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Abstract

When a principal and an agent operate with simple contracts, in equilibrium, renegotiation will
occur after the agent takes her action. Since renegotiation makes incentive contracts non-credible,
the principal may prefer non-renegotiable monitoring options. The current literature does not fully
reconcile these predictions with the observation of simple, non-renegotiated incentive contracts.
We model a principal-agent interaction in a social learning framework, and assume that when
renegotiation is not observed, agents may forget its feasibility with infinitesimal probability. In the
unique stable state of our model, renegotiation occurs with infinitesimal frequency, and second-best
simple incentive contracts appear with non-negligible frequency.
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1. Introduction

This paper characterizes the stable states of a simple social learning model of a
moral hazard game. We introduce a minimal departure from the standard assumptions: if
renegotiation is not observed, its feasibility may be forgotten with infinitesimal probability.
We suggest that this exercise may be helpful in refining the current literature’s predictions
with respect to simple moral hazard scenarios.

In the classic formulation (Mirrlees, 1976) of the two-action principal-agent problem,
for the relevant parameter values, the agent exerts high effort when offered a second-best
contract, which is an incentive scheme that makes her indifferent between exerting high or
low effort, or rejecting the offer. However, if the principal can renegotiate the contract after
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the agent has chosen her effort level and before output is realized, Fudenberg and Tirole
(1990) insightfully show that the second-best contract will be renegotiated, and thus will
not elicit high effort. When the parties sign a “simple” contract (i.e., a contract that does not
require that the agent reports her action to the principal), one can show that the principal
will offer renegotiation in equilibrium. In fact, if contracts do not depend on messages, but
just on the outcome, the only means to separate high-effort from low-effort workers is to
offer a renegotiation that only the latter will accept.

The current literature does not fully reconcile this prediction with real-world intuition
about simple moral hazard scenarios. Casual observation suggests that, while contractual
renegotiation is not uncommon in complex interactions (involving, say, large companies,
and financial institutions), the possibility of a principal’s offer of renegotiation does
not make incentive contracts ineffective in simple moral hazard scenarios, such as those
in which professional services are offered to private citizens. For example, a contractor
building a house does not offer a menu-contract, but rather a simple incentive scheme: if
the project is delayed, she is subject to some penalty. Similarly, a lawyer in a suit is paid
only if she wins her case. Most professional services are subject to incentive contracts, and
while the parties could in principle renegotiate such contracts, it does not seem that this
possibility makes the incentives ineffectite.

One may offer the conjecture that the players form reputations that include commitment
not to renegotiate incentive schemes. While the reputation framework (see Kreps
and Wilson, 1982, and Milgrom and Roberts, 1982) plausibly explains the rarity of
renegotiation in two-player repeated interactions, this need not be the case for complex
societies modeled as random-matching games. In fact, when renegotiation is not observable
by a third party, the existence of a reputation equilibrium requires that at least one of
the players in the match reports whenever a renegotiation has been &ffeuédsince
renegotiation makes both players better off, neither of them has any incentive to threaten
to report it, rather the players will cooperate and secretly renegotiate the contract, to their
mutual advantage.

This brings us back to the question of how to explain that simple contracts are
renegotiated less often than the current literature would predict. An implicit assumption
in the original principal-agent model is that the principal will achieve a higher payoff by
designing a (second-best) incentive scheme, than by paying a cost in order to monitor
the agent’s action. When introducing the possibility of renegotiation, there may instead
be scenarios where the second-best outcome dominates monitoring, but implementing
the latter is more profitable than the solution of Fudenberg and Tirole (1990). In fact,
monitoring is implicitly non-renegotiable when its cost is paid before, or while, the agent

1 Huberman and Kahn (1988), for instance study the renegotiation of loan contracts between banks and large
companies. While the company’s assets are contracted to be a collateral of the loan, in case of default, the bank
will typically renegotiate the contract, and the threat of takeover will not be carried out.

2 Following Fudenberg and Tirole (1990), we assume that the contracting and renegotiation stages consist of a
take-it-or-leave-it principal’s offer, rather than allowing for the possibility of alternating counteroffers. In simple
moral hazard scenarios, the contractual gains are likely to be too small for the parties to entertain the possibility
of a lengthy and costly sequence of alternating offers.

3 For a folk theorem in random matching games, see Kandori (1992).



100 F. Squintani / Games and Economic Behavior 44 (2003) 98-113

takes her actiofi. Thus, unlike renegotiation-proof contracts, it may elicit high effort.
Therefore, monitoring can explain why renegotiation is not pervasive, but it does not
account for the prevalence of second-best simple contracts.

This paper argues that we often observe non-renegotiated incentive contracts in simple
moral hazard scenarios because not everybody is sophisticated enough to include the
possibility of renegotiation in their interpretational model of these interactions. We believe
however that such an explanation is insufficient for the purposes of economic theory, unless
one can demonstrate a social learning model in which the fraction of non-sophisticated
individuals does not vanish over time as players learn about renegotiation, and in which
non-renegotiated incentive contracts are observed with non-negligible probability at steady
state.

The key features of our evolutionary model are as follows. Each period, players in a
large population are randomly paired to play a moral hazard problem. Each player’s model
of the game may be incomplete, and it coincides with her parent’s model unless one of
two possibilities occurs. The offspring of a player unaware of renegotiation, who is offered
it in her match, willlearn that renegotiation is possible. At the same time, the offspring
of an aware player who is not offered renegotiation, rffieaget with small probability that
renegotiation is possible. The players do not observe the outcome of matches involving any
player other than their paremsThe pairings, and the assignment of the role of principal
or agent are anonymous, and independent over time.

