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Abstract

We study elections in which two candidates poll voters about their preferred policies before taking pol-
icy positions. In the essentially unique equilibrium, candidates who receive moderate signals adopt more
extreme platforms than their information suggests, but candidates with more extreme signals may moder-
ate their platforms. Policy convergence does not maximize voters’ welfare. Although candidates’ platforms
diverge in equilibrium, they do not do so as much as voters would like. We find that the electorate always
prefers less correlation in candidate signals, and thus private over public polling. Some noise in the polling
technology raises voters’ welfare.
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1. Introduction

Since the seminal papers of Hotelling [18], Downs [12], and Black [5], spatial competition
models have greatly advanced our understanding of elections and campaigning. The central
prediction is the median voter theorem, possibly the most famous result in political economy:
Given voters with single-peaked preferences over a unidimensional policy space and two office-
motivated candidates who are perfectly informed about voter preferences, both candidates locate
at the median voter’s preferred policy in the unique equilibrium. In reality, however, candidates
often differentiate their platforms. A host of researchers have documented empirically that can-
didates’ platforms diverge significantly from the estimated median voter’s preferred policy, and
yet are not too extreme.1

Our analysis starts with the observation that, in practice, political candidates do not know vot-
ers’ policy preferences with certainty when selecting platforms. Determining the median voter’s
location is a difficult task, especially in the context of a complex political debate. Accordingly,
candidates devote substantial resources to gathering information about voters through private
polling. Eisinger [13] finds that since the Roosevelt administration, private polls have been an in-
tegral part of the White House modus operandi. Medvic [23] finds that 46 percent of all spending
on U.S. Congressional campaigns in 1990 and 1992 was devoted to the hiring of political consul-
tants, primarily political pollsters. In addition, the major parties provide polling services to their
candidates. Private polling information is jealously guarded by candidates and parties. Indeed,
Nixon had polls routinely conducted, but did not disclose results even to the Republican National
Committee; and F.D. Roosevelt described private polling as his “secret weapon” (Eisinger [13]).

We develop a model of elections in which candidates receive private polling information about
voters’ preferences. Each candidate then updates about the median voter’s preferred policy and
the likely platform of the opponent and commits to an electoral platform, with the candidate
whose platform is closest to the actual median policy winning. In our model, the median pol-
icy is given by μ = α + β , where α is independently and uniformly distributed, and candidates
receive signals about β , which is symmetrically distributed around the ex-ante median. One in-
terpretation of this median policy decomposition is that voters are unwilling or unable to provide
pollsters accurate summaries about all of their views, as is suggested by the empirical work of
Gelman and King [14]. Another interpretation is that candidates learn about the position β ini-
tially preferred by the median voter, after which electoral preferences may shift by α during the
electoral campaign.2 Our construction is completely general with respect to correlation in polling
signals, capturing both private and public polling.

1 See, for example, the National Election Survey data estimating presidential candidates’ platforms from 1964 to 1972
(Page [30], Chapters 3 and 4) and for the 1984 and 1988 races (Merrill and Grofman [24], pages 55–56). Budge et
al. [6] compare estimates of the U.S. and British median voters based on survey data (such as the NES and British
Election Survey) with estimates of candidates’ platforms derived from speech and writing context analyses. They find
clear evidence of divergence from the median policy, and no evidence of extremization. Poole and Rosenthal [32] obtain
similar findings using roll call voting to estimate Congress-persons’ platforms (pages 62–63).

2 For example, after platforms have been selected, a weakening economy may change voters’ views about increased
fiscal spending; or terrorist attacks may alter voters’ views about civil rights restrictions.



D. Bernhardt et al. / Journal of Economic Theory 144 (2009) 2021–2056 2023
In a companion paper, Bernhardt, Duggan, and Squintani [3] (henceforth BDS) show that in
any pure strategy equilibrium, after receiving a signal, a candidate locates at the median of the
posterior distribution over the location of the median voter, where the posterior is conditioned
on both candidates receiving that same signal. As a consequence, each candidate locates more
extremely than his best estimate of the median given his private signal.3 The substantive content
of this characterization is seriously limited by the possibility that the pure strategy equilibrium
may not exist. In BDS, we provide sufficient conditions for the pure strategy equilibrium to exist.
In this paper we show that these conditions are also necessary under some regularity assumptions.
These conditions are implausible unless there are few possible signals, or unless signals are so
precise that the probability that the opponent receives the same signal (rather than just a near-by
signal) exceeds one half.

This finding leads us to prove that, even when a pure strategy equilibrium does not exist,
there always exists a unique mixed-strategy equilibrium in which the locations of the candidates
follow a strong order with respect to their signals, defined later in the paper. We derive the closed-
form solution of this equilibrium and generate several empirical predictions. First, we show that
candidates with sufficiently moderate signals adopt their pure strategy equilibrium platforms,
locating more extremely than their information suggests, while candidates who receive more and
more extreme signals mix over policy positions, tempering their positions by more and more
toward the ex-ante median policy. This result reflects that a politician whose pollster predicts
greater shifts in the median anticipates that he is more likely to compete against an opponent
with a more moderate signal, who will take a more moderate platform. The result is broadly
consistent with the empirical evidence that candidates’ platforms significantly diverge from the
median voter’s preferred policy, and yet are not too extreme.

We then turn to the effect of the statistical properties of the polling technology on equilibrium
platforms. We show that an increase in the precision of the candidates’ signals leads candidates
to locate more extremely, in the sense of first order stochastic dominance. This finding is consis-
tent with the concurrent trends of platform polarization (see the NES data as reported in Budge
et al. [6]) and technological improvement in polling. The effect of increased signal correlation
across candidates (which can be induced by public polling, for example) is ambiguous for candi-
dates with extreme signals, but it unambiguously moderates their locations following moderate
signals.

We then provide a thorough analysis of the welfare properties of private polling and equi-
librium outcomes. Our analysis builds on the observation that in a model with office-motivated
candidates who share symmetric information on the unknown median policy, à la Wittman [35]
or Calvert [8], candidates’ platforms converge to the median of the median policy distribution
and do not offer voters with enough choice. If one were to introduce exogenously a small amount
of dispersion in candidate platforms, then each candidate’s individual platform would target the
median less accurately. Collectively, however, the platform closest to the realized median would
generally be more accurate than the median of the median policy distribution. Because candidates
care only about winning, they do not internalize this externality. As a result, candidates do not
provide enough platform dispersion from the standpoint of the electorate. We identify conditions
under which this insight extends endogenously to the asymmetric information setting considered

3 BDS consider a more general version of the model studied here, but the lack of structure imposed on the distribution
of the median policy limits the analysis to a study of the existence and continuity properties of equilibria.
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in this paper: Candidates’ platforms diverge in equilibrium due to private polling, but not by as
much as voters would like.

Our welfare analysis then proceeds to show that greater signal correlation makes voters worse
off: Correlation reduces both the degree by which candidates “extremize” their platforms given
their signals, as well as the probability that candidates receive different signals, choose dis-
tinct platforms, and thus provide more variety to the electorate. In contrast, the effect of signal
precision on welfare is non-monotonic. Increased polling accuracy raises the probability that
candidates correctly identify the median voter’s preferred policy, raising the welfare from any
one candidate’s platform. However, increased polling accuracy also raises the probability that
the candidates adopt similar platforms, reducing the choice that candidates give voters. The net
effect is that up to some point, raising precision raises welfare, but too much precision has the
opposite effect.

These final two results have implications for public policy. First, the electorate prefers private
to public polling, because sharing information raises the correlation between candidates’ infor-
mation and adversely reduces platform diversity. This finding provides support for public polling
bans that does not rest on claims that public polling may distort elections because of bandwagon
effects or effects on voter participation. Second, because greater precision eventually reduces
voter welfare, campaign spending caps that limit resources devoted to polling may raise voter
welfare, even when campaign advertising is truly informative and beneficial to the electorate.

The set of papers considering aspects of elections with privately-informed candidates begins
with Ledyard [20], who raised the issue of privately-informed candidates and considered exam-
ples exploring the effects of the order of candidate position-taking, public polls, and repeated
elections. Chan [9] studies a three-signal variant of our model, showing that a pure strategy
equilibrium exists when signals are almost uninformative, but more generally, his analysis does
not consider the possibility that pure strategy equilibria fail to exist. Within his framework, he
finds that signal precision can reduce voter’s welfare. Ottaviani and Sørensen [29] numerically
analyze a model of financial analysts who receive private signals of a firm’s earnings and simul-
taneously announce forecasts, with rewards depending on relative forecast accuracy. The case of
two analysts can be re-interpreted as a model of electoral competition with privately-informed
candidates. They show that greater competition increases the strategic bias in forecasts: With
more forecasters, forecasts grow more extreme.4

There is a growing literature on the strategic incentives of polled citizens in delivering their
responses to pollsters. In Morgan and Stocken [27], citizens have private information of common
value, but differ in their ideology. The policy maker implements a policy after polling citizens.
They find that full truthful revelation is impossible as the poll size grows large, but full in-
formation aggregation can arise in equilibrium. Closer to our model, Meirowitz [25] studies a
two-candidate Downsian election where prior to presenting platforms, candidates have access to
polls. In contrast to our focus, he considers public polls, abstracting from private information.
He finds that for most environments honest poll responses cannot occur in a perfect Bayesian
equilibrium.

While we identify adverse effects of polling in that candidates do not differentiate sufficiently
when polling is too precise, Taylor and Yildirim [34] and Goeree and Grosser [15] identify dif-

4 More distantly related, Heidhues and Lagerlöf [17] study a setting where candidates know more than voters about the
optimal policies for voters, and candidates can pre-commit to one of two exogenous policy alternatives. Martinelli [22]
analyzes a related setting where platforms are endogenous and voters have private information. If voters’ information is
biased, equilibrium results in less than full convergence even if parties know the optimal policy.
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ferent adverse effects of polling. Unlike us, they suppose that voting is costly, and consider only
public polls. They show that public polls increase voter turnout but reduce expected welfare, be-
cause they coordinate the minoritarian group to participate to the election at higher rates than the
majoritarian group so as to induce a “toss-up” election.

Other models that generate platform separation feature policy-motivated candidates (Wittman
[35], Calvert [8]), platform-motivated candidates (Callander and Wilkie [7] and Kartik and
McAfee [19]), heterogeneity in candidate valence (Aragones and Palfrey [1], Groseclose [16]),
the threat of entry by a third candidate (Palfrey [31]), or citizen-candidate models where can-
didates cannot commit to positions (Osborne and Slivinski [28], Besley and Coate [4]). Models
that reverse the informational environment so that voters see candidate attributes with noise that
is affected by campaign advertising include Austen Smith [2], Coate [10,11] and Prat [33].

2. The electoral framework

Two political candidates, A and B , simultaneously choose policy platforms on the real line,
where we use x to denote candidate A’s platform and y to denote B’s. There is a unique median
voter, whose preferred policy position is given by μ. Candidate A wins the election if his platform
is closer to the median voter’s preferred position than candidate B’s, i.e., if |x − μ| < |y − μ|,
and A loses if he locates further away. If |x − μ| = |y − μ|, then the election is decided by a fair
coin toss, so that A wins with probability one half.

Candidates do not observe μ, but they receive information about voters’ preferred policies
from private polls. Polling generates signals about the date 1 location of the median voter, given
by β . Then candidates choose platforms. Finally, the election is at date 2. Between dates 1
and 2, the median voter’s preferred platform may shift, so that the median voter’s final pre-
ferred position is μ = α + β .5 For simplicity, we assume that β is a discrete random variable
with support on −R, . . . ,−1,0,1, . . . ,R, where E[β] is normalized to zero, and α is indepen-
dently and uniformly distributed on [−a, a], with a > 2R. This assumption captures the idea that
the unresolved uncertainty in the median voter’s position at the time of polling can sometimes
outweigh policy preferences elicited through polling. Technically, α ensures that the distribution
of μ is uniform on the relevant range (see below).

