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Abstract
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model, our model admits a fully separating equilibrium, provided that the state space is unbounded above.
The language used in equilibrium is inflated and naive receivers are deceived.
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“The credulity of dupes is as inexhaustible as the invention of knaves.”—Edmund Burke

1. Introduction

Conflicts of interest plague communication in many situations, often resulting in language
inflation and deception. For example, there is empirical evidence that financial analysts provide
overoptimistic recommendations that deceive some investors. 1 In addition, there appear to be
systematic differences across investors in their responses to the same recommendation. 2 These
findings suggest that some investors might be credulous and naively believe what they hear.

Building on Crawford and Sobel’s [9] (hereafter, CS) “cheap talk” model, this paper formulates
a model that encompasses situations in which investors naively believe in the analyst’s recom-
mendation. We show that the credulity of the investor turns cheap talk into “costly talk”, naturally
resulting in language inflation and deception. In addition to financial advice, our model can be
applied to various other situations, such as advertising and academic evaluation. Advertisers typ-
ically aim at persuading their audience to purchase more by overemphasizing the qualities of
the products they promote. Similarly, academic advisers tend to assign inflated grades and write
overly positive recommendation letters to help their students get jobs that are better than truly
deserved [24].

It is difficult to reconcile language inflation and deception with the theoretical predictions
of the baseline equilibrium model of cheap talk. 3 In CS’s model, a privately informed sender
(e.g., the analyst) sends a message (e.g., a recommendation) to a receiver (e.g., the investor) with
misaligned preferences. The receiver then takes an action (e.g., purchase of a stock), which could
depend on the particular message sent. A key feature of cheap talk is that the message affects the
players’ payoffs only indirectly, through the inference made by the receiver about the sender’s
private information. Being rational and aware of the conflict of interests, the receiver takes an
equilibrium action that is unbiased, conditional on the information transmitted. In equilibrium,
the sender’s bias and the associated incentive to deceive the receiver are, in fact, self-defeating.
In the context of financial advice, this implies that, on average, no investor should be deceived.
Moreover, the language used in equilibrium is arbitrary, since cheap talk messages are fully
interchangeable.

In contrast, the costly signaling model of strategic communication developed in this paper
naturally leads to language inflation. In our costly talk model, the message sent affects the sender’s
payoff, not only indirectly through a rational receiver’s inference, as in a cheap talk model, but
also directly. This direct dependence is our key departure from CS’s cheap talk model and can

1 See Michaely and Womack [20], who attribute the overoptimism in the recommendations to conflicts of interest
between analysts and investors. The finance literature has identified at least three sources of these conflicts of interest.
First, conflicts are possibly created by the analysts’ incentives to generate investment-banking business [20]. Second,
analysts might want to increase the brokerage commissions for the trading arms of their financial firms [14]. Third,
analysts might tend to release favorable reports that please management in order to gain access to internal information
from the firms they cover [16].

2 As argued by Malmendier and Shanthikumar [18], these differences seem to indicate heterogeneity in the level of
strategic sophistication among investors. In controlled laboratory experiments, Dickhaut et al. [10] and Cai and Wang [5]
document heterogeneous strategic sophistication in the responses to the same message.

3 In this context, we view deception as the act of inducing false beliefs by means of communication, and exploiting
them to one’s own advantage. Such false beliefs are clearly incompatible with traditional equilibrium analysis. Deception
in this interpretation is distinct from the notion that a player may choose not to disclose private information in order to
exploit the imprecise—but not incorrect—belief induced in a counterpart (e.g., bluffing in poker).



N. Kartik et al. / Journal of Economic Theory 134 (2007) 93–116 95

stem from various sources. For applications, we focus on two interpretations. First, following
[15], the sender may suffer a disutility from misreporting or lying about her private information.
This could be due to fabrication costs, legal penalties, or moral constraints. Plainly, the presence
of such costs transforms the game from one of cheap talk to costly signaling.

Second, the direct dependence of the sender’s utility on messages can stem from the receiver(s)
being, at least partially, non-strategic. Instead of acting on the basis of equilibrium beliefs, such
receivers are somewhat credulous: either they naively believe that the sender’s message represents
the truth and take their preferred action accordingly, or, more generally, they use some non-
equilibrium-based rule to map messages into actions. 4 We say that a receiver is credulous or naive
because she is unable to anticipate the equilibrium interpretation of the communication language.
Instead, her interpretation of the language is exogenous, perhaps based on some general social
principles, such as truthtelling, or some boundedly rational computation that results in a cautious
interpretation of the sender’s report. The sender, being sophisticated, understands the mapping
from messages to actions that are used by these naive receivers, and exploits their credulity in
order to deceive them. 5 The mechanical response to messages by such receivers induces a direct
dependence of the sender’s payoff on his recommendation, thereby resulting in a game of costly
signaling.

At a technical level, we also depart from CS by making different assumptions about the domain
of a sender’s private information. CS assume that the set of sender types (i.e., the state space)
is bounded both above and below. Adopting the common convention that the sender is biased
upwards, this paper instead considers settings in which the state space is unbounded above (and
either bounded or unbounded below). We believe that this is a sensible assumption in a number
of applications, for example when modeling a financial analyst’s prediction of a stock price or an
adviser’s evaluation of student ability.

Our main contribution in this setting is to show that, under broad conditions, there exist separat-
ing equilibria which feature inflated communication. 6 In a separating equilibrium, the sender’s
message completely reveals her private information. In the equilibria we identify, the message sent
by the sender has a literal meaning that is inflated, i.e., a literal meaning higher than the true state
of the world. Nevertheless, a sophisticated receiver correctly infers the true state by inverting the
observed message according to the equilibrium language. A credulous receiver, instead, interprets
the equilibrium messages with some non-equilibrium-based rule and is accordingly deceived, tak-
ing biased actions. These findings provide a striking contrast to CS’s key results that, in a fully
strategic and pure cheap talk setting with a conflict of interests, every equilibrium is partitional,
some information must be lost, and the receiver’s actions are unbiased in expectation. 7

4 In studying lying costs or naive receivers, it is implicit that messages have an exogenous natural meaning. We suppose
that the message space is identical to the space of the sender’s private information, so that a message can be interpreted
as a literal statement about the sender’s type. The concept of natural meaning has been introduced in a different context
by Farrell [12].

5 We view the asymmetry of the sender being sophisticated while some receivers being naive or credulous as appropriate
for many applications, such as the ones discussed earlier that involve financial analysts and advertisers communicating to
a market.

6 As explained in Sections 3 and 5, our results hinge critically on the assumption that the state space is unbounded
above. When the state space is bounded above, there is an equilibrium that is fully revealing only up to a threshold smaller
than the upper bound of the state space (see [15] or [23]).

7 Although the state space is bounded in the original CS model, the aforementioned results extend straightforwardly to
an unbounded state space.
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The intuition behind our results can be illustrated as follows. Suppose first that the sender has
lying costs that are increasing and convex in the magnitude of the lie. An inflated communication
separating equilibrium exists, because even though the sender can induce the (sophisticated)
receiver to take a more favorable action by deviating to a higher message, this gain can be
exactly offset by the marginal increase in the lying cost when the equilibrium message is already
sufficiently inflated. On the other hand, suppose instead that there are no lying costs but that some
receivers are wholly credulous, simply believing the literal message they receive. In the separating
equilibrium, for any given state the message is so inflated that the credulous receivers are deceived
to take an action that is even higher than the one that is ideal for the sender. Sophisticated receivers
decode the message and take their most-preferred action, which is lower than the sender’s ideal
action. Thus, by deviating to a higher (lower) message, the sender gains through the induced
response from sophisticated (credulous) receivers, but is hurt by the undesirable response from
credulous (sophisticated) receivers. By exactly offsetting these gains and losses, a separating
equilibrium is sustained.

Our formal results are derived in a quite general setting with broad and abstract conditions
that are best discussed only after introducing the model in Section 2. Next, we describe our three
main results on the existence of separating equilibria, focusing on particular applications that are
covered by the assumptions in each case.

Theorem 1 applies to settings in which the sender is interested in the average response of a pop-
ulation of receivers characterized by heterogeneous strategic sophistication. As previously noted,
a prime application is a financial analyst communicating to a market of investors. We demonstrate
that in such cases there is a unique non-decreasing, differentiable separating equilibrium. This
equilibrium has the following important property: in every state of the world, the sender induces
a belief in the naive receivers such that the average population response is in fact his bliss point.
That is, the sender can achieve his first-best outcome in such a setting, even though the sophis-
ticated receivers correctly infer the state of the world in equilibrium and there is a conflict of
interest.

Theorems 2 and 3 apply to communication games where the sender communicates to a single
receiver, but either bears a cost from misrepresenting her type, or the receiver is possibly naive and
credulous. For technical reasons explained in Section 3, we need to further distinguish between
cases where the state space is bounded below and cases where it is unbounded below. These two
cases are relevant for different applications. For example, when thinking about a real estate agent
making forecasts about the future price of a property to a potential buyer, there is a natural lower
bound of zero on the state space (but no natural upper bound). In contrast, if an expert is reporting
to a decision-maker on the one-dimensional ideological position of a terrorist group, there is no
natural lower or upper bound. When the state space is bounded below, Theorem 2 shows that there
is a unique differentiable separating equilibrium that satisfies the standard Riley condition. 8 On
the other hand, when the state space is unbounded below, there is no such “initial condition”,
and some restrictions are needed to guarantee the existence of separating equilibria. Theorem 3
derives existence for a class of widely used sender preferences, viz. those that can be represented
as loss functions which depend on the distance between the receiver’s action and the sender’s
state-dependent bliss point.