Our stability concept entails two separate requirements. The first one is that the
population play is “in equilibrium,” given the fraction of aware players in the so€iety.
The second one is that, given the population play, and the induced aggregate awareness
transition, the fraction of aware players is stable over time. We show that the stable
frequency of non-renegotiated second-best contracts is non-negligible. Whenever too many
players are aware of renegotiation, in fact, aware principals choose to monitor. Their
opponents do not observe renegotiation, and thus they may forget it. Forgetful principals
offer non-renegotiated second-best contracts. For infinitesimal forgetfulness, the stable
frequency of renegotiation is infinitesimal. In fact, the fraction of aware players is stable
only when as many aware players are forgetting renegotiation as there are forgetful players
recalling it. This requires that forgetful agents observe renegotiation only with small
probability, when forgetfulness is infinitesimal.

The paper is presented as follows. The second section presents a traditional treatment
of moral hazard with simple contracts. The third section presents and discusses our social
learning model in details. The fourth section derives the stability results. Some of the proofs
are in Appendix A.

4 Our homeowner, for instance, may go onto the site to monitor the progress of construction. This form of
monitoring is hardly renegotiable. Border and Sobel (1987), instead, consider situations in which the monitoring
cost is paid after the player takes her action.

5 Unlike standard evolutionary analysis, our learning dynamics are not payoff-monotone, so that the diffusion
of a strategy in the population depends on how often it is used, not on its payoff. Payoff-monotone dynamics were
first analyzed by Nachbar (1990). For a general review of the evolutionary literature, see Fudenberg and Levine
(1998), or Weibull (1995).

6 Note that this requires that the aware players correctly assess the distribution of types in the population.
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2. Moral hazard with simple contracts

A principal P may motivate a prospective ageAtthrough an incentive contract
or through the use of a monitoring devidé. The agent accepts) or refuses(n) the
principal’s proposal and then takes a privately observed aati@onsisting of high effort
(H) or low effort(L). That action will influence the probability, that a high: or a low!
output will result. High output will be more likely under high effort (i.ey > pr). The
incentive contracC prescribes the agent's compensation prafile ¢;) as a function of
the output realized. When using the monitoring device, the principal pay® to know
the action taken by the agent, and compensates her with the pvbfite(my, mp) as a
function of her observed action.

The utility of the agent iV = U(c) — e(a), wheree(H) = e > e¢(L) = 0, andc is the
compensation received. The functitit-) is continuous, twice differentiable, and satisfies
U'(:) > 0 andU” () < 0, with the normalizatiori/ (0) = 0. The agent’s reservation utility
is normalized to 0. The principal is a risk-neutral profit-maximizer.

When the parties sign an incentive contract, the agent's Von Neumann—Morgestern
expected utility, and the principal’s profit are:

V(C,a)= (11— pa)U(ct) + paU(cn) — e(a);
I1(C,a) = (1= pa)( — c1) + pa(h — cp).
If the principal proposes, and the agent accepts, a monitoring device, the payoffs are:

V/(M,a)=U(m,) — e(a);
II'(M,a) = 1— py)l + psh —mg — k.

To make the problem non-trivial, we assume that the principal prefers to motivate the agent
to work hard, or to monitor her, over letting her shirk and giving her no compensation (we
denote that contract by 0). That is, there exists a con@atch thatr7(C, H) > I1(0, L)
andV(C, H) > V(C, L), and there exists a compensation prafifessuch that’’ (M, H) >
V/(M,L)andIT’' (M, H) > I1(0, L). For further reference, we denote this gamé&-as

The gameG1 is obtained by expandingp so as to allow for the possibility that
the contractC is renegotiated. A renegotiatioR is a hew contract, proposed by the
principal after the agent’s action is taken and before the output is realized, that assigns new
compensationgr, r,). The payoffs will beV (R, a) andIT(R, a) if the agent acceptg,
andV(C,a) andII(C, a) if she rejectsR. Unlike the incentive contract, the monitoring
option is not renegotiable, because its cost is paid before the agent chooses her effort level.

First we solve gamé& . In equilibrium, it is well known that the principal offers the
agent the (second-best) contr@étthat solves fo (C*, L) = V(C*, H) = 0. To motivate
the agent to work hard, the principal proposes a contract that makes the agent weakly
better off when she exerts high effort. The most profitable contract gives the agent zero
informational rent, and (sincE is strictly concave) makes the agent indifferent between
exerting low and high effort. In equilibrium, the agent accepts the confrfaend exerts
high effort(H); by construction/7(C*, H) > I1(0, L).

In any equilibrium of gameé51, instead, it is well known that incentive contracts fail
to motivate the agent to work hard with unit probability, and thus second best cannot
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be achieved. If the agent exerted high effort in equilibrium, in fact, the principal would
renegotiate the initial contract to fully insure the agent. But, anticipating this, the agent
should exert low effort in the first place.

In order to present a complete solution of gaifige, we first need to solve the
moral hazard problem with renegotiation and simple contracts, but without monitoring.
Our results are summarized in Propositiof The solution concept is Perfect Bayesian
Equilibrium, but as is customary in the renegotiation literature, we restrict attention to
equilibria where, in each subgame starting after an initial contract has been accepted, the
players coordinate on a Pareto-undominated equilibrium.