Polling provides candidates with private real-valued signals i and j about β , drawn from the
finite set −K, . . . ,−1,0,1, . . . ,K. Signals are drawn prior to the shift in the median voter’s po-
sition, and are therefore independent of α. We use P(i, j, b) to denote the joint prior probability
of candidate A’s signal i and candidate B’s signal j and realization β = b. Analogously, we
use P(i, j) to denote the marginal probability of signals i and j , P(i) to represent the marginal
probability of signal i; and P(b) to denote the marginal probability of b. We focus on a sym-
metric environment in which P(b) = P(−b) > 0, and P(i, j |b) = P(−i,−j |−b) > 0. Given
a subset I of signals, we denote the distribution of the median μ conditional on one candidate
receiving signal i and the other receiving a signal in the set I by Fi,I , and let fi,I represent the
associated density. We denote the median of Fi,I by mi,I , and note that mi,I equals the condi-
tional expectation of b, E[b|i, I ] = ∑

b bP (b|i, I ). We denote the conditional distributions given
one signal i and two signals i, j by Fi and Fi,j , and the associated medians by mi and mi,j . We
assume that P and F are both symmetric with P(i, j) = P(j, i) and Fi,j = Fj,i for all signals i

and j . This implies that the candidates have access to equally informative polling technologies.

5 An alternative interpretation is that α captures an additional source of error inherent in the polling process, e.g., α

may represent a component of policy preferences about which voters are unable or unwilling to divulge information.
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Because we associate larger signals with larger realizations of β, we assume that mi,I < mj,I

whenever i < j. We further assume that signals are “self-reinforcing”, so that i > 0 implies
mi,i > mi and mi,i > mi,I\{i}, where mi,I\{i} denotes the median conditional on the other can-
didate receiving a signal other than i.6 In our symmetric model mi,j = −m−i,−j for all i, j .
Hence, the signal i = 0 is “uninformative”, i.e., the median following signal i = 0 equals the
ex-ante median, m00 = m0 = E[β] = 0. We denote the vector of medians (mi,i)i∈I by M. Our
assumptions on the distributions of α and β simplify equilibrium calculations as they imply that
the distribution Fi,I is linear over the relevant interval [−R,R]:

Fi,I (z) = a − mi,I + z

2a
, for all z ∈ [−R,R].

We believe that the qualitative properties of our equilibrium analysis do not hinge on this struc-
ture.

We next highlight the structural assumptions on the conditional distributions of a candidate’s
signal given the opponent’s signal realization that we use in our analysis. This structure is mild.
Assumption (A1) is a stochastic dominance restriction on the conditional distributions of signals.
It says that when one candidate receives a higher signal, the other candidate is also more likely to
receive a higher signal. Assumption (A2) says the higher is a candidate’s signal, the more likely
it is to exceed his opponent’s. Assumption (A3) says that a candidate is most likely to receive
signal k when the other candidate also receives k. Our characterization in Theorem 3 imposes
no other structure on candidates’ signals, for example, capturing conditionally-independent and
perfectly correlated signals as special cases.

(A1) For all signals i, k with k < i,∑
j : j<�

P (j |k) �
∑

j : j<�

P (j |i), for all signals �.

(A2) For all signals i, k with k < i,∑
j : j<i

P (j |i) �
∑

j : j<k

P (j |k) and
∑

j : j�i

P (j |i) �
∑

j : j�k

P (j |k).

(A3) For all signals i and k, P(k|k) � P(k|i).

To illustrate our assumptions, we introduce the following example.

Example 1. Let there be 2K + 1 ex-ante equally-likely values of b ∈ {−K, . . . ,0, . . . ,K}, and
2K + 1 possible signals, i, j ∈ {−K, . . . ,0, . . . ,K}. With probability q < 1, the candidates re-
ceive the same signal, and with probability 1 − q they receive conditionally-independent signals.
A signal is correct with probability p � 1

2K+1 , and with equal probability 1−p
2K

any of the other
signals is drawn. Thus, p captures the accuracy of the polling signals, and q is a measure of the
correlation between the candidates’ signals. Calculations reveal that for any i,

6 The assumption that signals are self-reinforcing is not used in the equilibrium analysis. Rather, it is employed in the
interpretation of equilibrium platforms. As we will show, when a player endowed with a signal i plays a pure-strategy, he
adopts the platform mi,i in equilibrium. Because signals are self-reinforcing, this implies that the player adopts a more
extreme platform than his signal i suggests.
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P(i|i) = q + (1 − q)

(
2K

(
1 − p

2K

)2

+ p2
)

,

P (j |i) = (1 − q)

(
1 − p

2K

)(
(2K − 1)

1 − p

2K
+ 2p

)
, for j �= i,

and it is straightforward to check that assumptions (A1), (A2), and (A3) hold. Solving for the
median conditional only on a candidate’s own signal i and for the median conditional on both
candidates receiving the same signal i yields

mi = i

(
p − 1 − p

2K

)
and mi,i = i

(qp + (1 − q)p2) − (q
1−p
2K

+ (1 − q)(
1−p
2K

)2)

q + (1 − q)(2K(
1−p
2K

)2 + p2)
,

and due to symmetry, m0 = m0,0 = 0. Since mi < mi,i for all i > 0, signals are self-reinforcing.

Having described the polling technology, we now turn to describe electoral outcomes. If
candidate A locates to the left of B , i.e., x < y, then candidate A wins when μ < (x + y)/2.
Conversely, if x > y, then A wins when μ > (x + y)/2. The probability that B wins is just one
minus the probability that A wins. Thus, the probability that candidate A wins when A adopts
platform x following signal i and B adopts platform y following signal j is

πA(x, y|i, j) =

⎧⎪⎨
⎪⎩

Fi,j (
x+y

2 ) if x < y,

1 − Fi,j (
x+y

2 ) if y < x,

1
2 if x = y.

We define a Bayesian game between the candidates in which pure strategies for candidates A and
B are vectors X = (xi) and Y = (yj ), respectively, and the solution concept is Bayesian equi-
librium. The equilibrium is symmetric if X = Y . Given pure strategies X and Y , candidate A’s
interim expected payoff conditional on signal i and A’s ex-ante expected payoff are

ΠA(X,Y |i) =
∑
j

P (j |i)πA(xi, yj |i, j) and ΠA(X,Y ) =
∑

i

P (i)ΠA(X,Y |i),

respectively. The ex-ante game is a two-player, constant-sum game: For all X and Y , ΠA(X,Y )+
ΠB(X,Y ) = 1. Because the game is constant sum, equilibria are interchangeable in the sense that
if (X,Y ) and (X′, Y ′) are equilibria, then so are (X,Y ′) and (X′, Y ).

These concepts extend to mixed strategies, where candidate behavior is described by cu-
mulative distribution functions over platforms. Such strategies capture the possibility that a
candidate’s position following a signal may not be precisely predicted by his opponent. We let Gi

represent the distribution over platforms adopted by a candidate after receiving signal i. A mixed
strategy is then a vector G = (Gi) of cumulative distribution functions. A mixed strategy equi-
librium is a pair (G,H) of mixed strategies such that candidate A’s strategy G maximizes her
expected payoff given each signal i, and similarly for candidate B’s strategy H .

When pure strategy equilibria fail to exist, we search for mixed-strategy equilibria that sat-
isfy a simple monotonicity condition. Specifically, we assume that following any given signal, if
candidates do not locate deterministically, then they locate according to a distribution with con-
nected support, where these supports are non-overlapping and ordered according to their signals.
In the following definition, xi and x̄i denote the lower and upper bounds of a candidate’s mixed
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strategy distribution following signal i. When these bounds coincide, i.e., xi = x̄i , the candidate
locates deterministically.7

Definition 1. A mixed strategy G is ordered if (a) for all signals i, Supp(Gi) = [xi, x̄i], and (b)
for all signals i and j with i < j , x̄i � xj .

This concludes the description of our model. We next derive the unique ordered mixed strategy
equilibrium and determine its empirical and welfare properties.

3. Equilibrium analysis

BDS show that when a pure strategy equilibrium exists, it is unique and take a simple form:
After receiving a signal, each candidate locates at the median of the distribution of μ conditional
on both candidates receiving that signal.

Theorem 1 (BDS). If (X,Y ) is a pure strategy equilibrium, then xi = yi = mi,i for all signals i.

Intuitively, if the candidates were to locate symmetrically at a platform xi = yi away from
mi,i following signal i, then either candidate, say A, could exploit this by moving slightly to-
ward mi,i . For instance, suppose that xi > mi,i . Conditional on B receiving signal realization i,
A’s expected payoff for playing xi is 1/2. By slightly moving toward mi,i his expected payoff
increases discontinuously to almost Fi,i(xi). This quantity exceeds 1/2 because Fi,i(mi,i) = 1/2,
and xi > mi,i . If instead B receives a signal other than i, A’s payoff would vary continuously
with A’s location. Averaging expected payoffs across opponent’s signals, we obtain that a slight
deviation from xi toward mi,i would raise A’s payoff, which is impossible in equilibrium. When,
instead xi = mi,i , then because Fi,i(xi) = Fi,i(mi,i) = 1/2, a slight deviation from xi marginally
reduces the probability of winning the election below 1/2, if the opponent has the same signal i,
and changes the probability of winning continuously if the opponent has any other signal.8

This result is reminiscent of Milgrom’s [26] findings on common-value second-price auctions.
There, competition drives the equilibrium bid of type θ to the expected value of the good con-
ditional on the top two types being equal to θ , because a winning bidder ties with an opponent
with the same type. Here, because candidates maximize the probability of winning, the relevant
statistic is the median rather than the mean. In contrast to the auction setting, however, we will
show that a pure-strategy equilibrium need not exist, and that in the (essentially unique) ordered
mixed strategy equilibrium, extreme-signal candidates moderate their platform relatively to their
private information. In auction terminology, they bid more conservatively than in Milgrom’s
equilibrium.

Theorem 1 has strong implications due to the self-reinforcing nature of signals: A corol-
lary is that candidates take policy positions that are extreme relative to the median of μ given
only their own information. This result runs counter to the standard platform convergence result,

7 While stronger than a monotonicity condition that would only require that strategies be ordered in first-order stochas-
tic dominance, the requirement that mixed strategies be ordered in the support ensures that there is a unique equilibrium.
We conjecture that this structure is unnecessary, but have no proof when there are more than five signals.

8 To conclude that there are no asymmetric pure-strategy equilibria, note that if (X,Y ), with xi �= mi,i for some i,
is a pure strategy equilibrium, then symmetry implies that (Y,X) is an equilibrium, and interchangeability implies that
(X,X) is an equilibrium, contradicting the result that xi = yi = mi,i in any symmetric equilibrium.
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as it highlights a tendency toward polarization in elections with private polling. But while the
pure-strategy equilibrium characterization yields strong implications, its substantive content is
obviously limited to settings where the pure strategy equilibrium exists.