In addition to their theoretical interest, our results have positive and normative implications. For
example, it is unclear why a mandated policy of so-called “Chinese walls” would be necessary
in the benchmark model of information transmission between a financial corporation and an

8 The Riley condition requires that the lowest type of sender is not engaged in any (Pareto) inefficient signaling.
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investor. Since in CS’s setting the bias only reduces the amount of information that can be credibly
transmitted, without systematically biasing final outcomes, it would be in the firm’s own interest to
minimize the conflict of interest by separating its research and investment-banking divisions into
different corporations. Instead, our model suggests a possible rationale for policy intervention.
In the presence of naive receivers, the firm is able to systematically deceive a fraction of the
investors, and may not spontaneously adopt this policy. Mandated Chinese walls would then
protect naive investors, without affecting sophisticated investors who are able to decode the firm’s
communication in any case.

In the literature, [8] is the first paper to analyze the impact of bounded rationality on com-
munication outcomes. While Crawford [8] focuses on the representation of intentions (about
future actions) in an asymmetric matching-pennies game, we consider the transmission of private
information. Both Crawford [8] and our paper obtain deception somewhat directly from the intro-
duction of non-equilibrium players, but are interested in the implications for the behavior of fully
rational players. 9 We defer to Section 4 the discussion of other related literature, in particular the
connection with some communication models that allow for additional layers of uncertainty.

2. Model and applications

We develop a general model of communication between an informed agent and one or more
uninformed agents. After introducing our setting, we illustrate how it subsumes several natural
variations of an unbounded state space version of CS’s classic model of cheap talk.

A sender (S) is privately informed about a state of the world, x ∈ X ⊆ R, distributed according
to the full support cumulative distribution function F. We sometimes refer to x as the sender’s
type. After observing the state, the sender chooses a message, m ∈ M , to communicate to one or
more receivers (R). We assume that the message and state space are the same, so that the message
sent can be thought of as a literal statement or a submitted report about the state of the world. The
state (and message) space is unbounded above, and may be either bounded or unbounded below.
We denote by 〈a, ∞) the open interval (a, ∞) if a = −∞, or the semi-closed interval [a, ∞) if
a > −∞. The state and message space are X = M = 〈

x, ∞)
, where x� − ∞.

A (pure) strategy for the sender is a mapping � : X → M . Our interest is in equilibria where the
sender plays a one-to-one strategy, thereby completely revealing her private information through
the message sent. Such a strategy for the sender is a separating strategy, sometimes referred to in
the literature as “fully separating” or “fully revealing” . To describe such equilibria, it suffices to
focus on a reduced form payoff function for the sender, U(x, x̂, m), rather than making explicit
assumptions about the preferences or play of the receivers. This function denotes the sender’s
payoff when the state of the world is x ∈ X, he sends message m ∈ M , and the (strategic)
receivers believe the state of the world to be x̂ ∈ X. We maintain throughout our analysis the
following regularity conditions on U (as usual, subscripts on functions denote derivatives).

Condition A. The function U satisfies:
(A.1) U(x, x̂, m) is C2 on X × X × M . 10

(A.2) For all x, U3(x, x, m) = 0 has a unique solution in m, denoted m∗(x), which maximizes
U(x, x, m), and U33(x, x, m∗(x)) < 0.

9 Ettinger and Jehiel [11] develop a theory of deception based on the idea that some players may only be able to
understand strategies “coarsely”, although the interpretation is always, at least partially, equilibrium based.

10 That is, there exists an open set containing T × T × M and a twice continuously differentiable function on this open
set that equals U on T × T × M .
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(A.3) lim→+∞ m∗ (x) = ∞. When x = −∞, limx→−∞ m∗ (x) = −∞. When x > −∞,
U

(
x, x, m

)
�U

(
x, x, m∗(x)

)
for all x and m < m∗(x).

(A.4) For all (x, x̂, m), U12(x, x̂, m) > 0.
(A.5) For all (x, x̂, m), U13(x, x̂, m) > 0.

(A.1) is a smoothness assumption. (A.2) says that for each state x, there is a unique utility-
maximizing message m∗(x) when the inference is correctly made that the state is x. That is, m∗(x)

is the message the sender would choose under complete information. Since U is twice continuously
differentiable, m∗ is a continuously differentiable function, and it follows that U3(x, x, m) < 0
for m > m∗(x), whereas U3(x, x, m) > 0 when m < m∗(x). We note that (A.2) is weaker
than concavity of U(x, x, m) in m for all x. It is important to emphasize that (A.2) implies that
messages are payoff relevant, and not cheap talk. In a pure cheap talk model, U3 = 0.

Condition (A.3) allows us to deal with the possibility of messages off the equilibrium path.
When the state space is unbounded below, the assumption that m∗ is unbounded above and below
allows us to focus on increasing equilibrium strategies � that are onto (and hence use all available
messages). When the state space has the lower bound x > −∞, we will study increasing strategies
� such that �(x) = m∗(x). Because m∗ is unbounded above as x → ∞, all messages above m∗(x)

are used in equilibrium. The payoff condition in (A.3) ensures that if no type of sender has an
incentive to mimic the lowest type, then there will not be an incentive to send a message lower
than m∗(x), if such messages are met with the inference of coming from the lowest type. Note
that given (A.2), this part of (A.3) is automatically satisfied if m∗(x) is strictly increasing, and,
moreover, U

(
x, x̂, m

)
is separable in m and x̂.

Conditions (A.4) and (A.5) are Spence–Mirrlees single-crossing conditions. (A.4) says that the
sender’s marginal gain from inducing a higher belief about the state is higher when the true state
is higher. (A.5) requires that the sender’s marginal gain from sending a higher message is higher
when the true state is higher.

In addition to Condition (A), which we always maintain, two mutually exclusive sets of
conditions—(B) and (C)—will allow us to find separating equilibria.

Condition B. The function U satisfies:
(B.1) For all (x, m), sign [U2(x, x, m)] = sign [U3(x, x, m)].
(B.2) For all x, m∗′ (x) > 0.

(B.1) requires that when the state is correctly inferred as x, inflating the message m or inducing
a belief that the state is higher than x affects the sender’s utility in the same direction. Note that
in the presence of (A.2), this implies that U2(x, x, ·) is single peaked around m∗(x). It is worth
contrasting this with most signaling and cheap talk models, where the assumptions imply that the
sender would always like to induce a belief that the state is higher than the true state, regardless
of the message used (see condition (C.1), below). (B.2) says that the optimal message m∗(x) is
strictly increasing in the state x. This will be used to ensure that the communication strategy of
� = m∗ is a separating and increasing strategy.

Condition C. The function U satisfies:
(C.1) For all (x, m), U2(x, x, m) > 0.
(C.2) For all x, there are c2, c3 > 0 such that for all m: (i) U2(x, x, m) < c2 and

(ii) U33(x, x, m)�0 	⇒ |U3(x, x, m)| > c3.

(C.1) is a generalization of a standard assumption of traditional Spencian signaling mod-
els. There, the sender’s payoff is assumed to be strictly increasing in her perceived type, i.e.
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U2(x, x̂, m) > 0 for all x, x̂, m. Here, we only require it locally around x = x̂. As already
noted, (C.1) and (B.1) are mutually exclusive under (A.2). (C.2) is a technical condition on the
boundedness of derivatives.

Conditions (A) and (C) bear many similarities with Mailath [17], who studies a bounded type
space. In particular, he also employs (A.1), (A.2), (A.5), and (C.2). 11 On the other hand, the set
of payoff Conditions (B) that we have introduced is novel.

2.1. Applications of costly talk

Consider an unbounded state space version of the fully strategic, pure cheap talk model of CS.
Messages are payoff irrelevant to the sender, i.e. U3(x, x̂, m) = 0, for any x, x̂, m. (Hence, our
condition (A.2) is not satisfied.) The state space is either X = (−∞, ∞) or X = [x, ∞). There
is one receiver, who takes an action y ∈ R after receiving the sender’s message. The receiver’s
utility is denoted by UR(y, x), and the sender’s utility is expressed as US(y, x, b), with b ∈ R

being a bias parameter that is common knowledge among the players. Both UR and US are twice
continuously differentiable. For each i = S, R, player i’s utility satisfies Ui

11 < 0 as well as
the single-crossing condition Ui

12 > 0. Moreover, there exist bliss-point functions yR (x) and
yS (x, b) such that UR

1 (yR (x) , x) = 0 and US
1 (yS (x, b) , x, b) = 0. Note that the assumptions

on UR and US imply that yS
1 (x, b) > 0 and yR′

(x) > 0.
Translated into our formulation, CS sender’s payoff can be written asU(x, x̂, m) ≡ US

(
yR

(
x̂
)

,
x, b), since messages are payoff irrelevant, and the receiver takes action yR

(
x̂
)

when she believes
the state to be x̂. When the state space is bounded, a key result of CS is that if the players’ bliss
points never coincide, i.e. yS(x, b) �= yR(x) for all x, then any equilibrium outcome mapping from
states to receiver actions is a step function, and hence every equilibrium is partitional. Essentially,
this fundamental result extends to the unbounded state space case, where every equilibrium is
partitional if there is a uniform bound � > 0 such that

∣∣yS(x, b) − yR(x)
∣∣ �� for all x. 12 This

condition requires that the sender be biased either upwards or downwards for all states of the
world. We shall henceforth assume that he is biased upwards, i.e., yS(x, b) − yR(x)�� > 0 for
all x, and assume that US

13 (y, x, b) > 0.
We now argue that natural modifications of CS’s assumptions transform their cheap talk game,

in which U3(x, x̂, m) = 0 for all x, x̂, m, into a costly signaling (or “costly talk”) game, in which
our condition (A.2) applies instead. In particular, we introduce three variations of the unbounded
state space CS model that satisfy our payoff Conditions (A) as well as either (B) or (C).