Proposition 1. On the equilibrium path, the principal initially proposes a contract C
such that V(C, H) = V(C, L) > 0. The agent accepts it, and plays H with proba-
bility x[C] < 1. The principal renegotiates offering the contract R = (U~1(V(C, L)),
U~L(V(C, L))). The agent accepts the offer if and only if she has played L. The princi-
pal’sequilibrium profit 7 is strictly smaller than I7(C*, H). If U satisfies non-decreasing
absoluterisk aversion, then C coincideswith the second-best contract C*, and R coincides
with the contract 0.

If, in equilibrium, the principal opts for monitoring, she will choose a contPact:
M* = (mj};,m}) suchthat G=V'(M* H)>V'(M* L).

We restrict attention to those cases whé&f&M*, H) > IT: the principal’s profit for
(optimally) monitoring the agent is higher than the profit in the equilibrium of any subgame
following an incentive contract with renegotiation. Thus along the equilibrium path of
gameG1, the principal offers\f*, the agent accepts and plasls

3. Social learning

The players of a continuous large population of players live for two periods. In the
second period, they are randomly paired to myopically play g&meAt the first period
they observe their parents’ play. Matching and role assignment are anonymous, and
independent across generations. After being matched, each player formulates a model of

7 Our result is closely related to the analysis of Fudenberg and Tirole (1990) on moral hazard and renegotiation
with menu-contracts. They show that in equilibrium, the agent chooses low effort with positive probability, and
that the optimal contract includes a safe scheme for agents who report low effort, and an incentive scheme for
agents who report high effort. As long as the coefficient of absolute risk aversion is non-decreasing, the optimal
initial contract gives the agent zero informational rent. Under decreasing absolute risk aversion, the equilibrium
rent may be positive.

8 In fact, by assumption, there exists a compensation prafilesuch thatV’(M, H) > V/(M, L) and
(M, H) > I1(0, L). By definition, U(m}*_l) = ¢, SO M* maximizesIT1(M, H), as long as the agent accepts
M* and playsH after doing so. In equilibrium, the agent cannot do otherwise, or else the principal would not
have a well-defined best-response. Since foragy> m7, the agent's sequentially rational response is to accept
M and work hard, the profit would be strictly decreasingip for anymy < m,, and would discontinuously
drop atm; .
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the game, the model may or may not include the possibility that the principal proposes
a contractual renegotiation, in the latter case, we say that the player is forgetful. For any
timer, we denote ag, the fraction of players aware of renegotiation at time

The players unaware of renegotiation must also be unaware that they or their opponents
could be aware of it, or else, they could not be unaware of renegotiation in the first place.
The players aware of renegotiation are also aware that their opponents could be aware or
unaware of it. Since players cannot observe their opponent’s state of mind, each aware
player formulates a conjecture of the probability of facing an aware opponent. At the
same time, each player formulates conjectures on her opponent’s play, depending on her
conjectured type. Given her conjectures, each player chooses a sequentially rational course
of action. We assume that, when presented with an unforeseen renegotiation offer, forgetful
agents do not revise their probability assessment of the occurrehcanof.

Each player enters into play holding her parent’s model of the game, exceptin one of the
two following cases. The offspring of a forgetful agent becomes aware of the possibility
of renegotiation if (and only if) her parent is offered renegotiation on the path of’play.
The offspring of an aware agent who does not receive a renegotiation offer will become
forgetful with probabilitys. The offsprings of players in the role of principal do not directly
observe opponents’ actions. We thus assume that they maintain their parents’ model of the
game. At any time, the society is described by the current fraction of aware players in
the population, and by the current population play. The evolution of the society is induced
by the aggregate awareness transition given the population play, and by the change of the
population play given the awareness transition.

Our stability definition entails two separate requirements. The first one is that, given
the stable fraction of aware playessthe population play is “in equilibrium” in the sense
that all players’ conjectures are correct. In particular, this requires that forgetful players’
conjectures about the strategy of forgetful players are correct, and that aware players’
conjectures about the value pf and the strategies of both forgetful and aware players are
correctl® As is customary in evolutionary game theory, we restrict attention to symmetric
equilibria, and assume that all players with the same roles and states of mind choose
the same strategy. Our second requirement is that given equilibrium population play, the
fraction of aware players is (asymptotically) stable under the learning dynamics.

In order to represent population play in equilibrium, we shall make use of the Harsanyi
model of games of incomplete information with subjective priors (see Harsanyi, 1967). We
introduce a state space and let nature choose the state according to a prior distribution. We
attach a game to each state, and for each player we introduce a type space that consists of
a partition of the state space. The game is completed by assigning to each player beliefs
over the realization of the state; for ease of presentation, we specify beliefs as conditional
on types, rather than as prior beliefs.

9 In principle, forgetful players may suspect that their model is incorrect also when they are unexpectedly
offered an initial contract different from the second-best one. We explore this possibility in the next section.

10 Forgetful player, on the other hand, cannot correctly assess the fraction of aware players in the population,
or the aware players’ strategies, as they are not even aware that their opponents could be aware of renegotiation.
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Definition 1. Let the Augmented GamAG(p) consist of the Harsanyi game with state
spaceS ={AA, AF, FA, FF}, where

e the nature’s choice is(AA) = p2, p(FA) = p(AF) = (1—p)p, p(FF) = (1— p)%;

e a copy of the gamé& 1 originates in the stated A, AF, and a copy of the gam&g
originates in the stateBA, FF;

o the principal's types ar®4 := {AA, AF}, and Pr :={FA, FF}, and the principal’s
conditional beliefs ar@p(AA | Pa) = p, pp(FF | Pp) =1,

e the agent’s types arely := {AA, FA}, and A := {AF, FF}, and the agent’s
conditional beliefs ar@ (AA | Ay) = p, pa(FF | Ap) =1.