In BDS, we introduce sufficient conditions for pure-strategy equilibrium existence. Our next
result highlights the possibility that the pure strategy equilibrium does not exist by showing that
the sufficient conditions introduced in BDS are also necessary: The pure strategy equilibrium
exists only if each signal i is a median of the probability distribution P(·|i). Formally, for every
signal i, we must have

∑
j : j�i

P (j |i) �
∑

j : j>i

P (j |i) and
∑

j : j<i

P (j |i) �
∑

j : j�i

P (j |i). (1)

To see why condition (1) is necessary, suppose it is violated. Specifically, suppose that when a
candidate’s signal is i, the probability her opponent’s signal j is strictly smaller than i exceeds
the probability that j is weakly larger than i. If the candidate takes a platform smaller than the
equilibrium prescription mi,i , then he increases the probability of winning the election when
the opponent receives a signal j < i, and decreases the probability of winning when j � i.
Because the probability that j < i exceeds the probability that j � i, the candidate gains from
this deviation from the posited equilibrium. To facilitate the simple expression of our result,
we frame our pure-strategy equilibrium non-existence result using a simplifying condition on
the conditional medians. Specifically, we assume that mi,j is the average of the two conditional
medians mi,i and mj,j . This assumption implies that, when a candidate has a signal i and is
considering the possibility that the opponent’s signal is j , he ties the election by following the
equilibrium strategy mi,i , given that the opponent plays the equilibrium strategy mj,j . As a result,
whether he has an incentive to take a platform that is less than the equilibrium platform mi,i

depends only on whether the probability P(j |i) of opponent types j < i is greater or less than
the probability P(j |i) of opponent types j � i; and vice versa for deviations greater than mi,i .

Theorem 2. Suppose that mi,j = [mi,i + mj,j ]/2 for all signals i and j . A pure strategy equilib-
rium exists only if condition (1) is satisfied for all signals i.

While satisfied when signals are perfectly correlated ex-ante, condition (1) is likely to be
restrictive. It is particularly restrictive for the most extreme signals, for which P(i|i) � 1/2 is
implied. The significance of this non-existence result rests on the observation that in elections
with finely-detailed polling and hence many possible signals, condition (1) is not plausibly sat-
isfied, unless signals are so precise that the probability that, conditional on receiving the most
extreme signal, the opponent receives the same signal (not just a nearby one) is larger than one
half. In light of this negative result, we turn to the analysis of equilibria of the electoral game in
which candidates adopt mixed strategies.

We begin by characterizing the maximal set C of signals i that satisfy the inequalities in (1).
We show that C is a non-empty set of moderate signals, symmetric around the signal zero.
Conditional on such moderate signals, candidates expect only a small shift in the median μ away
from the ex-ante median E[μ] = 0. We let c̄ = maxC.

Lemma 1. Under (A1), the set C is non-empty. Adding (A2), C is a set of moderate signals: for
any signal i, we have i ∈ C if and only if −c̄ � i � c̄.
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Fig. 1. Equilibrium diagram.

We now calculate the unique ordered mixed-strategy equilibrium. We prove in Theorem 3 that
candidates who receive moderate signals in the set C play the pure-strategy mi,i , and hence ex-
tremize their platforms, due to the reinforcing nature of signals. In contrast, candidates with
extreme signals, say i > c̄, adopt convex, increasing mixed strategy densities that place all
probability mass on locations that are more moderate than mi,i . Further, the supports of the dis-
tributions following extreme signals are adjacent. A symmetric characterization holds for signals
i < −c̄. Fig. 1 depicts the ordered equilibrium.

The intuition for these results is that following an extreme signal i > c̄, a candidate believes
that with high probability, the opponent’s signal is less than i. In order to compete against a can-
didate who likely holds a smaller signal, he moderates his platform relative to mi,i . Theorem 1
indicates that such moderation means that he turns to a mixed strategy. In sum, when a pollster
predicts a dramatic shift in voter’s preferences, we predict that a candidate will not follow such
extreme recommendations, and instead will moderate his platforms and make his platform less
easily predictable by his opponent. The joint effect of extremization following moderate signals
in C, and moderation following extreme signals outside C, substantiates our claim that private
polling induces outcomes that diverge from the median, but yet do not exhibit extreme polariza-
tion.

Theorem 3. Under (A1)–(A3), there exists a unique ordered mixed strategy equilibrium. For all
i ∈ C, candidates locate at mi,i , and for all i > c̄, candidates mix according to an increasing,
convex density,

gi(x) = Φi

2

√
mi,i − xi

(mi,i − x)3
> 0 (2)

on the interval [xi, x̄i] with x̄i < mi,i . Here,

Φi =
∑

j : j<i P (j |i) − 1/2

P(i|i) > 0 and xi+1 = mi,i

[
1 −

(
Φi

Φi + 1

)2]
+ xi

(
Φi

Φi + 1

)2

,

(3)

with xc̄+1 = mc̄,c̄. These supports are adjacent, in the sense that x̄i−1 = xi for all i > c̄. The
equilibrium is symmetric across signals i around the signal zero.

The proof in Appendix A proceeds sequentially. We first work under assumptions (A1)
and (A2) only. We prove that an equilibrium mixed strategy cannot put a probability atom fol-
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lowing signal i on any platform other than mi,i . Further, because a candidate must be indifferent
over all positions in the support of his mixed strategy, the second-order condition must hold as
an equality over any non-degenerate interval in the support, taking the simple form

3gi(x)fi,i (x) + g′
i (x)

(
2Fi,i(x) − 1

) = 0.

We solve this system of ordinary differential equations for a mixed-strategy equilibrium up to the
initial condition gi(xi). We use this characterization to show that for signals i ∈ C, the candidate
necessarily places probability one on the conditional median mi,i , and that for signals i /∈ C, the
candidate mixes according to a continuous distribution Gi . We then show that there can be no
gaps between the supports of the candidates’ mixed strategies. This result provides the initial
conditions gi(xi) to conclude the calculation of gi . Adding (A3) to conditions (A1) and (A2),
we show that each candidate’s payoffs are single-peaked in xi around the support of his mixed
strategy—candidates play best responses with probability one—and hence the densities gi induce
the unique mixed-strategy equilibrium.9

Our explicit solution for the equilibrium allow us to calculate a number of statistics of potential
empirical interest. Owing to equilibrium symmetry across signals i, we henceforth focus on
signals i > c̄ whenever studying extreme signals i /∈ C. For any such signal, the cumulative
distribution function with which candidates mix on the interval [xi, x̄i] is given by

Gi(x) = Φi

[√
mi,i − xi

mi,i − x
− 1

]
. (4)

Further, the expected platform of a candidate with signal i > c̄ is a weighted average of xi

and mi,i ,

E[xi] = Φi

Φi + 1
xi + 1

Φi + 1
mi,i . (5)

We conclude this section by documenting a continuity property of pure-strategy equilibrium.
Note that Φi ↓ 0 is equivalent to

∑
j : j�i P (j |i) ↑ 1/2, so that condition (1) for candidates to

adopt their pure strategy location of mi,i becomes close to being satisfied. The closed-form solu-
tion for the equilibrium mixed strategy in Theorem 3 reveals that as Φi goes to zero, candidates
place almost all probability close to their pure strategy location of mi,i , providing robustness of
the pure strategy equilibrium (in a probabilistic sense) with respect to small deviations from the
inequalities in (1).

In the next section, we use these equilibrium statistics to derive implications of signal preci-
sion and correlation on equilibrium platform extremization.

4. Positive implications

In this section, we exploit the closed-form solution for Gi to develop a qualitative understand-
ing of how candidates use their private information when choosing platforms. We first examine
how the propensity of candidates to extremize their location varies with their signals. We then
determine how the statistical properties of the candidates’ polling technology—the correlation
and precision of their signals—affect platform choices. By linking these properties to different
types of elections, we obtain a number of novel empirical predictions.

9 In the proof of the theorem, (A2) and (A3) are used only to address signals i /∈ C. It follows that if (1) holds for all
signals, then (A1) delivers existence of the pure strategy equilibrium.
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Signal realization. We first derive a key characterization result: Candidates with more moderate
signals expect to locate more extremely relative to their information than do candidates with more
extreme signals. Specifically, we identify simple statistical conditions under which candidates
with extreme signals i > c̄ expect to locate further away from mi,i as i increases. Intuitively,
as the shift in voter’s preferences predicted by the pollster becomes more extreme, we predict
that the candidates will become less likely to follow the pollster’s recommendations. This result
reinforces a key positive insight: Polling yields platform divergence, due to the self-reinforcing
nature of signals, but not platform polarization.

First note that plausibly the coefficients Φi in the characterization of Theorem 3 increase
in i for i > c̄. In fact, under (A2),

∑
j : j�i P (j |i) rises with i: Increasing a candidate’s signal

raises the probability that his signal is at least as high as his opponent’s. Hence, as a candidate’s
signal grows more extreme, Φi rises as long as the conditional probability P(i|i) that the other
candidate receives the same signal does not rise too sharply with i.

When Φi is increasing in i > c̄, it follows immediately from (4) that Gi(mi,i − x) rises with
i > c̄. Hence, to prove that candidates with more extreme signals expect to locate more moder-
ately relative to their information, we just need to show that mi,i − xi is strictly increasing in i.
As we show in the proof of the next proposition, a gross sufficient condition for this is that the
distance between successive conditional medians, mi+1,i+1 −mi,i , not fall too quickly with i for
i � c̄.

Proposition 1. Suppose that for all signals i > c̄, Φi+1 � Φi . Then, there exists δ > 0 such that
if mj+1,j+1 − mj,j > mj,j − mj−1,j−1 − δ for all j � c̄, then mi,i − E[xi] is strictly increasing
in i for i � c̄.

Precision. In Example 1, signal precision is represented by the probability p that the signal
is correct. To describe the general implications of an increase in signal precision, we intro-
duce simple restrictions that are consistent with the implications of increasing signal precision
in Example 1.10 Consider any signal i � 0. Under reasonable structural assumptions, increas-
ing signal precision implies that when candidate A receives signal i, candidate B is also more
likely to receive this signal, so that P(i|i) increases. Similarly, increasing precision should cause∑

j : j<i P (j |i) to fall. Finally, increasing precision plausibly raises mi,i when i > 0, as higher
precision increases the “informational content” of signals. These properties hold in Example 1
when we increase p.

The next result shows that increasing precision causes candidates to locate more extremely in
equilibrium, in the sense of first order stochastic dominance. This result delivers the insight that
candidates may have stronger tendencies to polarize platforms in higher-profile elections, such
as presidential races, where candidates have more resources to devote to private polling, which,
in turn, yield more precise polling outcomes. Empirically, this prediction is consistent with the
concurrent trends of technological improvement in polling and platform polarization (see the
NES data as reported in Budge et al. [6]).

Proposition 2. Suppose that for all signals i > 0, both P(i|i) and mi,i increase and∑
j : j<i P (j |i) decreases. Then candidates locate more extremely in equilibrium: For all sig-

nals i > 0, Gi(x) decreases for all x, strictly so for all x in the support of Gi in the initial
specification of the model.

10 A treatment and discussion of different concepts of signal precision can be found in Lehman [21].
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The proof follows from inspection of Eq. (4) in Theorem 3: The cumulative distribution func-
tion Gi decreases for all x, because the increase in precision decreases Φi and at the same time
it increases mi,i .

Proposition 2 uses an “absolute” measure of extremization, but it does not reveal how preci-
sion affects the likelihood that a candidate chooses a platform more extreme than his estimate
of the median voter’s position. It shows that raising precision increases the probability of locat-
ing more extremely, but raising precision also raises mi . This leads us to perform a numerical
analysis of Example 1, with K = 1, and hence three possible signal realizations. We find that a
candidate is always likely to extremize his location in the sense that he locates more extremely
than his forecast, given his signal, of the median voter’s position. In particular, the probability a
candidate chooses a platform more moderate than his information suggests, i.e., x1 ∈ [0,m1], is
bounded from above by 1

2 (
√

2 − 1) ≈ 0.207, achieving this bound when signals are uninforma-
tive, i.e., p ↓ 1

3 , and signals are uncorrelated, i.e., q = 0. Further, raising the signal accuracy p

always raises the probability that a candidate locates more extremely than his information sug-
gests.

