledge of the game
G is AG = ∪∞

n=1An
G.25 It is known (see Aumann, 1999; Hart Heifetz and Samet,

1996) that not all the lists in AG are consistent: there are lists of events lG whose
intersection is empty for all information model I, these lists are ruled out of the
analysis, to avoid triviality.26

25 An algebra of Ω is a collection of subsets of Ω that contains Ω, that is closed under complementation
and finite intersection. An example of a list of events in AG is the list lG = {[G], C1[G0], C2[G],
(κ2

1[G], κ2
2[G]), ..., (κn

1 [G], κn
2 [G]), ...}, which represent the instance studied in the fourth section.

26 Whether a list lG generated by the event [G] is consistent or not depends only on the combinations
of certainty and logic operators, and is independent of the generating event. Hence we shall drop the
subscript from the notation lG, with the understanding that the notation l identifies the list lG when in
conjunction with a specific game G.
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First, we extend Proposition 1 to any instance where the informed player is
overconfident, and her opponent is aware of this, regardless of the players’ high-
order beliefs of overconfidence. We introduce the collection of lists A = {l ∈ A|
for any G, ∅ �= El(G) ⊆ [G] ∩ C1[G0] ∩ C2[G]}. Recall that for any game G,
the game G′ denotes the associated game with subjective priors.27

Proposition 4. For any list l ∈ A, there is an information model I such that for
any game G, the profile σ is a naive equilibrium for El(G) if and only if σ is an
equilibrium of the subjective-prior game G′.

Second, we show that if player 2 is unaware that player 1 may be overconfident,
then the naive equilibria of any game G coincide with the Bayesian equilibria of
the game G = (Θ, φ2, S, µ, u). We let U = {l ∈ A| for any G, ∅ �= El(G) ⊆
[G] ∩ C1[G0] ∩ C2[G0]}.

Proposition 5. For any list l ∈ U, there is an information model I such that for
any game G, the profile σ is a naive equilibrium for El(G) if and only if σ is a
Bayesian equilibrium of G.

The final and most important result of this section identifies the conditions
under which sophisticated and naive equilibrium coincide. This may occur in two
instances. First, it may be the case that, while they are truly playing game G,
the players share common certainty that they are playing game G0, so that not
only is the informed player unaware of being overconfident, but also her opponent
is unaware that she could be overconfident. In this case, sophisticated, naive and
Bayesian equilibrium all coincide. Second, it may be the case that the players
“agree to disagree” on the game they play. Player 1 is overconfident and unaware
of it, player 2 knows that player 1 is overconfident, player 1 thinks that player 2
thinks that player 1 is overconfident, and so on. In this case, naive and sophisticated
equilibria of game G coincide with the subjective equilibria of the associated game
with subjective priors G′. For any other description of the players’ knowledge of
overconfidence, there are games that do not have any sophisticated equilibrium.

We denote by l0 the (consistent) list l ∈ A such that for any game G,
El(G) = [G] ∩ CC[G0], and by l∗ the (consistent) list l such that for any game
G, El(G) =[G] ∩ (∩n≥0C̄

n[G]), where C̄0[G] = C1[G0] ∩ C2[G], and for any
n > 0, C̄n[G] = C1C̄

n−1[G] ∩ C2C̄
n−1[G].

Proposition 6. For l ∈ {l0, l∗} there is a model I such that for any game G,
the profile σ is a sophisticated equilibrium for El(G) if and only if σ is a naive
equilibrium for El(G). For any other list l, and model I, there exist games G where
a sophisticate equilibrium does not exist for El(G).

It is immediate to extend Proposition 3 to description of high-order beliefs of
overconfidence and naive equilibrium. For any strategy profile σ, any ability θ and

27 The proofs of Proposition 4 and 5 are analogous to the proof of Proposition 1. Similarly the proof
of Proposition 7 (resp. 6) are easily derived from the proofs of Proposition 3 (resp. Proposition 2 and
Example 1). These derivations are omitted for brevity, but are available upon request to the author.
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any perception θ̂, let the ex-ante actual utility be:

u1(σ, θ, θ̂) =
∑

s2∈S2

∑
s1∈S1

∑
s0∈S0

u1(s0, s1, s2, θ)µ(s0)σ1(s1|θ̂)σ2(s2).