We say that the population playiis equilibrium given the fraction of aware players
if it is identified by a Perfect Bayesian Equilibriu@p, , op,; 0a,,04,) Of the augmented
gameAG(p), such that the players coordinate on a Pareto-undominated equilibrium in each
subform starting after an initial contra€thas been accepted. We say that the pair)
is stable if the population play is in equilibrium given the fraction of aware playess
and if p is (asymptotically) stablé! under the aggregate learning transition induced by

We conclude this section by discussing the equilibrium concept introduced in Defin-
ition 1. In order to describe symmetric equilibrium population play, we look at a single
representative pair of players. There are four possible combinations of states of mind, and
these combinations make up the state space introduced in Definition 1. The first letter of
each state represents the state of mind of the principal, and the second the agent’s. The
letter A stands for aware, while the lettérstands for forgetful. The nature’s prior assigns
the frequencies of the four combinations of states of mind in the population.

If a player is aware, she knows that either her opponentis aware, or that she is forgetful.
In equilibrium, she correctly assessesthe fraction of aware players in the population.
These assessments are represented by the conditional beliefs introduced in Definition 1.
Since pp(AA | Py) = p and ps(AA | Ax) = p, conditional on being the aware type,
each player believes she is playing against an aware type of opponent with prohability
If a player is forgetful, she chooses her course of actions believing to play a game in
which it is common knowledge that renegotiation is impossible. In Definition 1, since
pp(FF | Pp)=pa(FF | Ar) =1, the forgetful types believe with probability 1 that they
are playing against a forgetful type, and thus they f@sif it were common knowledge
that renegotiation were impossible.

The use of subjective priors is required to make sure that forgetful players do not
condition their choice on the strategies of aware players in the population. This would
be impossible if the forgetful players knew the fraction of aware playehs such a case,
the model would be logically inconsistent. If the forgetful players were to condition their
choice on the possibility that their opponents may be aware of renegotiation, in fact, they
could not be unaware of renegotiation in the first place.

Finally, we should say that the description of the players’ beliefs presented in
Definition 1 is to be taken as a primitive. The state-space and the subjective priors are

11 A formal definition of asymptotic stability may be found in Weibull (1995, Chapter 6).
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only introduced to generate a representation of the population equilibrium play, and they
are not supposed to be subject to epistemic reasoning by the players. If that were not the
case, upon knowing that the state space includes the possibility that the opponent is aware
of renegotiation, forgetful players should infer that renegotiation is possible after all.

4. Stability results

Proposition 2 characterizes the unique stable description of the society with infinitesi-
mal forgetfulness. The stable fraction of aware playeisindependent of the probability
of forgetting renegotiation (as long as G< ¢ < 1), and is determined as follows. Suppose
that the population play is in equilibrium. Whenever too many players are aware of renego-
tiation, aware principals choose to monitor. Their opponents do not observe renegotiation,
and thus they may forget it. When the proportion of forgetful players is large enough, aware
principals offer an incentive contract, and then renegotiate it. The fraction of aware play-
ers is thus stable only if it makes aware principals indifferent between implementing the
optimal monitoring schem#s*, and offering an incentive contract that they subsequently
renegotiate.

We will show that in the unique stable description of the society, the most profitable
incentive contracC does not yield any informational rent to the agents. Despite this, all
agents accept contra€t if they are offered it. Aware agents then playand forgetful ones
play H. At the renegotiation stage, aware principals assign probability-efo) py + o pL
to the realization of output. They offer the contrackR* that maximizes their expected
profit

IR, p)=[1-ppL —A—p)pull—r)+[A—p)pu + ppL]th —rh).

subject to the condition that (R, H) = 0, so that the renegotiated contr&tis accepted
both by aware and forgetful agents. We denote’t®/ the strategy of initially offering a
zero-rent incentive contract, and then renegotiating it witR*.

The intuition for these results is along the following observations. First note that it
cannot be the case that in a stable society, aware principals renegotiate an initial contract
and offer a contract accepted only by the agents who shirked. Following the logic of
Proposition 1, an aware principal offers such a contract only if she expects her opponent
to exert high effort with probability no larger thariC*]. But if this is the case, by
construction, aware principals strictly prefer to monitor, and this cannot be a stable
description of the society. Second, in a stable society aware agents must shirk, because
they expect in equilibrium that aware principals renegotiate the initial contract so as to
make better off the agents who shirked. Third, since in any stable society forgetful agents
work hard when offered zero-rent incentive contracts, and aware agents shirk regardless
of the initial contract, it is a waste of resources to initially propose a contract that yields
positive rents to the agents.