Correlation. To address the impact of correlation, we generalize Example 1 as follows. Assume
that, as in Example 1, with probability q both candidates receive the same signal drawn from
P(·|b) for each realization of b, and with probability 1 − q candidates receive conditionally-
independent signals drawn from the same P(·|b) distributions. The next result summarizes the
effects of increased signal correlation, as measured by the coincidence probability q , on the
equilibrium strategies of the candidates.

Proposition 3. Suppose that conditional on the realization b, candidates receive the same signal
with probability q and conditionally-independent signals with probability 1 − q . Raising the
signal correlation q causes candidates to locate more moderately following moderate signals
i ∈ C. For extreme signals i outside the set C, increasing correlation generates countervailing
effects. Specifically, raising q lowers Φi for all signals i > c̄, and it lowers mi,i for all positive
signals:

dΦi

dq
< 0 for i > c̄ and

dmi,i

dq
< 0 for i > 0.

Further, the set C is weakly increasing in q .

Combining Proposition 3 with Theorem 3 yields direct characterizations. Every moderate
signal i belonging to the set C remains in C when correlation increases, and candidate loca-
tions following such signals become more moderate. This result is intuitive: A moderate signal
i induces a candidate to play mi,i , the median conditional on both signals being i, and when
signals become more correlated, mi,i shifts inward toward mi , the median conditional on only
one signal being equal to i. For extreme signals i > c̄, a decrease in Φi leads candidates to take
more extreme platforms, but the decrease in conditional medians mi,i following positive signals
shifts the lower bounds of supports, xi , in toward the ex-ante median m0,0. Thus, increasing cor-
relation generates countervailing effects on candidate location following extreme signals. This
highlights an essential difference between an increase in correlation and an increase in precision:
Both decrease Φi , but increased correlation shifts conditional medians in toward m0,0 producing
a moderating effect.
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To gain insight into which effect dominates, we return to Example 1, with three signal realiza-
tions. There, the pure strategy equilibrium exists for P(1|1) � 0.5, and increasing q reduces m1,1,
causing candidates to moderate their positions. However, for P(1|1) < 0.5, the equilibrium is in
mixed strategies, and using the expression (5), we can show that dE[x1]

dq
> 0. That is, raising cor-

relation causes the expected platform to become more extreme when the equilibrium is in mixed
strategies, but to become less extreme when the equilibrium is in pure strategies.

5. Voter welfare

We now investigate the properties of socially optimal platforms and the consequences of equi-
librium platform choices for voter welfare. To evaluate the optimality of equilibrium strategies,
we adopt the standpoint of a social planner who does not have an informational advantage over
the candidates in the electoral game, and whose role is simply to choose strategies for the two
candidates to maximize voter welfare. To maintain consistency with equilibrium choices, we re-
strict the social planner to monotone strategies that are symmetric around zero. That is, the social
planner selects the same strategy X for the two candidates, where xi > xj for signals i > j and
xi = x−i for all i.11

We first show that given simple statistical conditions on the polling technology, candidates
locate too moderately for the electorate after observing their pollsters’ signals: Voters prefer that
candidates take even more extreme positions than they do in equilibrium. We then investigate
how the statistical properties of the polling technology affect voter welfare. In particular, we
show that increased correlation in candidate signals reduces voter welfare; and we illustrate how
the optimal amount of noise in the polling technology from the perspective of voters is affected
by the correlation in signals and the amount of uncertainty about the median voter’s location.

We consider a distribution of voter preferences that has median equal to zero and that is
subject to a stochastic shift, μ. Hence, we focus on aggregate preference uncertainty. Voter v’s
preferred policy, θv , is defined relative to the median voter’s preferred policy μ: θv = μ + δv ,
where δv represents the position of v’s ideal point relative to μ, and a change in μ simply shifts
the distribution of voter ideal points. We assume quadratic utilities, so that a voter with ideal
point θ receives utility u(θ, z) = −(θ − z)2 from policy outcome z, and we assume that each
voter votes for the candidate whose platform is closest to his preferred policy. We let Wδv (X)

represent the utility that voter v expects to receive if candidates use strategy X.
The next result implies that all voters have identical preferences over candidate strategies that

are symmetric around zero, and that their ex-ante utility Wδv is strictly concave in X.

Lemma 2. For all strategies X symmetric around zero, voter v’s expected utility from X is a
fixed amount δ2

v less than the expected utility of the median voter:

Wδv (X) = −δ2
v + W0(X).

Further, the welfare function W0(X) is a concave function of X.

Lemma 2 implies that without loss of generality we can focus on the median voter’s welfare:

11 This restriction makes it more difficult to find welfare-improving platforms for candidates, and hence strengthens our
negative results on social inefficiency of equilibrium.
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W0(X) = −
∑

b

∑
i

P (b, i, i)

a∫
−a

(α + b − xi)
2

2a
dα

−
∑

b

∑
i

∑
j : j>i

P (b, i, j)

[ [xi+xj ]/2−b∫
−a

(α + b − xi)
2

2a
dα

+
a∫

[xi+xj ]/2−b

(α + b − xj )
2

2a
dα

]

−
∑

b

∑
i

∑
j : j<i

P (b, i, j)

[ [xi+xj ]/2−b∫
−a

(α + b − xj )
2

2a
dα

+
a∫

[xi+xj ]/2−b

(α + b − xi)
2

2a
dα

]
. (6)

In what follows, we therefore drop the subscript on W(·). Strict concavity of the welfare function
W(·) implies that it has a unique maximizer, which we denote by X∗, that can be characterized
using first-order conditions. By our symmetry assumptions, X∗ is symmetric around zero, with
x∗

0 = m0,0. Thus, we only need to consider the social optimality of candidate locations following
signal realizations i �= 0.

We now show that under simple statistical conditions on the polling technology, voters want
candidates to take even more extreme positions than they do in a pure strategy equilibrium.
That is, if voters could choose the amount by which candidates biased their location away from
the ex-ante median following a signal realization, then they would raise the bias. This welfare
result holds despite the thrust of Theorem 1 that pure-strategy equilibrium platforms are already
extreme relative to expected location of the median voter conditional on pollsters’ signals.

Underlying our welfare result is the fact that “extremizing” platforms raises expected platform
separation. Voters value platform separation because they can always choose the candidate closer
to the realized median policy. Because pollsters’ signals are only imperfect estimates of the
realized median policy, sufficient platform separation increases the chance that one of the two
candidates’ platforms is closer to the realized median policy. But candidates are not willing to
provide sufficient platform separation because each candidate only cares only about winning the
election, i.e., each candidate only cares about his location being the closest one to the realized
median. Hence, to maximize voters’ expected welfare, platforms should be more extreme than
those chosen by candidates. Posed differently, in equilibrium, candidates do not internalize the
positive externality on voters’ welfare of extremizing their platforms, thereby providing voters
with more choice.

Formalizing this reasoning, we investigate the three-signal setting and show that candidates
do not locate as extremely as voters would like. In such environments, we show in Appendix A
that the derivative of W with respect to x1 takes the following form (see Eq. (23)):

∂W

∂x1
(M) = 1

a

∑
P(1, j)

[
(a + mj,1 − m1,1)

2 + σ 2
j,1 −

(
mj,j − m1,1

2

)2]
> 0,
j : j<1
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where σ 2
j,k is the variance of β conditional on signals j and k. To see the inequality, note that the

term corresponding to j = −1 is positive. Because a > m1,1 − m−1,−1, the term corresponding
to j = 0 is also positive. It follows that social welfare would be raised by a marginal increase in
the candidates’ platform following signal i = 1. Concavity and symmetry around zero then imply
that candidates locate more moderately following signals i = 1 and i = −1 than is optimal in
the pure-strategy equilibrium when it exists, i.e., m1,1 < x∗

1 and x∗−1 < m−1,−1. More generally,
given the characterization in Theorem 3, this extends immediately to mixed strategy equilibria.
Intuitively, the voters gain from the increased separation in candidates’ platforms when can-
didates receive different signals more than they lose in the increased bias of each candidate’s
platform relative to the estimate of the median voter’s location, conditional on his signal. The
following result summarizes these observations.

Proposition 4. Consider a coarse three-signal setting. When the pure-strategy equilibrium exists,
candidates locate too moderately relative to the social optimum following signals i �= 0. Adding
(A1)–(A3), candidates locate too moderately relative to the social optimum with probability one
following a signal i �= 0 in the ordered mixed strategy equilibrium.

Extending this result to arbitrary numbers of signal realizations requires more structure. We
introduce the following two assumptions.

(A4) For all signals i > 0,∑
j : j<i

P (j |i) >
∑

j : j>i

P (j |i).

(A5) For all signals i > 0, j > 0, j �= i,

P(j |i)
P (−j |i) >

3mi,i + mj,j

|mi,i − mj,j | .

The condition in (A4) is not unreasonably restrictive, as there are 2i more signals to the
left of i than there are to the right.12 The inequality in (A5) says that if one candidate receives a
positive signal i, then the probability the other candidate receives a positive signal j is sufficiently
greater than the probability of receiving the more distant signal −j . Condition (A5) is satisfied
if candidate signals are sufficiently correlated or sufficiently precise, as in high-profile elections
in which candidates have substantial resources to devote to accurate polling. Conditions (A4)
and (A5) are always (vacuously) satisfied in a three-signal model.

Armed with (A4) and (A5), we have the following result.

Theorem 4. Under (A4), when a is sufficiently large, we have ∂W
∂xi

(M) > 0 for all signals i > 0.
Adding (A5), the conditional medians are more moderate than the socially optimal platforms:
mi,i < x∗

i for all signals i > 0. An analogous result holds for signals i < 0. Hence, with (A1)–
(A3), candidates locate in equilibrium too moderately relative to the social optimum following
every signal i �= 0.

12 In fact, with symmetry of P(·|0) around the zero signal, (A4) would be implied by (A2) if the latter condition were
strengthened so that the comparisons of conditional probabilities held with strict inequality.



D. Bernhardt et al. / Journal of Economic Theory 144 (2009) 2021–2056 2037
As we show in Appendix A, under (A4), the partial derivative of welfare with respect to any
signal i > 0 at the vector of medians M is strictly positive for all signals i, ∂W

∂xi
(M) > 0, as long

as a is sufficiently large.13 Hence, voter welfare is increased by extremizing platforms slightly
past their equilibrium locations, because for all signals i, the associated pure-strategy equilibrium
location xi coincides with the conditional median mi,i; and under (A1)–(A3), mi,i exceeds the
upper bound x̄i of the support of the mixed strategy distribution Gi .

But the local result in the first part of Theorem 4 does not ensure that the optimal locations are
more extreme than equilibrium platforms for all signal realizations. When the partial derivative
of W(·) with respect to the location xi following some signal j decreases sufficiently fast in xi ,
it may be that the social planner extremizes the optimal location x∗

i so far past mi,i that he
needs to “compensate” by moderating x∗

j . To rule out this pathological possibility, we introduce
assumption (A5). We then use the quadratic form of the partial derivative of W(·) with respect
to xi , when viewed as a function of candidate positions following other signals. Assumption (A5)
ensures that the cross-partial derivatives of W(·) are well-behaved even under the “worst case
scenario” in which xj = mi,i for positive signals j < i and xj = mj,j for signals j > i. We
conclude that under reasonable statistical conditions on the polling technology, if the voters could
choose the amount by which candidates biased their location away from the ex-ante median
following a signal realization, they would choose to increase the bias.

We now turn to address how welfare is affected by the statistical properties of the polling
technology. As in the analysis of Section 4, we address the impact of correlation by assuming
that conditional on the realization b, candidates receive the same signal with probability q , and
conditionally-independent signals with probability 1 − q .