2.1.1. Application of Conditions (A) and (B)
Application 1 (communication to a pool of receivers, some of whom are naive). In several

economic applications of the CS game, the sender makes a recommendation to a pool of receivers
and cares about the average aggregate response of the receivers. For example, in the context
of stock recommendations, the analyst often announces her forecast to the entire market and
cares about the market’s aggregate response following the announcement. This scenario can be
equivalently represented as a CS communication game with only one receiver if all the receivers

11 Our condition (C.1) is weaker than his “belief monotonicity” condition. (A.3) has no analog in his analysis; (A.4)
substitutes for the role of his “single-crossing” condition in x̂ and m.

12 The proof of this result is omitted as it is an immediate extension of Lemma 1 in CS. The notion of equilibrium
referred to here is Bayesian Nash or any stronger concept. Note that the uniform bound condition is trivially satisfied
when the state space is bounded.
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are fully strategic and their strategy depends only on the message received. But, as we will later
show, these two models are substantially different when the market is composed of agents with
heterogeneous sophistication.

To account for heterogeneous sophistication, suppose that a fraction � of receivers is either
partially or fully naive, whereas a fraction 1 − � is strategic. Fully naive receivers blindly believe
the sender’s report. Upon hearing message m, they believe that x = m. Partially naive receivers
are aware of the possibility of being cheated, but are still unable to formulate equilibrium beliefs.
Upon receiving any message, m, they formulate a dis-equilibrium estimate �(m) of the true state
of the world such that �(m) ∈ 〈x, m]. We assume that � is strictly increasing, continuously
differentiable, unbounded above, and also unbounded below if x = −∞. 13 If strategic receivers
believe that the state is x̂, the utility of the sender of type x who sends message m is

U(x, x̂, m) ≡ US
(
(1 − �) yR(x̂) + �yR(�(m)), x, b

)
. (1)

Fixing � > 0 and b > 0, we develop the application under the restriction on the players’ utilities
that the functions yR(x) and yS (x, b)− (1 − �) yR(x) are strictly increasing in x and unbounded.
For example, this is the case when yS

1 (x, b) �yR′
(x) > � for some uniform bound � > 0: the

sender’s bliss point is at least as sensitive to a change in the state as the receivers’ bliss points. 14

As a technical condition on derivatives, we also assume that yR′
and �′ are bounded away from

∞. (This would be automatically satisfied were the state space bounded.)
The following Lemma shows that the presence of naive agents in the pool of receivers turns

the cheap talk CS game into a game of costly signaling that satisfies our Conditions (A) and (B).

Lemma 1. The game between a sender who can lie costlessly and a pool of partly naive receivers
satisfies conditions (A.1)–(A.5) and (B.1)–(B.2) under the stated assumptions. Moreover, for all
x, m∗(x) > x.

That m∗(x) > x is intuitive: if the strategic receivers know the true state and play yR (x), then
the sender inflates her message to make the naive receivers’ response larger than their bliss points
yR (x), so that the average receivers’ response equals yS (x, b) > yR (x).

2.1.2. Applications of Conditions (A) and (C)
We will discuss two simple and intuitive modifications of the CS game that are subsumed under

the following separable utility specification:

U
(
x, x̂, m

) ≡ (1 − �) US
(
yR(x̂), x, b

)
+ (� + k)G (g(m), x, b) , (2)

where �, k�0 with at least one strictly positive. US is the CS utility function for the sender, and
G and g are functions that will capture the modification to the game that transforms it from one
of cheap talk to costly signaling.

13 Monotonicity of � is natural: it says that a naive receiver believes the state is higher when the message she receives
is higher. If � were to be bounded, say above, there would be a state x̄ such that a naive receiver would never believe that
the state x is larger than x̄, regardless of the message received. This is equivalent to working with a bounded type space
(see [15] or [23]).

14 Note that this holds for any class of CS preferences where yR(x) = x and yS(x) = x + b, such as the commonly
used “quadratic-loss” formulation where UR(y, x) = −(y − x)2 and US(y, x, b) = −(y − x − b)2.
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Some reasonable assumptions are needed to ensure that specification (2) satisfies Conditions
(A) and (C). First, supx US

2 (yR(x), x, b)yR′
(x) < ∞. The function g : R → R is assumed to be

C2, strictly increasing and onto, with derivative bounded away from 0 and ∞: there exist constants
�1 and �2 such that 0 < �1 < g′ < �2 < ∞. The function G has the same properties as US in
the CS game: G is C2, G12 > 0, G13 �0, and G11 < 0. For each x, there is y∗ (x, b) such that
G1 (y∗ (x, b) , x, b) = 0, and there is �3 such that 0 < �3 < y∗

1 .

Lemma 2. Under the stated assumptions, representation (2) satisfies conditions (A.1)–(A.5) and
(C.1)–(C.2).

The use of Lemma 2 is illustrated in the following applications. We wish to emphasize that since
conditions (B.1) and (C.1) are mutually exclusive under Condition (A), the ensuing applications
are substantially different from Application 1.

Application 2 (communication to a single receiver who may be naive). Consider a standard
CS game, but assume that the receiver is naive with probability � ∈ (0, 1) and is strategic with
probability 1 − �. 15 As in Application 1, a naive receiver formulates an estimate �(m) of the
true state such that �(m) ∈ 〈x, m], and we maintain our previous assumptions on �. If the true
state is x, the strategic receiver believes that the state is x̂, and message m is sent, the sender’s
payoff is

U(x, x̂, m) ≡ (1 − �) US
(
yR(x̂), x, b

)
+ �US

(
yR(�(m)), x, b

)
.

We assume the technical conditions that yR′
and �′ are each bounded away from 0 and ∞, and

that US
2 (yR(x), x, b)yR′

(x) is bounded away from ∞. (All these conditions would automatically
hold when the state space is bounded.)

It is evident that this application satisfies utility specification (2) and the assumptions for
Lemma 2 by setting k = 0, G (y, x, b) = US (y, x, b), and g (m) = yR (� (m)). Note that in
this application, m∗(x) > x. If the receiver knows the state of the world when strategic, then she
plays yR (x) regardless of the sender’s message. The sender would then optimally send an inflated
message to induce a naive receiver to take the sender’s preferred action yS(x, b).

Application 3 (communication by a sender with misreporting costs). Suppose that the sender
communicates to one or many receivers who are fully strategic with probability 1, but the sender
suffers a cost of lying or misreporting. For example, the sender may have a preference for honesty,
or may face technological or verifiability constraints in forging a mendacious report. Following
Kartik [15], we let the lying costs be kC (m, x) where C(·, x) is a loss function corresponding to
the state x, and k > 0 parameterizes the intensity of the lying cost. Assume that C11 > 0 > C12,
and that for any x, C1(x, x) = 0. Hence, lying costs are convex around the truth. In this setting,
we can write the sender’s utility as

U(x, x̂, m) ≡ US(yR(x̂), x, b) − kC(m, x).

As before, we assume the technical condition that supx US
2 (yR(x), x, b)yR′

(x) < ∞. It is clear
that this application satisfies utility specification (2) and the assumptions for Lemma 2 by setting
� = 0, G (m, x, b) = −C (m, x), and g (m) = m. Note that here, m∗(x) = x: if the receiver
knows the state, then the sender chooses to report the truth, as there is no possible benefit from
lying.

15 In fact, it is not necessary that the receiver actually be truly naive with positive probability. It is enough that the sender
believes (perhaps wrongly) that the receiver could be naive.
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3. Separating equilibria

The solution concept to apply in signaling games is perfect Bayesian equilibrium [13]. This
requires the usual conditions of belief consistency via Bayes rule, and incentive compatibility of
strategies given beliefs and opponents’ play. Our interest concerns separating perfect Bayesian
equilibria, which are equilibria where the sender’s strategy � is one-to-one and hence fully reveals
her type. Denote the receivers’ beliefs by � : M → 	(X), where 	(X) is the set of probability
distributions on X. 16 Letting �(X) ≡ ⋃

x∈X �(x), Bayes rule requires that for all m ∈ �(X),
�(m) = �−1(m). For any m ∈ X \ �(X), any beliefs are permissible, but we will demonstrate
that we can restrict attention to point mass beliefs (� : M → X) without loss of generality for
the purpose of our results. These considerations lead to the following definition.

Definition 1. A separating equilibrium is one-to-one strategy, � : X → M , and beliefs, � : M →
X, such that:
1. (Belief consistency) for any m ∈ � (X), � (m) = �−1 (m),
2. (Incentive compatibility) for any x ∈ X, �(x) ∈ arg maxm∈M U(x, �(m), m).

It should be noted that our results will concern differentiable and strictly increasing sepa-
rating equilibria. 17 Differentiability is natural. The reason we look for increasing equilibria is
that in applications, including those outlined in Section 2, it is typically the case that higher
sender types prefer higher messages, and, moreover, the sender would like to be perceived as
a higher type than he truly is. In such cases, decreasing equilibrium strategies seem relatively
implausible.