An immediate consequence of the above results is that the stable fraction of aware
playersp is strictly smaller than - x[C*]. Otherwise, aware principal would be able
to elicit high effort only with probability smaller tham[C*]. But then, aware principals
strictly prefer to monitor, and this cannot be a stable description of the society. t€or
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be stable, moreover, it must be a stationary state, and thus there must be as many aware
agents forgetting renegotiation, as there are forgetful agents observing a renegotiation offer
on path of play. Whem is small enough, it is thus required that forgetful agents learn the
possibility of renegotiation with infinitesimal probability, and thus that aware principals
play C R* with small probability. Forgetful principals implement the second-best contract
without renegotiation (we denote this outcome &Y), that thus occur with frequency

1— ,(_).12

Proposition 2. For any ¢ > 0 small enough, the unique stable pair (p, o) is such that o
and R* solve the system

M1(R*, H) — IT'(M*, H)
~ TI(R*.H) —II(R*,L)
A-p)UG)  L-p)L—pu)+p(L—pL)
puUG) (1—p)pu +ppL

and such that 6p,(C*) =1, 6p,(M*) =1—6p,(CR*), 6p,(CR*) =¢/(1 — (1 — £)p).
The asymptotically stable fraction of aware players p isstrictly smaller than 1 — x[C*].

; V(R*,H) =0,

Before proving Proposition 2, we present our final results in terms of the aggregate
principals’ distribution of play in the stable society, calculated by compounding the type
distribution with the principals’ type strategies. Formally, given any equilibrium population
play o, and fraction of aware playeys, the principals’ aggregate distribution of play is
f=pop, +A—p)op,.

When the probability of forgetting renegotiation is strictly positive but infinitesimal, the
stable frequency of renegotiation will be negligible, and both non-renegotiated, second-best
incentive contracts, and monitoring contracts will be observed with non-negligible, stable
frequency. Specifically, when taking limits as-> 0, the aggregate principals’ distribution
of play in the stable society is:

= _ II'(M*, H)—II(R* L) . « _ *
fey=1-b=m—rwD > % [(CR)I=pr(CR)—0,
IT(R*, H) — IT'(M*, H)
I1(R*,H)—II(R*, L)

We conclude the presentation of our final results with the following remark. Proposition 2
shows that in equilibrium, forgetful agents expect that their opponents will offer them a
second-best incentive contract. Thus a forgetful player may suspect that her model of the
game is incorrect when her opponent makes use of a monitoring device. In such a case,
she may rationalize her opponent behavior in many possible ways. For instance, she may
believe that the principal’s choice is the result of an idiosyncratic tremble. Alternatively,
she may think that her opponent has privately discovered a cheaper monitoring technology,

f(M*)=p(1—5p,(CRY)) <1-—x[C*].

12 Also note that the stable frequency of second-best contradtgrisasing in the profit of the monitoring
option. When monitoring is more valuable, in fact, aware principals will choose to monitor for lower proportions
of forgetful players in the population.
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that makes her more willing to monitor, rather than to offer an incentive contract. However,

in the case that she rationalizes the principal’s behavior by inferring that the principal has
the option to renegotiate incentive contracts, our results change. In such a case, in fact, one
can show that in the unigue stable society all players are aware of renegotiation, and hence
the analysis of the second section applies. Since the play is myopic and monitored agents’
behavior does not depend on awareness of renegotiation, in fact, it is still the case that, for
any given awareness population state, aware principal either choose monitoring or propose
an incentive contract that they subsequently renegotiate. As a result, all their opponents
are immediately made aware of renegotiation, and thus any awareness state with a strictly
positive fraction of forgetful players must be unstable.

Proof of Proposition 2. The analysis is conducted by first pinning down the population
play in equilibriumo as a function of the fraction of aware playersy then deriving the
law of motion of p induced by the associated equilibrium play, and finally by determining
the asymptotically stable states of the resulting law of motion.

Lemma 3, proven in Appendix A, characterizes the principal’s equilibrium play in the
gameAG(p) for any p. For brevity, the statement of the lemma does not report the play off
path, or the agents’ play, which are derived in the proof.

Lemma 3. In equilibrium, the forgetful principal plays C* and does not renegotiate it.
For any p, the aware principal either plays M*, or initially proposes a contract C such
that V(C, L) < V(C, H) =0, and then renegotiates it with the contract R, defined asthe
contract R that solves

(1—p)pu + ppL _ paU(m)
1—-p)A—pw)+pA—pr)  A—pr)U()
together with V(R, H) = O (we denote that course of actions by CR,). When p > p
she plays M*, when p < p she plays CR,, when p = p she is indifferent. The threshold
pe(0,1—x[C*)).

For brevity, we henceforth denote the aware principal’s strategiggM™*) and
ap,(CR,) associated with the fraction of aware playgrsby o (p;) and ocr(or),
respectively, and we omit star superscripts. The aggregate principals’ distribution of play
at any period is therefore:

Ji(M) = prom(pr), Ji(CRp) = procr(pr), Ji(C)=1—p:.

Players are matched and assigned roles in such a way that a fractafnthe agents
are aware and a fraction-1 p; are forgetful. The principals play eithéf, CR,, or C,

in proportions f; (M), f;(CR,), and f;(C), respectively. This gives six types of pairs
of players. In two of them (when an aware agent meets a principal playing C),

13 Forgetful players are also surprised when offered a zero-rent incentive contract that does not coincide with
the second-best contract*. Again, they may rationalize such an offer by inferring that the principal has the
option to renegotiate incentive contracts. In such a case, our conclusions still hold, if we select the equilibria
where aware principals offer contra€t in Proposition 2, instead of any arbitrary zero-rent incentive contract.
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a fractione of the agents (hence/2 of the players in such pairs) forget. In one of
them (when a forgetful agent meets a principal who plays,), the agents (one half of

the involved players) become aware. Given these transition probabilities, by Alos-Ferrer
(1999, Theorem 6.4Y we can approximate the stochastic evolution of a large population
of players with the following difference equation p:

1
pi+1=pr + 5{(1_ 1) [1(CRy) — epr[ f:(C) + fr(M)]}.