Theorem 5, below, shows that an increase in signal correlation reduces welfare when can-
didates select platforms xi = mi,i for all signals i, as in the unique pure strategy equilibrium.
Intuitively, an increment in signal correlation q increases the chance that candidates choose the
same platform in equilibrium, and hence do not provide the voters with any platform separa-
tion. Voters’ welfare is thus reduced, as the electorate values platform separation. This result
bears the unexpected implication that voters may prefer private polling by candidates to public
polling. Hence, we provide novel support for provisions that ban public polling—our argument
does not rest on claims that public polling may distort elections because of bandwagon effects or
distortions in voters’ participation.

Theorem 5. Suppose that conditional on the realization b, candidates receive the same signal
with probability q , and conditionally-independent signals with probability 1 − q . If ∂W

∂xi
(M) > 0

for all signals i > 0, then an increase in signal correlation q reduces voter welfare: dW
dq

(M) < 0.

This result is proved as follows. From Proposition 3, we know that an increase in correlation
shifts the conditional medians inward, decreasing candidate separation. Under our regularity
assumptions, this indirect effect of increasing correlation reduces voter welfare. The proof then
consists of showing that the direct effect of increasing correlation also reduces voter welfare.

While increased correlation monotonically reduces voter welfare, the effect of increasing
signal precision on voter welfare is more subtle. It is immediate that perfectly precise polling
dominates uninformative polling. We now prove that the impact of signal precision on welfare

13 Even when a is not large, we have ∂W
∂xi

(M) > 0 for any positive signal i under further conditions that we omit and
make available upon request to the authors.
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is not monotonic: While increasing precision up to some level raises welfare, eventually further
increases in precision lower welfare. This is because as signals become very precise, there is
a high chance that candidates receive signals close to each other. As a result, candidates play
close platforms with high probability, and reduce welfare by not providing voters with enough
platform separation. Because polling precision should be monotonic in the amount of resources
devoted to polling, our result provides novel support for campaign spending caps. Spending caps
that limit resources devoted to polling may raise voter welfare, even when campaign advertising
is truly informative and otherwise beneficial to the electorate.

To formalize this reasoning, we show that welfare is raised if rather than having perfectly
precise polling signals, signals are slightly noisy. We say that signals are perfectly precise if for
all b and for signals i = j = b, P(i, j |b) = P(i|b) = 1.14 When signals are perfectly precise,
both candidates receive the “correct” signal and choose the same equilibrium platform, which
equals the realization of β . We now prove that a small reduction in precision makes all voters
better off, as it allows candidates to receive different signals and hence differentiate their plat-
forms, thereby providing voters more choice. In particular, we suppose that candidates receive
conditionally-independent signals, and that the probability a candidate’s signal is correct is only
1 − ε. Inspection of the proof reveals that the result extends as long as when candidates receive
the wrong signal, their signals are not perfectly correlated. Thus, we prove that welfare increases
if we introduce signal noise such that the probability that both candidates receive “incorrect”
signals is infinitesimal relative to the probability that one candidate receives the “correct” signal
and one receives the “incorrect” one.

Theorem 6. Suppose that candidates receive conditionally-independent signals. If signals are
perfectly precise, i.e., for all b and for signals i = j = b, P(i, j |b) = P(i|b) = 1, then a suffi-
ciently small reduction in signal precision increases social welfare in equilibrium.

While Theorem 6 reveals that voters are better off if polling is not too accurate, it does not shed
light on the optimal amount of noise to introduce to the polling technology from the perspective
of voters, and how that optimal noise varies with the specifics of the economic environment. To
glean such insights, we consider a binary variant of Example 1 in which there are two equally-
likely values of b ∈ {−1,1} and two possible signals, i ∈ {−1,1}. As in Example 1, signals
are correct with probability p, and conditional on the realization b, candidates receive the same
signal with probability q and conditionally-independent signals with probability 1−q . Increasing
the signal quality p raises the probability that both candidates receive the “correct” signal, but
it also increases the probability that candidates receive the same signal, and hence do not offer
voters variety. Fig. 2 presents level sets of voter welfare W as functions of (p, a) when q = 0,
and level sets of W in (p, q) for a = 2.

Fig. 2 illustrates two important qualitative features. First, the value of precisely targeting β

decreases with a. This reflects the fact that as a rises, there is more uncertainty about the median
voter’s preferred platform, which raises the value of increased platform choice. As a result, the
optimal precision decreases in a: Voters want less accurate polls, so that candidates are less likely
to receive the same signal and thus provide greater choice. Second, the optimal signal precision
rises with the signal correlation q . Intuitively, when signal correlation is increased, the candidates

14 Accordingly, we assume that R � K , so each realization of β may be associated with a unique element of K .
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Fig. 2. Welfare level curves.

are more likely to receive the same signal, raising the value of targeting the median voter more
accurately.

6. Conclusion

This paper shows how private polling radically alters the nature of the strategies of office-
motivated candidates, overturning the apparently robust result of platform convergence. Specifi-
cally, in any pure strategy equilibrium, candidates’ platforms over-emphasize their private infor-
mation: Candidates locate at the median given that both receive the same signal. When candidates
are not sufficiently likely to receive the same signal, equilibrium is characterized by mixed strate-
gies. In the mixed strategy equilibrium, candidates who receive moderate signals adopt more
extreme platforms than their information suggests, while candidates who receive more extreme
signals moderate their platforms relative to their pollsters’ advice.

We show that some platform differentiation always increases voters’ welfare. Although candi-
dates differentiate their platforms in equilibrium, voters would prefer that candidates extremize
their positions by even more. From the perspective of voters, this paper finds that there is an
optimal amount of noise in the polling technology. That is, the marginal social value of better in-
formation for candidates about voters becomes negative, once polls are sufficiently accurate. This
suggests a rationale for campaign spending limits—such limits reduce expenditures on polling,
thereby reducing the precision of candidates’ signals and possibly raising voter welfare. So too,
this suggests that voters may want to give dishonest answers to political pollsters in order to
add noise to their polling technology. Finally, the electorate prefers private to public polling,
because the increased signal correlation due to public polling reduces the diversity of platforms
that candidates provide voters.

Our analysis suggests fruitful directions for future research. First, because the strategic value
of better information is always positive for candidates, it is conceptually straightforward to endo-
genize the choice of costly polling technologies by candidates. Second, it would be worthwhile
to determine how outcomes are affected when candidates have ideological preferences, and to
endogenize contributions by ideologically-motivated lobbies to fund polling by candidates. Fi-
nally, as Ledyard [20] observes, it would be useful to uncover how equilibrium outcomes are
affected when candidates sequentially choose platforms, so the second candidate can see where
the first locates, and hence can unravel the latter’s signal, before locating.
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Appendix A

Proof of Theorem 2. The result is proved with minor modifications of the proof of Theorem 2
in BDS, hence the proof is omitted and made available upon request. �
Proof of Lemma 1. First, let k be the highest signal such that

∑
j : j>k P (j |k) > 1

2 . (If such a k

does not exist, then the minimum signal −K satisfies the inequalities in (1), and we can move to
the second part of the argument.) Clearly, k is less than the maximum signal: k < K . We claim
that signal k + 1 satisfies (1). First, note that

∑
j : j�k

P (j |k + 1) �
∑

j : j�k

P (j |k) � 1

2
, (7)

where the first inequality above follows from (A1) and the second follows from the definition
of k. Then (7) implies∑

j : j<k+1

P(j |k + 1) �
∑

j : j�k+1

P(j |k + 1).

Finally, from k+1 > k and the assumption that k is the highest signal such that
∑

j : j>k P (j |k) >
1
2 , we have

∑
j : j>k+1 P(j |k + 1) � 1

2 , i.e.,

∑
j : j>k+1

P(j |k + 1) �
∑

j : j�k+1

P(j |k + 1).

Therefore, k +1 satisfies (1), and C �= ∅. Second, we establish that, adding (A2), C is connected.
Let � be the lowest signal such that

∑
j : j<� P (j |�) > 1

2 . Repeating the argument above, we see
that �−1 satisfies (1). By (A1), k+1 � �−1. Take any i such that k+1 < i < �−1. If i /∈ C, then
we may assume without loss of generality that

∑
j : j>i P (j |i) > 1

2 . Then the second part of (A2)

implies that
∑

j : j>k+1 P(j |k + 1) > 1
2 , a contradiction. Finally, consider i such that i < k + 1

or i > � − 1, and without loss of generality assume the former. If
∑

j : j>i P (j |i) � 1
2 , then

i < k. Then the second part of (A2) implies that
∑

j : j>k P (j |k) � 1
2 , a contradiction. Hence,

C = {j | k + 1 � j � � − 1} is connected. �
Proof of Theorem 3. We proceed in two parts. We first characterize the unique ordered equilib-
rium under assumptions (A1) and (A2). Then we prove existence under the additional assump-
tion (A3).

Part 1. Under (A1) and (A2), if there is an ordered equilibrium, then it is unique and has the
symmetric form specified in Theorem 3.

Proof. Let (G,H) be an ordered equilibrium. We first assume the equilibrium is symmetric, so
that G = H . Then x is a differentiable point of a candidate’s expected payoff, conditional on
signal i, if and only if the following holds: for all signals j , if Gj puts positive probability on x,
then x = mi,j . At every point of differentiability x ∈ Supp(Gi), the derivative of the candidate’s
expected payoff function at x, conditional on signal i, with respect to xi is:
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∑
j : mj,j <x

P (j |i)
[
−fi,j

(
x + mj,j

2

)
(Gj (mj,j ) − Gj(mj,j )

−)

2

]

+
∑

j : x<mj,j

P (j |i)
[
fi,j

(
x + mj,j

2

)
(Gj (mj,j ) − Gj(mj,j )

−)

2

]

+
∑
j

P (j |i)
[ x∫

−∞
−fi,j

(
x + z

2

)
gj (z)

2
dz + (

1 − Fi,j (x)
)
gj (x)

+
∞∫

x

fi,j

(
x + z

2

)
gj (z)

2
dz − Fi,j (x)gj (x)

]
, (8)

where gi is the density of Gi , wherever it is defined. BDS show generally that the supports of
equilibrium mixed strategies are bounded by the left- and right-most conditional medians.

Our premise of non-overlapping supports, and the fact that fi,j is constant at 1
2a

over the
relevant range under our assumptions, allows us to simplify (8) greatly. If gk is defined at x ∈
[xk, x̄k], then the derivative of the candidate’s expected payoff, conditional on signal i, with
respect to xi is

1

4a

[
−

∑
j : j<k

P (j |i) +
∑

j : j>k

P (j |i) + P(k|i)[1 − 2Gk(x) + 4(mi,k − x)gk(x)
]]

.

If x ∈ (x̄k−1, xk), then the interior term in brackets simplifies, and the derivative becomes

1

4a

[
−

∑
j : j<k

P (j |i) +
∑

j : j�k

P (j |i)
]
. (9)

Clearly, the candidate must be indifferent among all locations in any interval in the support of Gi ,
and the first order condition must hold at all points of differentiability on such an interval.

Step 1. For all k and all z, if Gk puts positive probability on z, then z = mk,k . Condition (C4*)
of [3] is satisfied in our model, and this step therefore follows from their Theorem 7.