We should be clear about what it means for language to be inflated.An equilibrium with sender’s
strategy � displays inflated communication if � (x) > x for all x (with the possible exception of
the finite lower bound x if it exists). This definition is natural in our context where messages
represent literal statements or reports about the state of the world.

3.1. Communication to a pool of receivers

Recall that Condition (B) was shown to apply when the sender communicates to a pool of
receivers with heterogeneous strategic sophistication. Our first main result is that in this case,
there exists a unique non-decreasing differentiable separating equilibrium. In any differentiable,
separating equilibrium, the necessary first-order condition for optimality is

U2(x, �−1(m), m)
(
�−1(m)

)′ + U3(x, �−1(m), m) = 0. (3)

Substituting �−1(m) = x and
(
�−1(m)

)′ = 1/�′(x), and rearranging, we obtain

U3(x, x, � (x))�′ (x) + U2(x, x, � (x)) = 0. (FOC)

16 Throughout, when referring to receivers’ beliefs and actions, we implicitly restrict attention to the strategic receivers.
Also, as is standard, if there are multiple strategic receivers, we require them to hold the same beliefs upon observing any
message.

17 Such properties refer to properties of the sender’s strategy in equilibrium. Similarly, all claims to uniqueness of
equilibria within some class refer to uniqueness of sender strategies (and not out-of-equilibrium beliefs, in particular).
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In light of assumptions (A.2) and (B.1), there is a unique solution to this equation such that
�′ (x) > 0: the function � such that U2(x, x, � (x)) = U3(x, x, � (x)) = 0. By definition, such a
sender’s strategy � coincides with m∗. Verifying incentive compatibility of the solution obtained
with the first-order approach leads us to the following result.

Theorem 1. Under Conditions (A) and (B), there is a unique non-decreasing differentiable sep-
arating equilibrium. It is given by � (x) = m∗ (x), and is therefore strictly increasing.

To see the intuition behind the result, consider the case where the sender can lie costlessly,
but faces a pool of receivers some of whom are fully naive (Application 1). Suppose there is an
equilibrium where � is invertible, non-decreasing, and, for simplicity, onto. In equilibrium, the
strategic receivers correctly invert the message, determine the state x = �−1 (� (x)), and play
yR(x), whereas the naive receivers believe the message � (x) and play yR(� (x)). The key point
is that the sender only cares about the average receiver response (1 − �) yR(x)+ �yR(� (x)). For
any � > 0, because the message space M coincides with the unbounded-above state space X,
it is possible to find � (x) large enough so that the average receiver response exactly equals the
sender’s bliss point yS(x, b), and hence the sender has no incentive to deviate from equilibrium. 18

Such � (x) must be m∗ (x) by the definition of m∗. This is indeed invertible—specifically, strictly
increasing—by condition (B.2). Hence, communication is inflated, as m∗(x) > x for all x, by
Lemma 1. Perhaps surprisingly, the sender achieves her bliss point in equilibrium for any state
of the world, x, regardless of the fraction of naive receivers, �. This is a consequence of two
properties: first, the sender only cares about the average response of the receivers; second, due to
the unboundedness of the state space, the sender can deceive naive receivers as much as necessary
to attain her bliss point.

To substantiate Theorem 1 and the above discussion, we explicitly compute a simple example
with the widely used quadratic utility formulation.

Example 1. Suppose that naive receivers are fully naive, i.e., � (m) = m for every m, and that
the receivers’ and sender’s utilities are quadratic-loss functions with bliss points x and x + b,
respectively. That is, UR (y, x) = − (y − x)2 and US (y, x, b) = − (y − (x + b))2. Suppose
that in equilibrium, the sender adopts a differentiable invertible function � as her communication
strategy. When a message m is sent, a strategic receiver believes that the state is �−1 (m) and a
naive receiver plays the action yR (m) = m. Hence the sender will not deviate from the strategy
� only if for any x, � (x) ∈ arg maxm − (

(1 − �) �−1 (m) + �m − (x + b)
)2

. The first-order
condition is

−2
(
(1 − �) �−1 (m) + �m − (x + b)

) (
(1 − �)

(
�−1 (m)

)′ + �

)
= 0.

By substituting �−1 (m) with x and m with � (x) we obtain the differential equation

−2(� (� − x) − b)

(
(1 − �)

1

�′ + �

)
= 0.

18 In the general setup, this is guaranteed by (A.2) and (B.1) for deviation to messages used on the equilibrium path.
When X = (−∞, +∞), all messages are on path by (A.3). When X = [x, +∞), with x > −∞, we assign beliefs
� (m) = x to all off-path messages m ∈ [

x, m∗(x)
)
, if there are any. (A.3) assures that there is no sender type who strictly

benefits by playing such a message over his equilibrium message.
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It is easy to see that the unique non-decreasing solution � is

� (x) = m∗ (x) = x + b

�
,

and this is the strategy in the unique differentiable, non-decreasing, separating equilibrium. 19

This strategy may be interpreted as revealing the actual state of the world and inflating the
communication by an amount b/�. The factor by which communication is inflated is inversely
proportional to the fraction of naive receivers in the population. It immediately follows that � (x)

increases in b and decreases in �. When � shrinks to 0, � (x) diverges to infinity pointwise, and
the naive receivers’ utility diverges to minus infinity. Because the average receiver response is
� (x + b/�) + (1 − �) x = x + b, the sender achieves her bliss point for all x independent of the
parameter �.

3.2. Communication to a single receiver: lower bounded state space

We now turn to showing the existence of a separating equilibrium under the set of Conditions
(A) and (C), assuming that there is a lower bound on the state space, x > −∞. As in the
previous sub-section, any differentiable, separating equilibrium sender’s strategy � must satisfy
the necessary first-order condition for optimality (FOC). But unlike when (B.1) holds, under
(C.1) there is no such m such that U2(x, x, m) = 0. Hence (FOC) cannot be satisfied with
U3(x, x, � (x)) = 0. We can thus rearrange the expression and obtain the following differential
equation in �:

�′ (x) = −U2(x, x, � (x))

U3(x, x, � (x))
, (DE)

where U3(x, x, � (x)) = 0 describes the singularity in the field.

Theorem 2. Suppose that x > −∞. Under Conditions (A) and (C) and the initial value condition
�(x) = m∗(x), there is a unique differentiable separating equilibrium. In this equilibrium, � solves
(DE), is strictly increasing, and � (x) > m∗ (x) for all x > x.

Remark 1. Throughout, when the type space is bounded below, we focus on the initial condition
of �(x) = m∗(x). There may be separating (and differentiable) equilibrium strategies where
�(x) �= m∗(x), 20 but in signaling games with multiple separating equilibria, it is common
to focus on the one where the lowest type sends the same signal as it would under complete
information. This is often referred to as the Riley outcome. In the current setting, this requires that
�(x) = m∗(x).

19 When the state space is unbounded below, all messages are on the equilibrium path; when it has a lower bound
x > −∞, we complete the equilibrium by assigning the off-path beliefs � (m) = x for all m < �(x) = m∗(x).

20 Simple modifications of our arguments can be used to show that for any m0 > m∗(x), there is an increasing,
differentiable separating equilibrium with �(x) = m0. If m0 < m∗(x), existence cannot be guaranteed without further
assumptions, and, moreover, the equilibrium would be decreasing, which we find somewhat implausible when m∗ is
increasing.
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The main part of the proof of Theorem 2 extends the analysis of Mailath [17] to an unbounded
state space. 21 By studying the inverse differential equation of (DE), we first show that there
exists a unique increasing local solution to (DE) under the initial condition �(x) = m∗(x). 22

We then prove that under condition (C.2), this local solution can be uniquely extended to the
whole domain X = [

x, ∞)
. This solution lies strictly above m∗(x) for all x sufficiently close to

x, since (DE) requires that �′(x) → ∞ as x → x, by (A.2), (C.1), and (C.2). But then, it must
be that �(x) > m∗(x) for all x > x; otherwise, by continuity, � must cross m∗ at some point x̂,
which it cannot do because (DE) requires that �′(x) → ∞ as x → x̂. By inspection of (DE),
the strategy � is strictly increasing, because of (C.1), (A.2), and �(x) > m∗(x) for all x > x.
Since the only off-the-equilibrium-path messages (if any) are those below m∗(x), the treatment of
off-the-equilibrium-path beliefs is analogous to Theorem 1: we assign the belief that the sender is
of the lowest type when observing any such message. Incentive compatibility of this equilibrium
is verified using conditions (A.3)–(A.5).

Theorem 2 yields a corollary that there is a fully revealing equilibrium in the modifications of
the CS game where lying entails a cost of sensitivity k for the sender, or a single receiver is naive
with probability �, for any k > 0 or � > 0. Here is the intuition for why a sender, although upward
biased, would not want to deviate from the separating equilibrium strategy �. Suppose first that
lying is costly (and the receiver is strategic). Since in equilibrium, the receiver inverts message
m and believes that the state is in fact x = �−1 (m), this gives the sender of type x an incentive
to send a message m > � (x). But as long as � (x) �x, this entails an increment in the cost for
lying C (m, x). For any k > 0, since the costs for lying are strictly convex in m, it is possible to
find � (x) large enough that the increment in the lying cost makes up for the gain from cheating
the receiver.

When lying is costless, but the receiver is naive with probability �, the cost of inflating the
equilibrium message � (x) is induced by the response of the naive receiver. She will be persuaded,
at least partially, by any message m above � (x) and end up damaging the sender, as long as
yR(� (�(x))) is larger than yS(x, b). For any � > 0, since the sender’s utility is strictly concave
in y, it is possible to find � (x) sufficiently large that the gain for cheating the strategic receiver is
counteracted by the loss induced by the naive receiver.