For expositional purposes, we analyze the problem in continuous-time, rather than discrete-
time, dynamics. As is customary, see Hale (1969), this is done by assuming that only a
fractionh of the population is called to play during the tifaer + /), and for the remaining

1— h fraction of the population nothing changes. This is a mere convex combination of the
above equation and full inertia, i.e.,

1
Pr+h =L —h)p: +h(/01 + E{(l— p1) fi(CRp) — 8Pt[ft(c) + ft(M)]}>,

and taking limits wher — 0 one obtains the following differential equation:

1
/3:=§{(1—,Oz)fz(CRp)—S,Oz[fz(C)+fz(M)]}- )

The evolution of Eq. (1) at timedepends ory; which in turn depends on the equilibrium
o; characterized in Lemma 3. Since Lemma 3 yields one equilibriunpferp, and a
different one forp > p, the equation is discontinuous. However, as the system is piece-
wise continuous, one can apply standard techniques to the segmenisandp < p, and
then complete the analysis considering the discontinuity goint

Forp € [0, p), we obtain:

20=pA—e)1—p),
and forp € (p, 1], we obtain:
20 =—ep.

Sincep > 0 for anyp € (0, p), andp < 0 for anyp € (p, 1], the equation admits only the
stationary stat@ = 0 on the segmeri0, o) U (p, 1]. But clearly, the statp = 0 is unstable
because > 0 on (0, p).

So, the only candidate asymptotically stable state lefi.i8y Lemma 3, any value
ocr(p) € [0, 1] is possible in equilibrium. In order to have a well-defined differential
equation, one needs to select a unigyg: (). For the equation to have a stable state,
we needo = 0 atp. Solving out, we obtain:

&

ocr(p) = I—A-op

14 Alos-Ferrer (1999) constructs matching schemes under which a continuous population stochastic evolution
may be approximated with a dynamic system. Boylan (1992), proposes a similar result for countably infinite
populations, with an argument often referred to as a “Law of Large Numbers” in evolutionary games.
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When selecting that value, the above analysis shows that the stédestationary,
asymptotically stable and a global attractor. Also since,jignp > 0, and lim, 5 6 <0,
the statep is reached in finite time for any initial statee (0, 1].

We conclude with a remark concerning the case whep(p) # ¢/(1 — (1 — ¢)p).

In this case, the dynamics converge in finite timeptobut, each time that this state is
reached, the dynamics discontinuously jump away. The gta@ot stationary, hence not
asymptotically stable, but it is still the case that the average frequengymfer time is
close top. Thus, the average frequency of second-best non-renegofidtey (equal to
1— p;) overtimeis closeto t p.

The frequency of monitoring and renegotiationoatlepend on the particulaic g (0)
selected to complete Eq. (1). Neverthelessgfor (o) > /(1 — (1 — ¢)p), the dynamics
jump into the regionp € (p, 1), whereocg(p) = 0. Thus the average frequency of
renegotiation over time is approximately zero. Since

im-—— =0,

e=01l—(1A—¢)p
we conclude that with infinitesimal, under Eq. (1), for almost any selectiepg(p), the
average frequency of renegotiation over time is negligibla.
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Appendix A. Omitted proofs

Proof of Proposition 1. The proof consists of 3 different steps.

Step 1. The principal's equilibrium renegotiation offer, given any initial contr&ttand any agent's effort
strategyx.

At the moment in which she is offered renegotiation, the agent knows the realization of her mixed strategy
for brevity, we denote her as theagent if she played actiom. For any contracC’ we denote byI'(C’, a) =
pucy, + (11— pu)c;, the expected transfer of the principal to thagent.

First suppose that the initial contra€tis such that; > ¢;. In such a case, singey > p., andU” <0, it
follows that:

V(R,L)>V(C,L) forany R such thatV (R, H)=V(C,H)andT(R,H) < T(C, H),
V(R,H)<V(C,H) foranyR suchthatV(R,L)=V(C,L)andT(R,L)<T(C,L). (A1)

The set of conditions (A.1), together with the fact thét’ < 0, implies that the contracRf[C] =
(U~Yv(c, L)), U (v (C, L))) maximizes the principal’s profit

M4 (R, x) = xIT(C, H) + (1= 0)[(L = p)( — 1) + pr(h— )]
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among the offergk accepted in equilibrium only by the-agent.

Secondly, the set of conditions (A.1) implies that the optimal offer among the renegotiation contracts accepted
in equilibrium only by theH -agent is the initial contradf itself.

Finally, the set of conditions (A.1) allows us to pin down the contit, x] that maximizes the principal’s
profit

IR, x):=[x1—pu)+Q=x)A— p) | —r) + [xpu + A= x)pL](h — ).
among the offerR accepted in equilibrium by both thé-agent and thé.-agent.
Consider the principal’s rate of substitutionsgffor r;,
xpH+ A =x)pL
xA-pw)+A-x)A-pL)’
and theH -agent’'s marginal rate of substitution at the conti@ct

crs(x) =

MRs— _ PrU)
A—pw)U(en)’
As long ascrs(x) > MRS, the offerR[C, x] coincides with the contraa® that solves:

paU@) xpu +(1—x)pr,
A-pm)U@) xA—pm)+A—x)A—pr)’
Whencrs(x) < MRS, the optimal offerR[C, x] coincides with the initial contraaf.