Proposition 7. For any list l ∈ A, any information model I, and any game G, in
any naive equilibrium σ for El(G), for any level of ability θ, and any perception
θ̂, it must be the case that u1(σ, θ, θ) ≥ u1(σ, θ, θ̂).

C Games with universal types

This part of the Appendix shows how universal types can be used to describe
self-perception.28 We propose a straightforward extension of the construction in
Brandenburger and Dekel (1993), so as to includes in a player’s type also individ-
ual objective characteristics (i.e. ability), as well as high-order beliefs. Since this
construction is well understood, proofs and unnecessary calculations are omitted,
and made available upon request.

For any player j = 1, 2, let the space of j’s ability be a complete separable
metric space Θj . Iteratively set X1 = Θ1 ×Θ2, and for any n ≥ 1, Xn+1 = Xn ×
[∆(Xn)]2. Let a type tj be a hierarchy (δ0j , δ1j , δ2j ...) ∈ Θj ×(×∞

n=1∆(Xn)), and
define Tj0 = Θj ×(×∞

n=1∆(Xn)).A type is coherent if for any n ≥ 1, the marginal
distribution projected by δn+1j on Xn coincides with δnj , let the set of coherent
types be Tj1.

29 Because of Kolmogoroff Extension Theorem, each coherent type
uniquely identifies a system of beliefs with respect to her own and the opponent’s
type, through the (unique) homeomorphism fj : Tj1 → Θj × ∆(Tj0 × T−j0).30

Since this permits a coherent type to identify a belief that she or her opponent is
not coherent, we impose “common certainty of coherency:” For any n ≥ 1, let
Tjn+1 = {t ∈ Tj1 : fj(t)(Tjn × T−jn) = 1}. The universal type space of player
j is Tj = ∩∞

n=1Tjn. Each universal type identifies a unique belief over the state
of nature and an opponent’s universal type, through the (unique) homeomorphism
gj : Tj → Θj × ∆(Tj × T−j), generated by fj .

Given the abilities space Θ = Θ1 × Θ2, and the universal types space T =
T1 ×T2, we specify a nature’s prior p ∈ ∆(T ), a strategy space S = S0 ×S1 ×S2,
a move of nature µ, and payoffs u : S ×Θ → R

2, and obtain a fully specified game
G = {Θ, T, p, S, u}. A strategy in G is a profile σ = (σ1, σ2), where for each j, the
function σj : Tj → ∆(Sj) is measurable. The players’ actual utility is expressed
by uj : Θ × S → R; for any j and σ, the actual utility of type tj when playing
against t−j is:

uj(t, σ) =
∑

s1∈S1

∑
s2∈S2

∑
s0∈S0

uj(δ0, s)σ1(s1|t1)σ2(s2|t2)µ(s0).

28 The concept of universal types has been first introduced by Mertens and Zamir (1985).
29 If a type is not coherent, its beliefs are not well-defines because the type includes more than one

possible specification for each level of high-order beliefs Xn.
30 This result is an extension of Proposition 1 in Brandenburger and Dekel (1993), where the reader

can find additional details. For the Kolmogoroff Extension Theorem, see for instance Dudley (1999,
p. 201).
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Some types tj include a mistaken belief about their ability, and their perceived
payoff may differ from their actual payoff. For any mixed strategy σ, any player j
of type tj perceives that her utility is:

ũj(tj , σ) =
∫ ∑

s1∈S1

∑
s2∈S2

∑
s0∈S0

uj(gj(tj)(θ), s)σ1(s1|t1)σ2(s2|t2)µ(s0)dgj(t).

For this construction, the most appropriate definition of equilibrium requires that
all types choose a payoff-maximizing strategy, and not only those that are selected
with positive prior probability.31

Definition 4. An equilibrium of game G is a profile σ = (σ1, σ2), where for each
player j ∈ {1, 2}, and any type tj ∈ Tj ,

Supp (σj (·|tj))
⊆ arg max

s′
j∈Sj

∫ ∑
s−j∈S−j

∑
s0∈S0

uj(gj(tj)(θ), s′
j , s−j , s0)σ−j(s−j |t−j)µ(s0)dgj(t).

In order to show how this construction relates to our analysis of overconfidence,
we present a simplification of Example 1.