As an illustration of both Theorem 2 and the above discussion, the following example an-
alytically computes the Riley outcome for a quadratic-loss communication model with lying
costs. 23

Example 2. Suppose that the state space is X = [0, ∞), lying is costly, and the receiver
is fully strategic. Starting from the quadratic CS specification UR (y, x) = − (y − x)2 and
US (y, x, b) = − (y − (x + b))2, we add to the sender’s payoff a lying cost of magnitude
−k (m − x)2 when message m is sent and the true state is x. Hence, the sender’s utility is
U

(
x, x̂, m

) = − (
x̂ − x − b

)2 − k (m − x)2 when he sends message m and the receiver be-
lieves that the state is x̂. A differentiable onto strategy � is a separating equilibrium if and only if
� (x) ∈ maxmU

(
x, �−1 (m) , m

)
. By taking a first-order condition and substituting �−1 (m) with

21 There are differences beyond just the state space, however. For example, his single-crossing condition in x̂ and m is
not satisfied in our setting. This makes our proofs of incentive compatibility distinct.

22 While differential equation (DE) is not Lipschitz around (x, m∗(x)), the inverse differential equation is.
23 The calculations of the Riley outcome for the quadratic-loss model of communication with a possibly naive receiver

are very similar.
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x, and
(
�−1 (m)

)′
with �′ (x), we obtain the differential equation

b − �′ (x) k (� (x) − x) = 0, (4)

with the initial condition for the Riley outcome being� (0) = m∗(0) = 0. Lettingv (x) = � (x)−x

and c = b/k, so that v′ (x) = �′ (x) − 1, a rearranging of (4) yields

dv

dx
= c − v

v
. (5)

Eq. (5) can be solved by integrating the further rearranged form, [
/ (c − v)] dv = dx, to obtain
the expression −v − c ln (c − v) = x + K , where K is a constant to be determined. Substituting
in v = � − x gives the expression: − (� (x) − x) − c ln (c − (� (x) − x)) = x + K . The initial
condition � (0) = 0 implies that K = −c ln c, and replacing c with b/k, we obtain the solution

− (� (x) − x) − b

k
ln

(
b

k
− (� (x) − x)

)
= x − b

k
ln

b

k
. (6)

It is straightforward to verify that � defined by (6) satisfies �(x) ∈ (x, x + b
k
) for all x (hence

the logarithm in (6) is well defined). Note that as x → ∞, �(x) → x + b
k

. Thus, the strategy is
approximately linear for most of the state space. In this example, there are no off-the-equilibrium
path messages because m∗(0) = 0.

3.3. Communication to a single receiver: lower unbounded state space

We now consider the case where the state space is unbounded below, i.e. x = −∞ and X =
(−∞, ∞). The analysis builds on the results derived in Theorem 2. However, unlike when x > ∞,
one cannot pin down an initial condition such as �(x) = m∗(x) for the solution to (DE). Hence,
there is an added complication of making sure that any local solution to (DE) can be extended
leftward to −∞. Intuitively, the difficulty is that while extending a local solution to the left, the
solution might hit m∗, whereafter no further extension is possible since −U2

U3
(the right-hand side

of (DE)) is undefined at such a point. For instance, if it is the case that the slope of any increasing
separating function, as given by (DE), is always larger and bounded away from the slope of the m∗
function, then extension to −∞ is impossible. 24 To surmount this problem, we need to impose
more structure on the sender’s utility.

For expositional clarity, we focus directly on a restricted class of problems that nevertheless
capture a range of economic applications. Recalling separable representation (2) of the sender’s
utility, we impose that the two components US (y, x, b) and G (m, x, b) always have the same
shape regardless of the state of the world.

Definition 2. The utility functions US (y, x, b) and G (y, x, b) are shape invariant if they can
be represented as US (y, x, b) = L

(
y − yS (x, b)

)
and G (y, x, b) = l (y − y∗(x, b)), where the

loss functions L and l are C2, L
′′

< 0, l
′′

< 0, L′ (0) = 0, and l′ (0) = 0. Function l(·) is assumed
to have unbounded derivatives, and it is assumed that there exist constants �1 and �2 such that for
all x, yR′

(x) < �1 < ∞ and 0 < yS (x, b) − yR (x) < �2.

While this class of utility functions is restricted within our general setting, it allows for asym-
metric losses around the sender’s bliss point, it is flexible with respect to risk aversion, and it

24 Proposition 1 in the Appendix of the working paper version of this article formally proves this.
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allows the magnitude of the sender’s bias to change with the state of the world. In particular, it
accommodates our Applications 2 and 3 with a wide range of CS utility functions US and UR,
including the commonly used specifications in the literature.

The following theorem says that within the shape invariant class, there exists a separating
equilibrium even when the state space is unbounded below.

Theorem 3. Suppose the state space is (−∞, +∞) and U
(
x, x̂, m

)
can be represented as in (2),

with the functions US (y, x, b) and G (y, x, b) being shape invariant. Then there exists a strictly
increasing differentiable separating equilibrium where � solves (DE), is onto, and �(x) > m∗(x)

for all x.

We conclude this section by reporting an example of information transmission to a single
receiver who may be fully naive, with the state space being unbounded both above and below.

Example 3. Suppose that the state space is X = (−∞, ∞), lying is costless but the receiver may
be fully naive with probability � > 0, and utilities are CS quadratic-loss functions. Specifically,
UR (y, x) = − (y − x)2 and US (y, x, b) = − (y − (x + b))2. Suppose that in equilibrium, the
sender adopts a differentiable invertible function � as her communication strategy. When message
m is sent, a strategic receiver correctly infers the state �−1 (m) and a naive receiver plays the action
yR (m) = m. The sender’s expected utility from sending message m is thus

U
(
x, �−1 (m) , m

)
= − (1 − �)

(
�−1 (m) − x − b

)2 − � (m − x − b)2 .

By taking the first-order condition and substituting �−1 (m) with x, and
(
�−1 (m)

)′
with �′ (x),

we obtain the necessary condition

(1 − �) b − � (� (x) − x − b) �′ (x) = 0. (7)

This differential equation has a linear solution

� (x) = x + b

�
,

which defines a differentiable separating equilibrium where the sender’s strategy is onto.
Although this is the same equilibrium strategy that we identified in Example 1, an important

difference is that in the current setting, m∗ (x) = b < � (x). Consequently, while it is also true
here that in this equilibrium, � (x) increases pointwise in b and decreases pointwise in �, and that
� (x) → ∞ pointwise as � → 0, the welfare implications for the sender are quite different. Recall
that in Example 1, describing an instance of communication to a pool of receivers, the sender’s
utility did not change with �, because in equilibrium, the average action elicited was always her
bliss point, yS (x, b). On the other hand, the sender’s utility in the current equilibrium is given by

U (x, x, � (x)) = − (1 − �) b2 − �

(
b

�
− b

)2

= −b2
(

1

�
− 1

)
.

Hence the sender achieves her bliss point only when � = 1, her utility strictly increases in �, and
diverges to minus infinity as � → 0. 25 �

25 In general, there will also exist partial-pooling equilibria which may give the sender higher expected utility but the
strategic receiver a lower level of expected utility than the separating equilibrium here; see [23].
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4. Related literature

It is worth comparing our findings with those obtained by Morgan and Stocken [21] in a model
of cheap talk where the sender has private information not only about the state (with bounded
support, as in CS) but also about his bias, which can be either a positive, state-independent constant
or zero. 26 When the possible bias is low, their game admits a partially separating equilibrium in
which low states are fully revealed, while high states are partitioned in bunches. 27 But unlike
in our model, there is no fully separating equilibrium in the unbounded state space version of
their model. Even though average recommendations are always unbiased in equilibrium by the
law of iterated expectation, Morgan and Stocken [21] show that in a partitional equilibrium with
two messages, the recommendations given by the biased sender are (stochastically) higher than
those of the unbiased sender. Hence, both their model and ours can explain why biased analysts
tend to be more optimistic than unbiased analysts. Our model can explain also why average
recommendations are overly optimistic.

Our work is most closely related to Kartik [15], Chen [6], and Blanes [4]. Kartik [15] studies
the general bounded state space CS setting, but with messages that entail some cost of misre-
porting for the sender. He shows that any sequence of monotone equilibria of his model can only
converge to the most-informative equilibrium of CS, under a standard regularity condition on pref-
erences. Moreover, in the cheap talk extension [19]—when both costless and costly messages are
available—Kartik [15] proves existence in, and fully characterizes a class of, forward-induction
equilibria, demonstrating that they feature inflated communication. Chen [6] also studies the
bounded support case of CS, but restricts attention to the uniform prior with quadratic-loss func-
tions setup, adding a fraction of honest senders who are always truthful and a fraction of naive
receivers who always blindly believe the sender. Chen [6] proves existence and uniqueness of
monotonic equilibrium in the cheap talk extension of her game, and shows that the equilibrium
converges to the most-informative CS equilibrium as the fraction of naive players becomes small.
The most important difference between our work and that of Chen [6] and Kartik [15] is that
we assume an unbounded state space; consequently, separating equilibria exist in our model but
not in theirs; moreover, we are able to work with a more general payoff specification. Blanes [4]
studies communication from a possibly truthful sender to a fully strategic receiver when the state
is normally distributed. Following a higher message, the receiver then believes that the sender is
less likely to be truthful. The resulting equilibrium characterized by Blanes [4] is invertible only
for states below a certain threshold.