Step 2. If Gi is continuous in an interval [xi, x̂), then given gi(xi), the density gi on [xi, x̂) is
characterized by the candidates’ second-order condition. Since the candidate’s expected payoff
is constant over the interval, it must in particular be linear over this interval, so the second-order
condition must be satisfied with equality. Differentiating (8), we have

P(i|i)[−3gi(x) + 4(mi,i − x)g′
i (x)

] = 0,

for all x ∈ (xi, x̂). Since the candidate chooses the platform xi with zero probability, we include
it in the interval as well, yielding a differential equation in gi that is easily solved. We find that

gi(x) = gi(xi)

(
mi,i − xi

mi,i − x

) 3
2

(10)

for all x ∈ [xi, x̂], with associated distribution

Gi(x) = gi(xi)(mi,i − xi)
3/2

(
2√ − 2√

)
. (11)
mi,i − xi mi,i − x



2042 D. Bernhardt et al. / Journal of Economic Theory 144 (2009) 2021–2056
Thus, the second-order condition pins down the density gi and distribution Gi on [xi, x̂) up to
the initial condition gi(xi).

Step 3. For all i ∈ C, Gi is the point mass on mi,i . Suppose not, so xi < x̄i . As the argument
is symmetric, suppose without loss of generality that xi < mi,i . By Step 1, Gi is continuous on
[xi,mi,i). The first-order condition can be written as

gi(x) =
∑

j : j<i P (j |i) + P(i|i)(1 − 2Gi(x)) − ∑
j : i<j P (j |i)

4P(i|i)(mi,i − x)
. (12)

Note that mi,i /∈ [xi, x̄i], for otherwise by (11) would imply that Gi takes values greater than
one in a neighborhood of mi,i . Therefore, x̄i < mi,i , and Gi is continuous on the entire interval
[xi, x̄i]. Substituting x = x̄i in (12) and using i ∈ C, we have

gi(x) =
∑

j : j<i P (j |i) − ∑
j : i�j P (j |i)

4P(i|i)(mi,i − x)
< 0,

a contradiction.

Step 4. For all i > c̄, Gi is continuous. First, suppose that xi = x̄i ; then from Step 1, Gi puts
probability one on mi,i . We claim that for all j < i, we have x̄j < mi,i . If j ∈ C, then this follows
from Step 3 and mj,j < mi,i . If j > c̄ and x̄j = mi,i , then Eq. (12) implies gj is negative in a
neighborhood of x̄j , a contradiction, establishing the claim. Consider any z < mi,i such that
x̄j < z for all j < i. The derivative of the candidate’s expected payoff, conditional on i, at z

is given by (9), which is negative, as i > c̄. Therefore, a sufficiently small move from mi,i to
z < mi,i raises the candidate’s expected payoff, a contradiction. Therefore, xi < x̄i . As in Step 3,
we must have mi,i /∈ [xi, x̄i], and then Gi is continuous.

Step 5. For all i > c̄, supports are adjacent, in the sense that x̄i−1 = xi . Suppose x̄i−1 < xi . As
in Step 4, the derivative in the interval [x̄i−1, xi] is given by (9), which is negative. As above, a
sufficiently small move from xi to z < xi raises the candidate’s expected payoff, a contradiction.

Step 6. For all i > c̄, the distribution Gi and its increasing, convex density gi are given by (2)
and (4); the upper bound of the support of Gi is strictly less than mi,i ; the lower bounds of the
supports are as in (3); and the expected value of xi is given by (5). The parameters xi and gi(xi)

are determined by the first-order condition, which yields

gi(xi) =
∑

j : j<i P (j |i) − ∑
j : j�i P (j |i)

4P(i|i)(mi,i − xi)
= Φi

2

1

(mi,i − xi)
,

when evaluated at xi . Substituting for gi(xi) in (10) and (11) yields the following expressions
for the density gi and distribution Gi on the support [xi, x̄i]:

gi(x) = Φi

2

[
(mi,i − xi)

1
2

(mi,i − x)
3
2

]
and Gi(x) = Φi

[√
mi,i − xi

mi,i − x
− 1

]
.

The condition Gi(x) = 1 determines the upper bound x̄i of the support, which by Step 5 coin-
cides with xi+1. Note that for xi < mi,i , a solution to Gi(x) = 1 does indeed exist for all i > c̄,
since 2√

mi,i−x
goes to infinity as x increases to mi,i . By Steps 3 and 5, xc̄+1 = mc̄,c̄ . Therefore,

solving Gi(xi+1) = 1, the lower bounds are pinned down recursively by difference equation (3),
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with the initial condition xc̄+1 = mc̄,c̄. These observations, with an induction argument starting
with xc̄+1 = mc̄,c̄ , yield x̄i < mi,i for all signals i. The expectation (5) is derived simply by
integrating. That gi is increasing and convex is apparent from the functional form of the density.

Finally, we argue that there are no non-symmetric ordered equilibria (G,H), where G �= H .
Given any ordered equilibrium (G,H), because the electoral game is symmetric and zero-sum,
the strategy pair (H,G) is also an equilibrium. By interchangeability, (G,G) is a symmetric
equilibrium, so G is uniquely characterized above, as is H by an analogous argument. �
Part 2. Under (A1)–(A3), if one candidate adopts the strategy specified in Theorem 3, then the
other candidate’s payoff following each signal i is maximized by all xi ∈ [xi, x̄i].

Proof. Assume each candidate uses the mixed strategy G, defined in Theorem 3, and consider
any signal i > c̄. By construction, the candidate’s expected payoff conditional on receiving sig-
nal i is constant on [xi, x̄i]. We show that the candidate’s expected payoff falls as we move xi

further to the left of xi or further to the right of x̄i . First, take k such that k < i and k /∈ C. We
must show that

−∑
j : j<k P (j |i) + ∑

j : j>k P (j |i)
P (k|i) + [

1 − 2Gk(x) + 4(mi,k − x)gk(x)
]
� 0. (13)

By construction, the candidate’s expected payoff following signal k is constant over his support,
so at x ∈ (xk, x̄k) we have

[∑j : j>k P (j |k) − ∑
j : j<k P (j |k)]

P(k|k)
+ [

1 − 2Gk(x) + 4(mk,k − x)gk(x)
] = 0. (14)

By (A1) and (A3), we have∑
j : j>k P (j |i) − ∑

j : j<k P (j |i)
P (k|i) �

∑
j : j>k P (j |k) − ∑

j : j<k P (j |k)

P (k|k)
.

Since mi,k > mk,k , we have

1 − 2Gk(x) + 4(mi,k − x)gk(x) > 1 − 2Gk(x) + 4(mk,k − x)gk(x),

which implies that the left-hand side of (13) exceeds the left-hand side of (14), as required.
Now take k ∈ C. Note that the candidate’s expected payoff conditional on signal i is discon-

tinuous at mk,k : Letting Π(xi |G, i) denote the expected payoff conditional on i from locating at
xi when the other candidate uses the mixed strategy G, we have

lim
w↓mk,k

ΠA(w|G, i) − ΠA(mk,k|G, i) = P(k|i)
[

1 − Fi,k(mk,k) − 1

2

]
� 0,

where the inequality follows from mk,k < mi,k . Similarly,

ΠA(mk,k|G, i) − lim
w↑mk,k

ΠA(w|G, i) � 0,

so the candidate’s payoff function is non-decreasing at mk,k . Over the interval (x̄k−1,mk,k), the
derivative of the candidate’s payoff function conditional on signal i is proportional to
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∑
j : j�k

P (j |i) −
∑

j : j<k

P (j |i) �
∑

j : j�k

P (j |k) −
∑

j : j<k

P (j |k) � 0,

where the first inequality follows from (A1) and the second from the definition of k ∈ C.
Now take k > i. We must show that

−
∑

j : j<k

P (j |i) +
∑

j : j>k

P (j |i) + P(k|i)[1 − 2Gk(x) + 4(mi,k − x)gk(x)
]

(15)

is non-positive. By (A1), we have

−
∑

j : j<k

P (j |k) +
∑

j : j>k

P (j |k) � −
∑

j : j<k

P (j |i) +
∑

j : j>k

P (j |i). (16)

Because (14) holds at x ∈ (xk, x̄k) and k > c̄, the left-hand side above is negative, which implies
that 1 − 2Gk(x) + 4(mi,k − x)gk(x) is positive. By (A3) and mk,k > mi,k , we have

P(k|k)
[
1 − 2Gk(x) + 4(mk,k − x)gk(x)

]
> P(k|i)[1 − 2Gk(x) + 4(mi,k − x)gk(x)

]
.

(17)

Together, (14), (16), and (17) imply that (15) is negative, as required. �
Proof of Proposition 1. To do this, we use the difference equation (3) describing the relationship
between xi+1 and xi to solve for

mi+1,i+1 − xi+1 = mi+1,i+1 − mi,i +
(

Φi+1

Φi+1 + 1

)2

(mi,i − xi), for i � c̄.

Note that xc̄ = mc̄,c̄ = xc̄+1, so that (mc̄+1,c̄+1 − xc̄+1) − (mc̄,c̄ − xc̄) = mc̄+1,c̄+1 − mc̄,c̄ > 0.
Continuing inductively,

(mi+1,i+1 − xi+1) − (mi,i − xi)

= [mi+1,i+1 − mi,i] − [mi,i − mi−1,i−1] +
(

Φi+1

Φi+1 + 1

)2

(mi,i − xi)

−
(

Φi

Φi + 1

)2

(mi−1,i−1 − xi−1)

� [mi+1,i+1 − mi,i] − [mi,i − mi−1,i−1]

+
(

Φi+1

Φi+1 + 1

)2[
(mi,i − xi) − (mi−1,i−1 − xi−1)

]
> [mi+1,i+1 − mi,i] − [mi,i − mi−1,i−1],

where the first inequality follows because Φi+1 � Φi , and the second inequality follows from
the induction hypothesis. We have shown that when [mi+1,i+1 − mi,i] is constant, mi,i − xi is
strictly increasing, with slack, delivering the result. �
Proof of Proposition 2. If a model is subject to a transformation consistent with an increase in
signal precision, then the zero signal remains an element of C after the transformation. In fact,
every signal that belongs to C before the transformation remains in the central set, say C′, after
the transformation. Given any signal i > 0 such that i ∈ C, the shift in equilibrium platform is
therefore just 
mi,i > 0, as required. Given any signal i > 0 such that i ∈ C′ \C, the equilibrium
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mixed strategy before the transformation is described in Theorem 3. This mixed strategy puts
probability one on platforms less than mi,i , and the equilibrium platform after the transformation
puts probability one on the new conditional median, say m′

i,i . Since m′
i,i > mi,i , the claim of

the proposition is fulfilled. Let c̄′ be the greatest element of the new set C′. It is evident that
for signals i > c̄′, the transformation decreases Φi . Moreover, the foregoing implies that the
lower bound of the candidates’ support following signal c̄′ + 1 after the transformation, denoted
x′

c̄′+1, weakly exceeds the lower bound before the transformation, which is xc̄′+1. Therefore,
expression (4) in Theorem 3 implies that the transformation leads to a stochastic improvement in
the candidates’ equilibrium distribution following signal c̄ + 1. This further increases the lower
bound x̄c̄′+2 for signal c̄′+2 and leads to a stochastic improvement following c̄′+2. An induction
argument based on these observations yields the proposition. �
Proof of Proposition 3. To see that dΦi

dq
< 0 for i > c̄, write Φi as Φi = ([∑j : j<i P (j,i)]− P (i)

2 )

P (i,i)
.

Note that

P(i, i) =
∑

b

[
qP (i|b) + (1 − q)P (i|b)2]P(b),

dP (i, i)

dq
=

∑
b

[
1 − P(i|b)

]
P(i|b)P (b),

P (j, i) =
∑

b

[
(1 − q)P (i|b)P (j |b)

]
P(b) for j �= i,

dP (j, i)

dq
= −

∑
b

P (i|b)P (j |b)P (b) for j �= i.