Example 5. Recall that in the game G = (Θ, φ, S, µ, u) of Example 1, player 1’s
ability belongs to the set Θ = {θL, θH}, that φ1(θL) = 1 and that φ2(θH) = 1.
Letting S1 = {L, H} and S2 = {l, h}, the players’ payoffs are:

θL l h

L 1,1 0,0
H 0,1 1,0

θH l h

L 1,1 0,2
H 0,1 2,2

We are interested in the equilibrium play associated with the knowledge de-
scription identified by E[G] = [G] ∩ C1[G0] ∩ C2[G] ∩ [∩n≥2(κn

1 [G] ∩ κn
2 [G])].

In the language of universal types, one can show that the event E[G] identifies
a type-distribution p = (p1, p2) ∈ ∆(T ) such that for any (θ, θ̂) ∈ Θ, p assigns
probability φ(θ, θ̂) to the pair of types (t1, t2), such that δ01 = θ, δ11 = δ(θ̂), δ12 =
φ1 (where the notation δ(·) identifies the distribution degenerate on ·), and such
that the high-order beliefs are recursively defined as follows. Let δ21 = δ11 ·δ(δ11) ·
δ(φ2), δ22 = δ(δ12)·φ(θ, δ11), where the last term assigns probability φ(θ, θ̂) to the
state {θ, δ(θ̂)}, and for any n ≥ 2, δn+1,1 = δn1 ·δ(δn1)·δ(δn2 ·φ0(θ̂, δ11, ..., δn1)),
δn+1,2 = δ(δn2) · φ(θ, δ11, ..., δn−1,1), where the terms φ0 and φ are derived as
before. For any given θ̂ ∈ Θ, let t1[θ̂] denote the type t1 ∈ Supp(p1) such that
δ11 = δ(θ̂). Note that p2 is degenerate.

The key observation is that the event E[G] identifies a type distribution incom-
patible with the consistency assumption of Mertens and Zamir (1985). Hence, player

31 In the context of correlated equilibrium, Brandenburger and Dekel 1987 introduce the distinction be-
tween ex-ante equilibrium (which requires that each player maximizes ex-ante payoff), and a-posteriori
equilibrium (which requires that also null- probability types choose payoff-maximizing strategies).
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1 cannot anticipate player 2’s choice because she believes to play against a ficti-
tious type of player 2. Formally, we observe that for any θ̂ ∈ Θ, type t1[θ̂] identifies
through g1 the belief that player 1 is of type t′1[θ̂] and that player 2 is of type t′2, where
δ′
01 = θ̂, δ′

11 = δ(θ̂), δ′
12 = φ2, δ

′
21 = δ11 ·δ(δ11) ·δ(φ2), δ′

22 = δ(δ12) ·φ2(θ̂, δ11),
and for any n ≥ 2, δ′

n+1,1 = δ′
n1 · δ(δn1) · δ(δ′

n2 · φ2(θ̂, δ′
11, ..., δ

′
n1)), δ′

n+1,2 =
δ(δ′

n2) · φ2(θ̂, δ′
11, ..., δ

′
n−1,1). Since the types t′1[θL], t′1[θH ], and t′2 identify a

Bayesian game with common prior G = (Θ, φ2, S, u), any equilibrium σ of
game G must be such that σ(t′2)(h) = 1, that σ1(t′1[θL])(L) = 1, and that
σ1(t′1[θH ])(H) = 1. Player 2, on the other hand, is of type t2, which identifies
the belief that player 1 is of type t1[θL] with probability φ(θL, θL) = 1. Since this
type of player 2 believes that θ = θL with probability 1, in any equilibrium she
must play σ(t2)(l) = 1. ��

The formulation of the game with universal types allows us to construct a
Bayesian equilibrium that predicts that at any state ω ∈ E[G], player 1 plays
sH when believing her ability to be high, regardless of the fact that player 2 will
respond to that choice by playing yL. This occurs because state ω identifies a type
of player 1 that believes to be playing against a type of player 2 which is different
from the type of player 2 identified by state ω. Hence, player 1 cannot anticipate the
strategy played by player 2. In this sense, this reformulation does not change the
message of Example 1. While it is true that in any Bayesian equilibrium of the game
with universal types, the assignment of strategies to types is common knowledge
among the players, it is also the case that player 1 cannot anticipate player 2’s
choice because she believes that she is playing against a completely fictitious type
of player 2.
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