26 Sobel [25] formulates the first full-fledged dynamic model of communication by a sender with unknown motives:
the receiver does not know whether the sender has identical or opposed preferences. In the early periods, the sender with
opposed preferences builds credibility by reporting the state of the world truthfully, only to exploit this reputation in the
late periods. In Benabou and Laroque’s [1] model, the sender may be honest and truthfully reveal her noisy signal with
positive probability. Consequently, dishonest senders are able to manipulate receivers through misleading announcements.
Olszewski [22] studies a communication model in which players are fully strategic, but the sender is motivated by both
the receiver’s action and her own reputation as an honest (i.e., truthtelling) sender. When the latter component sufficiently
dominates the former, he shows that truthful communication is the unique equilibrium so long as the receiver observes a
signal that is informative about the sender’s signal.

27 Intuitively, the unbiased sender can credibly convey unfavorable information, because the biased sender has no
interest in admitting that the state is low. The equilibrium must be partitional when the state is sufficiently high relative
to the bias, since otherwise a biased sender who observes a low state would have an incentive to pretend that the state
is high.
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On the technical side, parts of our analysis owe much to the techniques introduced by Mailath
[17] to study separation in signaling games with a continuum of types. Indeed, Theorem 2 in this
paper can be considered an extension of his analysis from a bounded type space to a type space
that is unbounded above, albeit with some differences in assumptions. However, there is no analog
in [17] for our Theorem 1, which covers communication to a pool of partially naive receivers, nor
for our Theorem 3, which identifies a condition to extend Mailath’s results to lower unbounded
type spaces.

5. Conclusion

Our costly talk model subsumes at least three modifications of the classic cheap talk model of
CS: communication may be to a pool of receivers, some of whom are partially naive; a single
receiver may be either fully strategic or partially naive; or, misreporting may be costly to the
sender due to inherent psychological costs, technological constraints, or auditing penalties. In
these cases, we show that equilibrium communication may be inflated but still reveal precise
information to strategic receivers, while deceiving naive receivers.

Certainly, the existence of separating equilibria at our full level of generality relies on the
assumption that the message and state space for the sender are unbounded either above, or both
above and below. We believe that this may be a reasonable assumption in many applications, as
discussed in the Introduction. On the other hand, in some applications it is natural to assume that
the state space is bounded: for example, when a military expert reports on how to allocate a fixed
sum of available funds between the air force and the army. We refer to [15,23] for analyses of
costly talk in a bounded state space. In these models, separating equilibria can fail to exist because
the messages required to support separation are inflated (as in our analysis here), and the upper
bound on the message space becomes a binding constraint. Thus, there is an interval of the highest
types that must pool in equilibrium. Nevertheless, as the size of the state space increases, the size
of the interval of types that pool vanishes relative to the size of the state space. To this extent, the
underlying theme of our analysis carries over.

Throughout the paper, we have restricted our attention to separating equilibria. While it is
intractable to solve for all (perfect Bayesian) equilibria, we are aware that non-separating equilibria
can exist, at least in some special cases. 28 For example, Ottaviani and Squintani [23] show that
“partitional” outcomes à la CS can survive when the fraction of naive receivers is sufficiently small,
but that such equilibria are not completely satisfying because they rely on somewhat implausible
out-of-equilibrium belief assignments. Rather than formally pursuing refinements, in this paper
we have simply followed the common practice of focusing on separating equilibria in costly
signaling games when they exist. However, the arguments in [15] suggest that a refinement such
as monotone D1 equilibrium [2] will isolate separating equilibria in our model. It is also worth
noting that we have confined our attention to differentiable equilibria. Insofar as our goal was to
prove the existence of separating equilibria, this is not troubling.

We believe that the analysis of costly talk and the application to naive receivers may present
exciting avenues for future research. Welfare implications of information transmission policies
in the presence of both naive and sophisticated receivers are potentially important. Moreover, it
may be insightful to study further specialized but richer models that allow for various degrees of
naivete on the part of different receivers.

28 This discussion is implicitly restricted to the three applications of Section 2, where the sender’s utility is well defined
for any belief the receivers possess, and not just for beliefs that put mass on a single type.
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Appendix

Proof of Lemma 1. To ease notational burden, let f (x, x̂, m) ≡ (1 − �) yR(x̂) + �yR(�(m)).
(A.1) is trivial. The solution m∗ to U3(x, x, m) = US

1 (f (x, x, m), x, b) �yR′
(�(m))�′(m) = 0

is such that (1 − �) yR(x)+ �yR(�(m∗ (x))) = yS (x, b). Hence, m∗ is well defined by m∗ (x) =
�−1

(
yR−1

(
yS(x,b)−(1−�)yR(x)

�

))
. Since US

11 < 0 and US
1 (f (x, x, m∗(x)), x, b) = 0, we have

U33(x, x, m∗(x)) = US
11

(
f (x, x, m∗(x)), x, b

)
�

(
yR′

(�(m∗(x)))�′(m∗(x))
)2

< 0,

which verifies (A.2).
For (A.4), we compute U12(x, x̂, m) = US

12

(
f (x, x̂, m), x, b

)
(1 − �) yR′

(x̂) > 0, because

US
12 > 0 and yR′

> 0. For (A.5), we compute U13(x, x̂, m) = US
12

(
f (x, x̂, m), x, b

)
�yR′

(�(m))

�′(m) > 0, because US
12 > 0, yR′

> 0, and �′ > 0.
The first two parts of (A.3) are satisfied because yR′

and �′ are bounded away from ∞, hence
m∗′ is bounded away from 0. The last part of (A.3) follows because for any x and m < m∗ (

x
)
,

U
(
x, x, m∗(x)

) = US
(
yS (

x, b
)
, x, b

)

> US
(
(1 − �) yR(x) + �yR (�(m)) , x, b

)

= U
(
x, x, m

)
,

where the first equality is by definition of m∗ (
x
)

and the inequality holds because US
11 < 0 and

yS (x, b) �yS
(
x, b

)
> yR

(
x
)

> yR (�(m)).
(B.2) is satisfied because yR−1 and �−1 are strictly increasing. Finally, for (B.1), we see that

for any (x, m), because yR′
> 0, and �′ > 0,

sign [U2(x, x, m)] ≡ sign
[
US

1 (f (x, x, m), x, b) (1 − �) yR′
(x)

]

= sign
[
US

1 (f (x, x, m), x, b) (1 − �) �yR′
(�(m))�′(m)

]

≡ sign [U3(x, x, m)] . �

Proof of Lemma 2. (A.1) is trivial. Observe thatU3(x, x, m) = (� + k) G1 (g (m) , x, b) g′ (m);
since g′ > 0 and G1 (y∗(x), x, b) = 0, it follows that m∗ (x) = g−1 (y∗(x, b)) is well defined.
Substituting y∗(x, b) = g (m∗ (x)), and noting that G1 (y∗(x, b), x, b) = 0, we have

U33(x, x, m∗(x)) = (� + k) G11
(
y∗(x), x, b

) (
g′ (m∗(x)

))2
< 0,

because G11 < 0. This verifies (A.2).
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For (A.3), note first that m∗ (x) = g−1 (y∗(x, b)) is strictly increasing because g and y∗ are
strictly increasing in x. Since utility is separable in x̂ and m, the third part of (A.3) follows.
Next, we see that m∗′ (x) = g−1′

(y∗ (x, b)) y∗
1 (x, b); since y∗

1 is bounded away from 0 and g′
is bounded away from infinity, it follows that m∗ is unbounded above and also unbounded below
when x = −∞.

For (A.4), we compute U12(x, x̂, m) = (1 − �) US
12

(
yR(x̂), x, b

)
yR′

(x̂) > 0 because US
12 > 0

and yR′
> 0. For (A.5), we compute U13(x, x̂, m) = (� + k) G12 (g (m) , x, b) g′ (m) > 0

because g′ > 0 and G12 > 0. For (C.1), we compute U2(x, x, m)= (1 − �) US
1

(
yR(x), x, b

)
yR′

(x)>0, because yR′
> 0, US

11 < 0 and yR(x) < yS(x, b).
For (C.2), first observe that U2 (x, x, m) = (1 − �) US

1

(
yR(x), x, b

)
yR′

(x) is bounded away
from∞by assumption. For part (ii) of (C.2), fix any x.There exists ε > 0 such thatU33(x, x, m)�0
only if |m − m∗(x)| > ε. So it suffices to prove that |U3(x, x, m)| is bounded away from 0 on the
domain |m − m∗(x)| > ε. By definition of m∗(x) and the assumption that G11 < 0, it follows
that |G1(g(m), x, b)| is bounded away from 0 on the domain |m − m∗(x)| > ε. Moreover, g′ is
bounded away from 0. Thus, |U3(x, x, m)| = (� + k) |G1(g(m), x, b)| g′(m) is indeed bounded
away from 0 on the relevant domain. �

Proof of Theorem 1. Let � be any differentiable separating equilibrium strategy. It is neces-
sary (but not sufficient) that for any x ∈ X, �(x) ∈ arg maxm∈�(X) U(x, �−1(m), m). As noted
in the text, the first-order condition for optimality is (FOC). It is clear that one solution to
(FOC) is � (x) = m∗ (x), since, in this case, U2 (x, x, � (x)) = U3 (x, x, � (x)) = 0. This is
the unique non-decreasing solution because for any m �= m∗ (x), U2(x,x,m)

U3(x,x,m)
is well defined and

strictly positive by conditions (A.2) and (B.1); hence if there is some x with �(x) �= m∗(x),
�′(x) < 0 by (FOC). Henceforth, fix � (x) = m∗ (x); this is separating by (B.2) and differ-
entiable. For any m ∈ �(X), let the equilibrium beliefs be �(m) = �−1(m). If x = −∞,
then �(X) = M by (A.3). If x > −∞, then for any m < �(x), let �(m) = x. To prove
that this construction is a separating equilibrium, it needs to be shown that for all x, �(x) ∈
arg maxm∈M U(x, �(m), m). Observe that when x > −∞, condition (A.3) implies that for any x
and m < �(x), U(x, �(�(x)), �(x))�U(x, �(m), m). Therefore, regardless of whether x > −∞
or x = −∞, it suffices to show that �(x) ∈ arg maxm∈�(X) U(x, �(m), m). Fix any state x̃ . Let
M ≡ � (X) ∩ (−∞, �(x̃)] and M ≡ � (X) ∩ [�(x̃), ∞).