In order to determine the optimal renegotiation offer as a functionxoénd C, first notice that
MY (RLY[C], x) > IT*(C,x) as long asc < 1. SincelI%(C, x) = I1(C, x), it follows that R“[C] dominatesC
(the optimal offer accepted only by ti#¢-agent), and thaR[C] dominatesR[C, x] wheneverrs(x) < MRS,

Secondly, whenx = 1, it is the case thaflT*(R%[C],x) = I1(C,x), that crs(x) = py/(1 — py), and
hence thaiR[C, x] = (UX(V(C, H) + ), U"X(V(C, H) + ¢)). SinceU” < 0, it follows that/T(R[C, x], x) >
I1(C,x). ThusR[C, x] strictly dominatesR-[C] for x = 1.

The functionIT(R[C, x], x) is continuous, strictly increasing i and (ad is strictly concave) it is a strictly
convex function ofc. The function/T% (R[C], x) is linear inx. Thus, denoting as’[C] the uniquex € (0, 1)
that solves:

M(RIC, x], x) = IT*(R*[C]. x),

V(R,H)=V(C, H). (A.2)

it follows that in equilibrium the principal playRX[C] for anyx < x'[C], she playsR[C, x] for anyx > x'[C],
and is indifferent fore = x'[C].

When the initial contracC is such thaic, < ¢, the problem is symmetric to the case in whigh> ¢;. It
follows that, depending om, the principal either play®”[C] = (U~X(V(C, H) +¢), U X(V(C, H) + ¢)) or
she playsR[C, x], and in either casey, < r;. Finally, for anyC such that;, = ¢;, the equilibrium renegotiation
offer coincides with the initial contract, for any effort strategy.

Step 2. The optimal choice of[C] given the initial contracC and equilibrium renegotiation choices.

When the initial contracC is such thatc, < ¢;, Step 1 shows that in equilibrium, < r;, thus the agent
setsx[C]=0.

Suppose the initial contra€t is such that;, > ¢;. Denote byV*[C, x, a] the expected utility of the-agent
(for a € {H, L}) given the initial contracC, the effort strategy, and the equilibrium renegotiation choices. The
results from Step 1 yield:

V*[C,x,L]> V(C,L) foranyx > x'[C], V*[C,x,L]=V(C,L) foranyx <x'[C],
V*[IC,x,L1>V(C,L) forx=x'[C], V*[C,x,H]=V(C,H) foranyx e][0,1]. (A.3)

The set of conditions (A.3) implies that if the contra@tsatisfiesV (C, L) > V(C, H), thenx[C] = 0.

If the contractC satisfiesV(C, H) = V(C, L), the set of conditions (A.3) implies thaf{C] < x'[C]; but
since we are assuming that in the subgame followdhdhe players play a Pareto-undominated equilibrium, it
follows that the agent must play[C].
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Finally, if the contractC satisfiesV (C, H) > V(C, L), the set of conditions (A.3) implies thafC] €
[x'[C], 1). Thusx[C] must coincide with the strategye [x'[C], 1) satisfyingV (R[C, x], L) = V(R[C, x], H).

Step 3. The optimal choice of the initial contract given the equilibrium effort strategiegC], and equilibrium
renegotiation choices.

Denote byIT*[C] the principal's expected equilibrium profit after the renegotiation stage, when the initial
contract isC.

Suppose thatC satisfiesV(C,L) > V(C, H). Steps 1 and 2 then imply tha@*[C] = I1(C,L). In
equilibrium, the agent accepts only if V(C, L) > 0. Thus the contracC is dominated by the second-best
contractC*, which elicits equilibrium agent’s effort[C*] > 0, and is renegotiated in equilibrium witkt[C*]
(which coincides with the contract 0).

If C satisfiesV(C,L) < V(C, H), Steps 1 and 2 imply thafl*[C] = IT1(R[C, x[C]], x[C]). Pick an
arbitrary V > 0, introduce the sef = {C: V(C,L) < V(C, H) =V}, and letC’ be the contract satisfying
V(C',L)=V(C', H) = V. We will show that/T*[C"] > IT*[C] for anyC €C.

Step 2 shows that for any > x[C'], it is the case/ (R[C’, x], L) > V(C’, L) = V. Condition (A.2) implies
thatR[C,x] = R[C’,x] andV (C, H) = V(R|[C, x], H) for anyx andC € C. Thus

V(RIC.,x],L) >V =V(C,H)=V(R[C,x],H) foranyx>x[C'] and anyC €C.

For any contracC e C, the above result (together with the last result of Step 2) impliesdi@t < x[C’], and
thus thatiT*[C] < IT*[C'], because the profil (R[C, x], x) is strictly increasing inx.

So we are left to comparE *[C] across contract€ such thatV (C, L) = V(C, H) = V. When—U" /U’ is
non-decreasing, sindé is concave, for any fixed, the H-agent's marginal rate of substitutionss(x) does not
increase inV. It follows that the equilibrium threshold[C] is also non-increasing in the relit SincelT*[C]
is strictly decreasing iV, and strictly increasing inx, it follows that the optimal initial contract must yield rent
V =0, and thus coincides with the second-best contfddin equilibrium1°
The result thaiT < I7(C*, H) follows from the fact thax[C] < 1, and that’7 (C*, H) > IT(0,L). O

Proof of Lemma 3. The results of the second section yield the behavior of forgetful types, and imply that we
can rule out any monitoring contract other thihf and say that both types of agents pkyafter A*.