Therefore, using the fact that P(i) is independent of q , we have

Φi

dq
∝ P(i, i)

[
−

∑
b

∑
j : j<i

P (i|b)P (j |b)P (b)

]

−
[[ ∑

j : j<i

P (j, i)

]
− P(i)

2

][∑
b

[
1 − P(i|b)

]
P(i|b)P (b)

]

< 0,

where the inequality follows from i > c̄, which implies
∑

j : j<i P (j |i) > 1
2 . To see that

dmi,i

dq
< 0, note that

mi,i(q) = E[b|i, i, q] =
∑

b

b

[
qP (i|b)P (b) + (1 − q)P (i|b)P (i|b)P (b)∑

b′ [qP (i|b′)P (b′) + (1 − q)P (i|b′)P (i|b′)P (b′)]
]
.

Therefore, for all i > 0, we have

dmi,i

dq
(q) ∝

∑
b

b
[
P(i|b)P (b) − P(i|b)P (i|b)P (b)

]
×

∑
b′

[
qP

(
i|b′)P (

b′) + (1 − q)P
(
i|b′)P (

i|b′)P (
b′)]

−
∑

′

[
P

(
i|b′)P (

b′) − P
(
i|b′)P (

i|b′)P (
b′)]
b
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×
∑

b

b
[
qP (i|b)P (b) + (1 − q)P (i|b)P (i|b)P (b)

]

∝
∑

b b[P(i|b)P (b) − P(i|b)P (i|b)P (b)]∑
b[P(i|b)P (b) − P(i|b)P (i|b)P (b)]

−
∑

b b[qP (i|b)P (b) + (1 − q)P (i|b)P (i|b)P (b)]∑
b[qP (i|b)P (b) + (1 − q)P (i|b)P (i|b)P (b)]

=
∑

b b[1 − P(i|b)]P(i|b)P (b)∑
b[1 − P(i|b)]P(i|b)P (b)

−
∑

b b[qP (i|b) + (1 − q)P (i|b)P (i|b)]P(b)∑
b[qP (i|b) + (1 − q)P (i|b)P (i|b)]P(b)

= mi,I\{i} − mi,i

< 0,

as required. That C is weakly increasing in q follows from the fact that dP (i,j)
dq

< 0 for all
j �= i. �
Proof of Lemma 2. The first part of the proof establishes that a voter v’s welfare is just δ2

v less
than the welfare of the median voter (δv = 0). The second part of the proof establishes that the
welfare function W0(·) is strictly concave.

First, to calculate the welfare of a voter with relative ideal point δv , note that for any b,
if both candidates receive a signal i, then they both locate at xi , yielding voter δv expected
utility of (1/a)

∫ a

−a
u(α + b + δv, xi) dα. If candidates receive different signals i and j , with

i < j , one locates at xi , while the other locates at xj , and the candidate closest to the median
voter wins the election. That is, the candidate at xi wins if μ < [xi + xj ]/2, or equivalently
if α < [xi + xj ]/2 − b; and the candidate at xj wins if μ > [xi + xj ]/2, or equivalently if
α > [xi + xj ]/2 − b. Thus, voter δv’s expected utility is

1

2a

[xi+xj ]/2−b∫
−a

u(α + b + δv, xi) dα + 1

2a

a∫
[xi+xj ]/2−b

u(α + b + δv, xj ) dα. (18)

Therefore,

Wδv (X) =
∑

b

∑
i

P (b, i, i)
1

2a

a∫
−a

u(α + b + δv, xi) dα

+
∑

b

∑
i

∑
j : j>i

P (b, i, j)

[
1

2a

[xi+xj ]/2−b∫
−a

u(α + b + δv, xi) dα

+ 1

2a

a∫
[xi+xj ]/2−b

u(α + b + δv, xj ) dα

]
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+
∑

b

∑
i

∑
j : j<i

P (b, i, j)

[
1

2a

[xi+xj ]/2−b∫
−a

u(α + b + δv, xj ) dα

+ 1

2a

a∫
[xi+xj ]/2−b

u(α + b + δv, xi) dα

]
. (19)

For any b and any pair i, j with i < j , we aggregate the term (18) with the corresponding term
for b′ = −b, i′ = −i, and j ′ = −j , so that j ′ < i′, so as to obtain:

− 1

2a

[xi+xj ]/2−b∫
−a

−(α + b + δv − xi)
2 dα − 1

2a

a∫
[xi+xj ]/2−b

(α + b + δv − xj )
2 dα

− 1

2a

a∫
[−xi−xj ]/2+b

−(α − b + δv + xi)
2 dα − 1

2a

[−xi−xj ]/2+b∫
−a

(α − b + δv + xj )
2 dα

= −δ2
v − 2δv(b − xi)

[
a + xi + xj

2
− b

]
1

2a
− 2δv(b − xj )

[
a − xi + xj

2
+ b

]
1

2a

− δ2
v − 2δv(−b + xi)

[
a −

[
−xi + xj

2
+ b

]]
1

2a

− 2δv(−b + xj )

[
−xi + xj

2
+ b + a

]
1

2a

− 1

2a

[xi+xj ]/2−b∫
−a

(α + b − xi)
2 dα − 1

2a

a∫
[xi+xj ]/2−b

(α + b − xj )
2 dα

− 1

2a

a∫
[−xi−xj ]/2+b

−(α − b + xi)
2 dα − 1

2a

[−xi−xj ]/2+b∫
−a

(α − b + xj )
2 dα

= −δ2
v − 1

2a

a∫
[−xi−xj ]/2+b

u(α − b,−xi) dα − 1

2a

[−xi−xj ]/2+b∫
−a

u(α − b,−xj ) dα

− δ2
v − 1

2a

[xi+xj ]/2−b∫
−a

u(α + b, xi) dα − 1

2a

a∫
[xi+xj ]/2−b

u(α + b, xj ) dα,

where we used
∫ a

−a
α dα = 0. The case for pairs i = j follows from analogous manipulations.

This establishes that the voter’s welfare is just δ2
v less than the welfare of the median voter

(δv = 0).
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Second, we differentiate the expression (19) for voter welfare with δv = 0 to obtain:

∂W0

∂xi

(X) =
∑

b

[
P(i, i, b)

1

a

a∫
−a

(b + α − xi) dα

+ 2
∑

j : j<i

P (i, j, b)
1

a

a∫
xj +xi

2 −b

(b + α − xi) dα

+ 2
∑

j : j>i

P (i, j, b)
1

a

xi+xj
2 −b∫

−a

(b + α − xi) dα

]
,

where we note that in (19), each signal pair (k, �) with k < � appears once in the sum over i and
j > i and once in the sum over i and j < i. After simplifying, the above expression becomes

∂W0

∂xi

(X) = 1

2a

∑
b

P (i, i, b)
[
(b + a − xi)

2 − (b − a − xi)
2]

+ 1

a

∑
j : j<i

∑
b

P (i, j, b)

[
(b + a − xi)

2 −
(

xj − xi

2

)2]

+ 1

a

∑
j : j>i

∑
b

P (i, j, b)

[(
xj − xi

2

)2

− (b − a − xi)
2
]
.

Viewing the summands above as quadratic functions of the random variable b, we use mean-
variance analysis and the fact that E[b|j, i] = mj,i to derive the expression

∂W0

∂xi

(X) = 1

2a
P (i, i)

[
(mi,i + a − xi)

2 − (mi,i − a − xi)
2]

+ 1

a

∑
j : j<i

P (i, j)

[
(mj,i + a − xi)

2 −
(

xj − xi

2

)2

+ σ 2
j,i

]

+ 1

a

∑
j : j>i

P (i, j)

[(
xj − xi

2

)2

− (mj,i − a − xi)
2 − σ 2

j,i

]
, (20)

where σ 2
j,i is the variance of b conditional on signals j and i.

Taking one further derivative, the cross partial with respect to xi and xj with j �= i is then

∂2W0

∂xi∂xj

(X) = P(i, j)
|xi − xj |

2a
, (21)

where we use monotonicity of strategies in signal. The second partial with respect to xi is

∂2W0

∂2xi

(X) = 1

2a
P (i, i)

[−2(a + mi,i − xi) + 2(mi,i − xi − a)
]

+ 1

a

∑
P(i, j)

[
−2(a + mi,j − xi) + xj − xi

2

]

j : j<i
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− 1

a

∑
j : j>i

P (i, j)

[
−2(mi,j − xi − a) + xj − xi

2

]

= P(i)

a

[
−2a − 2

∑
j : j<i

P (j |i)(mi,j − xi) + 2
∑

j : j>i

P (j |i)(mi,j − xi)

]

−
∑

j : j �=i

P (i, j)
|xj − xi |

2a
.

Therefore, we may decompose the Hessian of W0 into two matrices, H = D + E, where E is a
symmetric matrix such that

ei,j = P(i, j)
|xj − xi |

2a
for i �= j and ei,i = −

∑
j : j �=i

P (i, j)
|xj − xi |

2a
, (22)

and D is a diagonal matrix such that

di,i = P(i)

a

[
−2a − 2

∑
j : j<i

P (j |i)(mi,j − xi) + 2
∑

j : j>i

P (j |i)(mi,j − xi)

]
.

Because xi is bounded above by R, it follows that

di,i � P(i)

a
[−2a + 2R + 2R] < 0,

where the inequality follows from a > bN −b1 = 2R. Thus, D is negative definite. We now argue
that E is negative semi-definite. Let t ∈ 
2K+1 be an arbitrary vector, and note that∑

i,j

ti tj eij =
∑

i

t2
i eii +

∑
i

∑
j : j �=i

ti tj eij

=
∑

i

t2
i

( ∑
j : j �=i

−eij

)
+

∑
i

∑
j : j �=i

ti tj eij

=
∑

{i,j}: i �=j

(−t2
i eij − t2

j eji

) +
∑

{i,j}: i �=j

(ti tj eij + tj tieji)

=
∑

{i,j}: i �=j

eij

(−t2
i + 2ti tj − t2

j

)

=
∑

{i,j}: i �=j

−eij (ti − tj )
2

� 0,

where the second equality follows from condition (22), the fourth equality follows from symme-
try of E, and the final inequality uses eij � 0 when i �= j . Therefore, E is negative semi-definite,
and H = D + E is negative definite. We conclude that W0 is strictly concave. �
Proof of Theorem 4. We first note that substituting mj,j for xj for all j , in expression (20), the
partial derivative of welfare at the vector of medians is
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∂W

∂xi

(M) = 1

a

∑
j : j<i

P (i, j)

[(
a − (mi,i − mj,i)

)2 + σ 2
j,i −

(
mi,i − mj,j

2

)2]

− 1

a

∑
j : j>i

P (i, j)

[(
a − (mj,i − mi,i)

)2 + σ 2
j,i −

(
mj,j − mi,i

2

)2]
. (23)

Hence, when a is sufficiently large, ∂W
∂xi

(M) > 0 for all i, under (A4).
Recall that x∗

i = −x∗−i for each signal i, and in particular we have x∗
0 = 0. Define the mapping

φ : 
K → 
2K+1 by

φ(x1, . . . , xK) = (−xK, . . . ,−x1,0, x1, . . . , xK),

and define the symmetrized welfare function Ŵ : 
K → 
 by

Ŵ (x1, . . . , xK) = W
(
φ(x1, . . . , xK)

)
.

For simplicity, we denote K-tuples by X̂ = (x1, . . . , xK); in particular, the K-tuple of conditional
medians is M̂ = (m1,1, . . . ,mK,K). By Lemma 2 and linearity of φ, Ŵ is strictly concave. Fur-
thermore, it has a unique maximizer, X̂∗, and by the above argument it follows that X∗ = φ(X̂∗).
Note that, by the chain rule, for all signals i > 0 and all X̂, we have

∂Ŵ

∂xi

(X̂) = ∂W

∂x−i

(
φ(X̂)

)∂φ−i

∂xi

(X̂) + ∂W

∂xi

(
φ(X̂)

)∂φi

∂xi

(X̂) = 2
∂W

∂xi

(
φ(X̂)

)
.