We first argue that �(x̃) ∈ arg maxm∈M U(x̃, �(m), m). Suppose not, towards contradiction.

Then, since U(x̃, �(m), m) is C1 in m, there exists some m̂ ∈ M \�(x̃) such that dU(x̃,�(m),m)
dm

∣∣∣
m=m̂

< 0. Letting x̂ ≡ �(m̂) < x̃, we have

U2(x̃, x̂, m̂)�′(m̂) + U3(x̃, x̂, m̂) < 0 = U2(x̂, x̂, m̂)�′(m̂) + U3(x̂, x̂, m̂). (8)

Conditions (A.4) and (A.5), together with �′ > 0, imply that U2(x, x̂, m̂)�′(m̂) + U3(x, x̂, m̂)

is strictly increasing in x, contradicting condition (8).
The argument for �(x̃) ∈ arg maxm∈M̄ U(x̃, �(m), m) is similar. �

Lemma 3. If � : X → M solves (DE), �(x) = m∗(x), and is incentive compatible, then � is
strictly increasing.

Proof. The argument is that of Mailath’s [17] Theorem 2, hence the proof is omitted. Details are
available in the working paper version of this article. �
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Lemma 4. There is a unique solution on X to the restricted initial value problem: (DE), �(x) =
m∗(x), and d�

dx
> 0.

Proof. The proof is similar to Kartik’s [15] Lemma 5, which builds on Mailath’s [17] Proposition
5. For convenience, denote m0 ≡ m∗(x).

Step 1 (local uniqueness). Let m0 ≡ m∗(x). Consider the inverse initial value problem to find
�(m) such that

�′ = (m, �) ≡ −U3(�, �, m)

U2(�, �, m)
, �(m0) = x. (9)

By (A.1) and (C.1),  is continuous and Lipschitz in a neighborhood of (m0, x). Hence, standard
existence theorems [7, Theorem 2.3], imply that there is a unique location solution, �̃, to (9) on
[m0, m0 + �), for some � > 0; �̃ ∈ C1([m0, m0 + �)). Since (m0, x) = 0 while m∗−1 has
strictly positive derivative, � can be chosen small enough such that for all m ∈ (m0, m0 + �),
m > m∗(�̃(m)) and thus �̃′(m) > 0. Defining �̃ ≡ �̃−1 gives a solution to the restricted initial
value problem on [x, x̃), for some x̃ > x; �̃ ∈ C1([x, x̃)) with �̃′ > 0. Since the inverse of any
(local) solution to the restricted initial value problem is a (local) solution to the inverse initial
value problem, we have (local) uniqueness of a solution to the restricted initial value problem.

Step 2 (unique extension). To prove that there is a unique extension of �̃ from [x, x̃) to
[
x, ∞)

,
it is sufficient to prove the following inductive step: if � ∈ (x, ∞) and �̃ is a solution on [x, �)

that is C1 with d�
dx

> 0, then there is a unique extension of �̃ to
[
x, � + �

)
for some � > 0,

while maintaining d�
dx

> 0 and �̃ ∈ C1([x, � + �)). (This is sufficient because if x∗ < ∞ is the
supremum over all x such that �̃ can be extended to

[
x, x

)
, then �̃ has an extension to

[
x, x∗), and

by the inductive step, an extension to
[
x, x∗ + �

)
for some � > 0, which contradicts the definition

of x∗.)
It remains to prove the inductive step. Suppose � ∈ (x, ∞) and �̃ is a solution to (DE) on [x, �),

with �̃ ∈ C1(
[
x, �

)
) and �̃′ > 0. Let m� ≡ limx↑� �̃ (x).

First we show that m� > m∗(�). Suppose not, towards contradiction. Then m� = m∗(�)

(because �̃(x) > m∗(x) for all x ∈ (x, �)) and limx↑�
d�(x)
dx

= ∞. Let a ≡ supx∈[x,�] m∗′(x);

(A.1) implies that a < ∞. Since �̃ ∈ C1([x, �)), there exists x̂ < � such that d�
dx

(x) > a for all
x ∈ [x̂, �). Pick � > 0 such that �̃(x̂) > m∗(x̂) + � . We have

m� = �̃(x̂) + lim
x↑�

∫ x

x̂

d�

dx
(�) d�

> m∗(x̂) + � +
∫ �

x̂

d�

dx
(�) d�

> m∗(x̂) + � +
∫ �

x̂

m∗′(�) d�

= m∗(�) + �,

which contradicts m� = m∗(�).
Next, we show that m� < ∞. Suppose not, towards contradiction. Then limx↑� �̃′ (x) = ∞.

By (C.2.i), U2(x, x, m) is uniformly bounded away from ∞ on the domain {(x, m) : x��}.
Consequently, limx↑� |U3 (x, x, �̃ (x))| = 0. Since m∗ (�) < ∞ whereas limx↑� �̃ (x) = ∞, this
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contradicts the implication of (C.2.ii) that for any ε > 0, |U3 (x, x, m)| is bounded away from 0
on the domain {(x, m) : x�� and m > m∗ (x) + ε}.

Therefore, m� ∈ (m∗(�), ∞). By (A.1) and (A.2), −U2(x,x,�)
U3(x,x,�)

is continuous, Lipschitz, and
bounded in a neighborhood of (�, m�). Standard extension theorems ([7, Theorem 4.1], and
preceding discussion) imply that there is a unique extension of �̃ to

[
x, � + �

)
for some � > 0;

this extension is C1. Since d�
dx

can never hit 0 and solve (DE), d�
dx

> 0 on
[
x, � + �

)
. �

Proof of Theorem 2. Lemmas 3 and 4 establish that there is a unique strategy for the sender that
is a candidate for a differentiable separating equilibrium with �(x) = m∗(x). For the remainder
of this proof, � refers to this strategy. For any m�m∗(x), beliefs are given by �(m) = �−1(m).
Note that since � is strictly increasing and solves (DE), it is immediate that �(x) > m∗(x) for all
x; since m∗ is unbounded above (condition (A.3)), �−1(m) is thus well defined for all m�m∗(x).
For all m < m∗(x), set beliefs to �(m) = x. Clearly, beliefs thus defined are consistent with
Bayes rule. It remains only to show incentive compatibility of �.

Fix any type x̃. First, we argue that �(x̃) ∈ arg maxm∈[�(x),�(x̃)] U(x, �(m), m). Suppose not,
towards contradiction. Then, since U(x̃, �(m), m) is C1 in m, there exists some m̂ ∈ [�(x), �(x̃))

such that dU(x̃,�(m),m)
dm

∣∣∣
m=m̂

< 0. Letting x̂ ≡ �(m̂) < x̃, we have

U2(x̃, x̂, m̂)�′(m̂) + U3(x̃, x̂, m̂) < 0 = U2(x̂, x̂, m̂)�′(m̂) + U3(x̂, x̂, m̂). (10)

Conditions (A.4) and (A.5) combined with �′ > 0 imply that U2(x, x̂, m̂)�′(m̂) + U3(x, x̂, m̂) is
strictly increasing in x, contradicting (10).

An analogous argument shows that �(x̃) ∈ arg maxm∈[�(x̃),∞) U(x, �(m), m). Finally, we need
to show that for all m < �(x), U(x̃, x̃, �(x̃))�U(x̃, �(m), m). To see this, observe that for any
message m < x,

U(x̃, x̃, �(x̃)) � U(x̃, �(�(x)), �(x)) = U
(
x̃, x, m∗(x)

)
> U(x̃, x, m) = U(x̃, � (m) , m),

where the first inequality holds because we already showed that type x̃ does not prefer to mimic
type x, the second inequality is by condition (A.3), and the two equalities follow from the con-
struction of � and �. �

Lemma 5. Suppose U
(
x, x̂, m

)
can be represented as in (2), with the functions US (y, x, b) and

G (y, x, b) being shape invariant. For any x0, there exists m0 > m∗(x0) such that there is a
solution � on (−∞, ∞) that satisfies (DE) and �(x0) = m0.