Step 1. Equilibrium choices when the aware type of principal does not difér

First of all note that for any initial contract, the effort equilibrium choice of the agent of Ayp&s determined
by the equilibrium choices of the principal of tyg . In fact, upon being initially offered a contra€t=£ C*, the
agent of typed 4 infers that her opponent is of typy . If she is offered the contra€*, her opponent may be of
type Pr. But in such a case, she knows that her expected payof&i/QC*, H) = V(C*, L) regardless of the
action she takes.

If P, initially proposes an (individually rational) contract such thatV (C, H) < V(C, L), both types of
agents playL. Thus the principal is strictly better off initially offering the second-best contégtand then
renegotiating with the contract 0. So we henceforth consider initial contfastech thatV (C, H) > V(C, L).

Consider the equilibrium choice d?4 at the renegotiation stage, given that the initial contraaf jsand
agent of typed 4 plays H with probability o . The principal of typeP4 knows her opponent has playédwith
probability u = 1— p + poy . Substitutingu for x in the proof of Proposition 1 (Step 1), we obtain tifat offers
R[C, u] wheneveru > u/[C], andRL[C] if < w/[C].

For any contracC, consider the gamé&1 equilibrium strategyc[C] determined in Proposition 1. Also, for
any fractionp, let oy [C, p] be the equilibrium effort strategy of 4, introducew[C, p] :=1— p + poy[C, p],
and let/T*(C, p) be the principal’s equilibrium expected profit.

151t —y” /U’ is strictly decreasing, then[C] is strictly decreasing ifV. Thus for(py — pr)(h — 1) large
enough, the optimal contraét yields the agenV > 0.
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Casel. p <1—x[C].

For any initial contractC, it follows that u[C, p] > 1 — p > x[C] and P4 renegotiatesC offering
R[C, u[C, p]]. Sinceu[C, p] > x[C], from the proof of Proposition 1 (Step 2), we know that

V(R[C.ulC, pl].L) > V(C,L)=V(C,H) =V (R[C, ulC, pl]. H),

so thatoy[C, p] = 0. It thus follows tha[C, p] =1— p andIT*(C, p] = [T(R[C,1— p],1 — p).

For any arbitrany¥’, letC(V) := {C: V(C, L) < V(C, H) = V}. From the proof of Proposition 1 (Step 3) we
know thatV (R[C, x], H) = V(C, H) =V for anyx andC € C(V). Sincep is independent o/, it follows that
I1(R[C,1— p],1— p) is decreasing iV. Thus we conclude thd@*(C*, p) > IT*(C, p) for anyC ¢ C(0), and
that IT*(C*, p) = IT*(C, p) for any C € C(0).

Case2. p>1—x[C].

First, notice that there cannot exist any equilibrium in which, following any contfadt is the case that
ulC, p] > x[C]. Otherwise, P4 would offer R[C, u[C, p]]. From the proof of Proposition 1 (Step 2), we
know thatx[C] coincides with the strategy that satisfiesV (R[C, x], L) = V(R[C, x], H), and that, since
u[C, p] > x[C], it is the case thaV (R[C, u[C, pl], L) > V(R[C, u[C, p]], H). Thus A4 would be better off
playing L, and so it would be the case thatC, p] < x[C].

Secondly, since we are restricting attention to equilibria in which the play in the subform following any
contractC is a Pareto-undominated equilibrium, we select the equilibria suchuth@tp] = x[C]. We thus
conclude that7*(C, p) = IT*(C, 1) foranyp € [1 — x(C), 1].

For the case whep =1 — x(C), we have shown thaty [C, p] = 0, and thuslT*(C, p) = ITI(R[C, 1 — p],
1—p). Asin Case 1 it follows thafT*(C*, p) > [1*(C, p) if C ¢ C(0), and thatIT*(C*, p) = IT*(C, p) if
C €C(0).

Wrapping together Cases 1 and 2 allows us to determine the optimal initial contract.

Suppose thaf £ C*. Sincex[C] > x[C*], there is a unique threshojd such that

I(RIC*, 1-p'1,1—p') =T*(C, D),
andp’ € (1 —x[C],1 — x[C*]). The principal of typeP, choosesC if p > p’, and any contract e C(0) if
p < p’, and is indifferent between these two alternativesofes p’.

If C = C*, instead, P, initially offers contractC* if 1 — p < x[C*], and any contracC € C(0) if
1—p>x[C*].

Step 2. The aware principal’'s choice between a conti@ctind the monitoring optio*.

By construction, it is the case that
'(M*, H) > IT*|C, 1] =T*[C, p] foranyp e [1-x[C] 1],

and (hence) thalll’(M*, H) > IT*[C*, p] for any p € [1 — x[C*], 1].
For p =0, Step 1 shows that for any € C(0), it is the case that

II*[C, p] = IT*[C*, p] > II(C*, H) > IT'(M*, H),

where the last inequality is by construction.
SincelT*[C*, p] is strictly decreasing im on the interval0, 1 — x[C*]], it follows that there exists a unique
value p satisfying
*[C*, p]l =" (M*, H),
and thatp € [0, 1 — x[C*]]. Whenp > p, the principal of typeP4 chooses\f*, whenp < p she initially offers a
contractC € C(0) and then she renegotiates it wigHC*, 1 — p], and finally she is indifferent between these two
courses of action whep = p.

The expression fop and R* in the statement of the lemma follows from the definitiongBf{C*, ], and
R[C*,1-p]. O
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