Furthermore, for all j �= i, we have

∂2Ŵ

∂xi∂xj

(X̂) = 2

[
∂2W

∂xi∂xj

(
φ(X̂)

) − ∂2Ŵ

∂xi∂x−j

(
φ(X̂)

)]

= 1

a

[
P(i, j)|xi − xj | − P(i,−j)(xi + xj )

]
, (24)

where the second equality uses (21). Consider the welfare maximization problem with the addi-
tional constraint that candidates locate at or above the conditional medians corresponding to all
signals:

max
X̂

Ŵ (X̂)

s.t. xi � mi,i for all i > 0.
(25)

Because the domain of this problem is convex, it has a unique solution, say X̂′. We seek to show
that at this solution, the constraints in (25) are slack, i.e., x′

i > mi,i for all signals i > 0. Then
concavity of W implies x∗

i = x′
i > mi,i for all i > 0, as required. To this end, suppose x′

i = mi,i

for some i > 0, where without loss of generality we take i to be the lowest such signal. Therefore,
we must have

∂Ŵ

∂xi

(
X̂′) � 0. (26)

Consider any X̂ such that xj = x′
j for all j � i and xj � mj,j for all j > i. Given signal j > i,

from (24), we see that

∂2Ŵ
(X̂) > 0 (27)
∂xi∂xj
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if and only if

P(i, j)

P (i,−j)
>

mi,i + xj

xj − mi,i

.

Differentiating the right-hand side of the latter inequality, we see that it is decreasing in xj , and
so it is maximized over xj � mj,j at xj = mj,j . Thus, (27) follows from assumption (A5). Now
define X̂′′ so that x′′

j = x′
j for all j � i and x′′

j = mj,j for all j > i, in effect just decreasing
candidate positions following signals j > i to their conditional medians. Then (26) and (27)
imply

∂Ŵ

∂xi

(
X̂′′) � 0. (28)

This contradicts ∂Ŵ
∂xi

(M̂) > 0 immediately if i = 1, so assume i > 1, and note that x′′
j > mj,j for

all signals j < i. Let I ⊆ {1, . . . , i − 1} be any subset of signals less than i, and define X̂I so that

xI
j =

{
mi,i if j < i and j ∈ I,

mj,j else.

That is, for the subset of signals in I , we move candidate positions up to mi,i ; after all other
signal realizations, we position candidates at their conditional medians. Note that X̂′′ is a convex
combination of such vectors:

X̂′′ ∈ conv
{
X̂I

∣∣ I ⊆ {1, . . . , i − 1}}.
Note also that X̂∅ = M̂ , and that ∂Ŵ

∂xi
(X̂∅) > 0. More generally, we have

∂Ŵ

∂xi

(
X̂I

) − ∂Ŵ

∂xi

(
X̂∅)

= 2
∑
j∈I

1

a

[
P(−j, i)

[(
mj,j + mi,i

2

)2

− m2
i,i

]
+ P(j, i)

(
mi,i − mj,j

2

)2]

= 2
∑
j∈I

1

a

[
P(−j, i)

(
mj,j − mi,i

2

)(
3mi,i + mj,j

2

)
+ P(j, i)

(
mi,i − mj,j

2

)2]

� 0,

where the inequality follows from assumption (A5). Therefore, ∂Ŵ
∂xi

(X̂I ) > 0 for all subsets I .

The expression (20) shows that the partial derivative of Ŵ with respect to xi is a concave
(weighted) quadratic function of positions (x1, . . . , xi−1), and therefore the set

Z =
{
(x1, . . . , xi−1,mi,i , . . . ,mK,K)

∣∣∣ ∂Ŵ

∂xi

(x1, . . . , xi−1,mi,i , . . . ,mK,K) > 0

}

is convex. In particular, since X̂I ∈ Z for all I , and since X̂′′ is a convex combination of the X̂I ,

we have X̂′′ ∈ Z, i.e., ∂Ŵ
∂xi

(X̂′′) > 0, contradicting (28). We conclude that x′
i > mi,i for all signals

i > 0, as required. �
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Proof of Theorem 5. We write W(X;q) to bring out the dependence of welfare on correlation
given locations X, and we write mi,i(q) to bring out the dependence of the conditional median
on correlation. The effect of an increase in correlation q may be decomposed as follows:

dW

dq
(M;q) = ∂W

∂q
(M;q) +

∑
i

∂W

∂xi

(M;q)
dmi,i

dq
(q)

= ∂W

∂q
(M;q) +

K∑
i=1

[
∂W

∂xi

(M;q)
dmi,i

dq
(q) + ∂W

∂x−i

(M;q)
dm−i,−i

dq
(q)

]

= ∂W

∂q
(M;q) + 2

K∑
i=1

∂W

∂xi

(M;q)
dmi,i

dq
(q),

where the third equality follows from symmetry about zero. By hypothesis, ∂W
∂xi

(M;q) > 0 for

all signals i > 0, and Proposition 3 delivers dmi,i

dq
(q) < 0 for all i > 0. To see that ∂W

∂q
(M;q) < 0,

note that

W(M;q) = −
∑

b

∑
i

[
qP (i|b) + (1 − q)P (i|b)P (i|b)

]
P(b)

a∫
−a

(α + b − mii)
2

2a
dα

−
∑

b

∑
i

∑
j>i

(1 − q)P (i|b)P (j |b)P (b)

[ [mii+mjj ]/2−b∫
−a

(α + b − mii)
2

2a
dα

+
a∫

[mii+mjj ]/2−b

(α + b − mjj )
2

2a
dα

]

−
∑

b

∑
i

∑
j<i

(1 − q)P (i|b)P (j |b)P (b)

[ [mii+mjj ]/2−b∫
−a

(α + b − mjj )
2

2a
dα

+
a∫

[mii+mjj ]/2−b

(α + b − mii)
2

2a
dα

]
.

Therefore,

∂W

∂q
(M;q) = −

∑
b

∑
i

P (i|b)
(
1 − P(i|b)

)
P(b)

a∫
−a

(α + b − mii)
2

2a
dα

+
∑

b

∑
i

∑
j>i

P (i|b)P (j |b)P (b)

[ [mii+mjj ]/2−b∫
−a

(α + b − mii)
2

2a
dα

+
a∫

[m +m ]/2−b

(α + b − mjj )
2

2a
dα

]

ii jj
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+
∑

b

∑
i

∑
j<i

P (i|b)P (j |b)P (b)

[ [mii+mjj ]/2−b∫
−a

(α + b − mjj )
2

2a
dα

+
a∫

[mii+mjj ]/2−b

(α + b − mii)
2

2a
dα

]
.

Given signals i and j > i, note that
mi,i+mj,j

2 −b < α implies (α +b −mj,j )
2 > (α +b −mi,i)

2.
Thus, we have

−
a∫

−a

(α + b − mii)
2

2a
dα � −

[mii+mjj ]/2−b∫
−a

(α + b − mii)
2

2a
dα

−
a∫

[mii+mjj ]/2−b

(α + b − mjj )
2

2a
dα.

Similarly, given signals i and j < i, α <
mi,i+mj,j

2 −b implies (α +b−mj,j )
2 < (α +b−mi,i)

2.
Thus, we have

−
a∫

−a

(α + b − mii)
2

2a
dα � −

[mii+mjj ]/2−b∫
−a

(α + b − mjj )
2

2a
dα

−
a∫

[mii+mjj ]/2−b

(α + b − mii)
2

2a
dα.

Finally, we conclude that ∂W
∂q

(M;q) � 0, which delivers the desired result. �
Proof of Theorem 6. In what follows, P ε , mε

i,i , and Wε denote the components of our model
when signals are conditionally independent with precision 1 − ε. For ε > 0 sufficiently small, it
is straightforward to show that all symmetric equilibria, and therefore all equilibria, are in pure
strategies: For example, suppose zε = inf suppGε

i < mε
i,i in equilibrium for arbitrarily small ε;

then platforms close to zε lose with probability close to 1 − ε, but the probability of winning
when locating at mε

i,i is close to 1−ε
2 . Given that equilibria are in pure strategies, Theorem 1

implies that xi = mε
i,i for all signals i. Further, for b = i, we have mε

i,i → mi,i = b as ε goes to
zero. For signals i and j and realization b, define

W(i, j |b) = 1

2a

[mi,i+mj,j ]/2∫
−a

(α + b − mi,i)
2 dα − 1

2a

a∫
[mi,i+mj,j ]/2

(α + b − mj,j )
2 dα

for i < j , with a similar definition for i > j , and

W(i, i|b) = − 1

2a

a∫
(α + b − mi,i)

2 dα,
−a
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when the candidates receive the same signals. We use the same conventions for the notation
Wε(i, j |b), substituting mε

i,i and mε
j,j where appropriate. By assumption, we have

lim
ε→0

∑
j �=b P ε(j, b|b)

ε
= 1 and lim

ε→0

∑
i,j �=b P ε(i, j |b)

ε
= 0.

Then welfare conditional on realization b under perfect precision is W(b) = W(b,b|b), and with
slightly noisy signals it is

Wε(b) = P ε(b, b|b)Wε(b, b|b) +
∑
j �=b

P ε(j, b|b)Wε(j, b|b) +
∑
i,j �=b

P ε(i, j |b)Wε(i, j |b).

Therefore,

Wε(b) − W(b)

ε
� P ε(b, b|b)

ε

[
Wε(b, b|b) − W(b,b|b)

]
+

∑
j �=b P ε(j, b|b)

ε
min
j �=b

[
Wε(j, b|b) − W(b,b|b)

] + Dε,

where Dε goes to zero with ε. Using the fact that mb,b = b, note that

Wε(b, b|b) − W(b,b|b) = − 1

2a

a∫
−a

(
α + b − mε

b,b

)2
dα + 1

2a

a∫
−a

α2 dα

= − 1

2a

a∫
−a

[(
α + b − mε

b,b

)2 − (α + b − mb,b)
2]dα

= − 1

2a

a∫
−a

[−(
mε

b,b − mb,b

)(
2b + 2α − mε

b,b − mb,b

)]
dα

= (
mε

b,b − mb,b

)(
2b − mε

b,b − mb,b

)
.

Further,

mb,b − mε
b,b = b −

∑
b′ b′P ε(b, b|b′)P (b′)∑
b′′ P ε(b, b|b′′)P (b′′)

= b − bP ε(b, b, b) + ∑
b′ �=b b′P ε(b, b, b′)

P ε(b, b, b) + ∑
b′′ �=b P ε(b, b, b′′)

.

Hence,

mb,b − mε
b,b

ε
� b

ε

[∑
b′′ �=b P ε(b, b, b′′)

P ε(b, b, b)

]
,

which goes to zero with ε by assumption. Finally, without loss of generality, let

min
j �=b

[
Wε(j, b|b) − W(b,b|b)

]
be achieved at k > b as ε goes to zero. Then
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min
j �=b

[
Wε(j, b|b) − W(b,b|b)

]

=
[mε

b,b+mε
k,k]/2∫

−a

[(
α + b − mε

b,b

)2 − α2]dα +
a∫

[mε
k,k+mε

b,b]/2

[(
α + b − mε

k,k

)2 − α2]dα

has positive limit
∫ a

[k+b]/2[(α + b − k)2 − α2]dα > 0. Therefore,

lim
ε→0

Wε(b) − W(b)

ε
�

a∫
[k+b]/2

[
(α + b − k)2 − α2]dα > 0.

Since this is true for all b, the result follows. �
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