Proof. Assume the hypothesis of the lemma. The proof proceeds in two steps.
Step 1. We argue that there exists � > 0 such that

g(m)�g(m∗(x)) + � 	⇒
(

g′ (m)
U2(x, x, m)

|U3(x, x, m)| �g′ (m∗ (x)
)
m∗′(x)

)
. (11)

To show this, observe that in the shape invariant utility domain,

U2
(
x, x̂, m

) = (1 − �) L′ (yR(x̂) − yS (x)
)

yR′
(x̂),

U3
(
x, x̂, m

) = (� + k)l′
(
g(m) − y∗(x)

)
g′ (m) ,
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and m∗ (x) satisfies l′ (g(m)−y∗(x)) g′ (m) =0, i.e., g (m∗ (x)) =y∗(x), or m∗ (x) =g−1 (y∗(x)).
Thus, it suffices to show that there is ε > 0 such that for all m, x,

g(m)�g(m∗(x)) + ε 	⇒
(

1 − �

� + k

)
L′ (yR(x) − yS (x)

)
yR′

(x)

� g′ (m∗ (x)
)
m∗′(x)|l′ (g(m) − g

(
m∗ (x)

)) |.
As long as m > m∗ (x), the right-hand side of the above inequality is increasing in m; thus the
above inequality is satisfied if it holds for m = g−1(y∗ (x) + K), for some K > 0, so that
g(m) = y∗ (x) + K = g(m∗(x)) + K . Since m∗′(x) = y∗′(x)/g′ (m∗ (x)), it is sufficient that
there exists a K > 0 such that for all x,(

1 − �

� + k

)
L′ (yR(x) − yS (x)

)
yR′

(x)�y∗′(x)|l′ (K) |.

There is indeed such a K > 0 because (i) yR′
(x) < �1 < ∞ and �3 < y∗′(x) for all x; (ii)

0 < yS (x) − yR(x) < �2 for all x and hence L′ (yR(x) − yS (x)
)

�L′ (−�2) < ∞ by the
properties of L ; and (iii) since l′ is unbounded below, there exists K > 0 large enough such that(

1−�
�+k

)
L (−�2) M�1 ��3|l′ (K) |.

Step 2. For any x0, pick m0 satisfying g(m0)�g(m∗(x0)) + �, where � is that identified in
Step 1. Since g is strictly increasing, m0 > m∗ (x0). Then there is a local solution to (DE) around
(x0, m0)—call it �. Extension to +∞ follows by the same argument as in the proof of Lemma 4.
It remains to be proven that � can be extended to −∞. Since U3(x, x, m) < 0 for all m > m∗(x),
it suffices to show that there is no x̂ ∈ (−∞, x0) such that limx↓x̂ �(x) = m∗(x̂). For this, it is
sufficient if for all x < x0, g(� (x))�g(m∗(x)) + �. To verify this property, observe that for all
x < x0,

g (� (x)) − g(m∗ (x)) = g(�(x0)) − g(m∗(x0)) −
∫ x0

x

[
g′ (� (y)) �′(y)

− g′ (m∗ (y)
)
m∗′ (y)

]
dy

� � −
∫ x0

x

[
g′ (� (y))

U2(y, y, � (y))

|U3(y, y, � (y))| − g′ (m∗ (y)
)
m∗′ (y)

]
dy

� �,

where the first inequality uses g(m0)�g(m∗(x0)) + � and the second inequality uses the same
fact combined with (11). �

Lemma 6. For any (x0, m0)withm0 > m∗ (x0), ifm0 is sufficiently close tom∗ (x0), the extension
of the local solution to (DE) through (x0, m0) hits m∗ for some x < x0.

Proof. Fix an x1 < x0 and a � > 0. We argue that by picking m0 ∈ (m∗ (x0) , m∗ (x0) + �)

sufficiently small, the solution through (x0, m0) will hit m∗ at some x ∈ S = [x1, x0]. Let
a = maxx∈S m∗′ (x). This is positive and finite by the assumptions on U. Now, for any c, there
exists ε ∈ (0, �) s.t. if x ∈ S and m ∈ (m∗ (x) , m∗ (x) + ε

]
, then −U2(x,x,m)

U3(x,x,m)
> c; this is by

conditions (C.1) and (A.2). Consider in particular c = max
{

�+m∗(x0)−m∗(x1)
x0−x1

, a
}

. By construc-

tion, the extension of the local solution through (x0, m
∗ (x0) + ε), call it �, has �′ (x) > a, hence

� (x) �m∗ (x)+ε over the domain of maximal extension intersecting S. Now suppose towards con-
tradiction that � can be extended to some x�x1. Since by construction �′ (x) >

�+m∗(x0)−m∗(x1)
x0−x1
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for all x ∈ S, we have

� (x1) = � (x0) −
∫ x0

x1

�′ (x) dx

< m∗ (x0) + ε −
∫ x0

x1

� + m∗ (x0) − m∗ (x1)

x0 − x1
dx

= ε − � + m∗ (x1)

< m∗ (x1) ,

which implies by the intermediate value theorem that there exists some x ∈ (x1, x0) such that
� (x) = m∗ (x), a contradiction with � solving (DE) at x. �

Lemma 7. For any x0 and m0 < m̃0, the left-extension of the local solution to (DE) through
(x0, m0) lies strictly below the left-extension of the local solution to (DE) through (x0, m̃0) (over
the smaller of the two domains of possible extension).

Proof. Let � and �̃ be the respective solutions for the two initial conditions. Given the continuity of
solutions, it suffices to show that there is no x < x0 such that � (x) = �̃ (x). Suppose such a point
exists. Let x̂ be the supremum over such points below x0; that m0 < m̃0 implies that x̂ < x0.
Then by the local uniqueness of solutions at any (x, m) such that m�m∗ (x) (using the local
uniqueness of an increasing solution to the inverse differential equation of (DE) if m = m∗ (x)),
�

(
x̂
) = �̃

(
x̂
)

implies that � (x) = �̃ (x) for some x ∈ (
x̂, x0

)
, contradicting the definition

of x̂. �

Proof of Theorem 3. Assume that U can be represented as in (2) and the functions US and G are
shape invariant. By Lemma 5, there is a solution to (DE) on the entire domain passing through
(x0, m0) for some m0 sufficiently large. If the solution is onto, we are done. Suppose not, so
that it has a horizontal asymptote. Let m̄0 be the infimum over m > m∗ (x0) for which (i) a
solution exists over the entire domain; and (ii) the solution is not onto. Let m0 be the supremum
over m > m∗ (x0) for which no solution exists on entire domain. Lemmas 6 and 7 imply that
∞ > m̄0 �m0 > m∗ (x0). If m̄0 > m0, then for any m0 ∈ (

m0, m̄0
)
, the local solution through

(x0, m0) extends over the whole domain and is onto by the definitions of m0 and m̄0, and we
are done. So assume henceforth that m̄0 = m0. The theorem is proved by showing that the local
solution to (DE) through

(
x0, m0

)
extends to −∞ and is onto. For any m0 > m∗ (x0), denote by

� (x, m0) the value at x of the (maximally extended) solution to (DE) with the initial condition
(x0, m0).

Step 1. The left-extension, given initial condition
(
x0, m0

)
, extends to −∞. Suppose not,

towards contradiction. Then there exists some x̂ such that �
(
x̂, m0

) = m∗ (
x̂
)
. Let Dε,� ≡[

x̂ + ε, x0 + �
] × (

�
(
x̂ + ε

)
, � (x0 + �)

)
. The right-hand side of the (DE) is continuous and

Lipschitz on Dε,� for small enough ε, � > 0 since Dε,� is a bounded space. By Birkhoff and
Rota’s [3] Theorem 2 and Corollary from Chapter 6, the function � (x, m0) is continuous in m0
in a neighborhood of m0. Thus, by choosing arbitrarily small m0 > m0, �

(
x̂ + ε, m0

)
can be

made close to �
(
x̂ + ε, m0

)
, but strictly larger by the monotonicity claim. Now, noting that by

choosing small enough ε, �
(
x̂ + ε, m0

)
can be made arbitrarily close to m∗ (

x̂ + ε
)
, it follows that

by choosing small enough ε and small enough m0 > m0, �
(
x̂ + ε, m0

)
can be made arbitrarily

close to m∗ (
x̂ + ε

)
. But then, by the non-existence claim, the solution � (·, m0) cannot extend to

−∞ because it hits m∗ for some x < x̂ + ε. This contradicts m0 > m0 = m̄0 and the definition
of m̄0.
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Step 2. The left-extension, given initial condition
(
x0, m0

)
, is onto. Suppose not, towards

contradiction. Then by Step 1, �
(
x, m0

)
has a horizontal asymptote as x → −∞—call it m̂.

Since �
(
x, m0

)
is strictly increasing in x, �

(
x, m0

)
> m̂ for all x. Consider some small � > 0.

There exists ε > 0 such that for all x ∈ (−∞, x0 + �
]
, �

(
x, m0

) − m∗ (x) > ε, because
limx→−∞ m∗ (x) = −∞. Define Eε,� ≡ {

(x, m) : x ∈ (−∞, x0 + �
]
, m > m∗ (x) + ε

}
. The

right-hand side of (DE) is continuous and Lipschitz on Eε,� for small enough ε, � > 0, because of
condition (C.2). Applying again Birkhoff and Rota’s [3] Theorem 2 and Corollary from Chapter 6,
the function � (x, m0) is continuous in m0 in a neighborhood of m0. Thus, for any x1 ∈ (−∞, x0),
there exists large enough m0 < m0 such that � (x1, m0) is arbitrarily close to �

(
x1, m0

)
, in

particular � (x1, m0) > m̂. Recalling the constant � identified in condition (11), it follows that
because m∗ (x) is unbounded below and g is strictly increasing with a derivative bounded away
from 0, we can choose x1 such that g

(
m̂

)
> g (m∗ (x1))+�. But then, � (x1, m0) extends to −∞

by the argument of Lemma 5, contradicting the definition of m0. �
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