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Abstract

When a principal and an agent operate with simple contracts, in equilibrium, renegotiatio
occur after the agent takes her action. Since renegotiation makes incentive contracts non-c
the principal may prefer non-renegotiable monitoring options. The current literature does no
reconcile these predictions with the observation of simple, non-renegotiated incentive con
We model a principal-agent interaction in a social learning framework, and assume that
renegotiation is not observed, agents may forget its feasibility with infinitesimal probability. I
unique stable state of our model, renegotiation occurs with infinitesimal frequency, and seco
simple incentive contracts appear with non-negligible frequency.
 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

This paper characterizes the stable states of a simple social learning mode
moral hazard game. We introduce a minimal departure from the standard assumpt
renegotiation is not observed, its feasibility may be forgotten with infinitesimal probab
We suggest that this exercise may be helpful in refining the current literature’s predi
with respect to simple moral hazard scenarios.

In the classic formulation (Mirrlees, 1976) of the two-action principal-agent prob
for the relevant parameter values, the agent exerts high effort when offered a seco
contract, which is an incentive scheme that makes her indifferent between exerting h
low effort, or rejecting the offer. However, if the principal can renegotiate the contract
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0899-8256/03/$ – see front matter 2003 Elsevier Science (USA). All rights reserved.
doi:10.1016/S0899-8256(03)00014-9
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the agent has chosen her effort level and before output is realized, Fudenberg and
(1990) insightfully show that the second-best contract will be renegotiated, and thu
not elicit high effort. When the parties sign a “simple” contract (i.e., a contract that doe
require that the agent reports her action to the principal), one can show that the pr
will offer renegotiation in equilibrium. In fact, if contracts do not depend on message
just on the outcome, the only means to separate high-effort from low-effort workers
offer a renegotiation that only the latter will accept.

The current literature does not fully reconcile this prediction with real-world intui
about simple moral hazard scenarios. Casual observation suggests that, while con
renegotiation is not uncommon in complex interactions (involving, say, large comp
and financial institutions),1 the possibility of a principal’s offer of renegotiation do
not make incentive contracts ineffective in simple moral hazard scenarios, such as
in which professional services are offered to private citizens. For example, a con
building a house does not offer a menu-contract, but rather a simple incentive sche
the project is delayed, she is subject to some penalty. Similarly, a lawyer in a suit i
only if she wins her case. Most professional services are subject to incentive contrac
while the parties could in principle renegotiate such contracts, it does not seem th
possibility makes the incentives ineffective.2

One may offer the conjecture that the players form reputations that include comm
not to renegotiate incentive schemes. While the reputation framework (see
and Wilson, 1982, and Milgrom and Roberts, 1982) plausibly explains the rari
renegotiation in two-player repeated interactions, this need not be the case for co
societies modeled as random-matchinggames. In fact, when renegotiation is not obs
by a third party, the existence of a reputation equilibrium requires that at least o
the players in the match reports whenever a renegotiation has been offered.3 But, since
renegotiation makes both players better off, neither of them has any incentive to th
to report it, rather the players will cooperate and secretly renegotiate the contract, t
mutual advantage.

This brings us back to the question of how to explain that simple contract
renegotiated less often than the current literature would predict. An implicit assum
in the original principal-agent model is that the principal will achieve a higher payo
designing a (second-best) incentive scheme, than by paying a cost in order to m
the agent’s action. When introducing the possibility of renegotiation, there may in
be scenarios where the second-best outcome dominates monitoring, but implem
the latter is more profitable than the solution of Fudenberg and Tirole (1990). In
monitoring is implicitly non-renegotiable when its cost is paid before, or while, the a

1 Huberman and Kahn (1988), for instance study the renegotiation of loan contracts between banks a
companies. While the company’s assets are contracted to be a collateral of the loan, in case of default,
will typically renegotiate the contract, and the threat of takeover will not be carried out.

2 Following Fudenberg and Tirole (1990), we assume that the contracting and renegotiation stages co
take-it-or-leave-it principal’s offer, rather than allowing for the possibility of alternating counteroffers. In s
moral hazard scenarios, the contractual gains are likely to be too small for the parties to entertain the po
of a lengthy and costly sequence of alternating offers.

3 For a folk theorem in random matching games, see Kandori (1992).
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takes her action.4 Thus, unlike renegotiation-proof contracts, it may elicit high eff
Therefore, monitoring can explain why renegotiation is not pervasive, but it doe
account for the prevalence of second-best simple contracts.

This paper argues that we often observe non-renegotiated incentive contracts in
moral hazard scenarios because not everybody is sophisticated enough to inclu
possibility of renegotiation in their interpretational model of these interactions. We be
however that such an explanation is insufficient for the purposes of economic theory,
one can demonstrate a social learning model in which the fraction of non-sophist
individuals does not vanish over time as players learn about renegotiation, and in
non-renegotiated incentive contracts are observed with non-negligible probability at
state.

The key features of our evolutionary model are as follows. Each period, player
large population are randomly paired to play a moral hazard problem. Each player’s
of the game may be incomplete, and it coincides with her parent’s model unless
two possibilities occurs. The offspring of a player unaware of renegotiation, who is of
it in her match, willlearn that renegotiation is possible. At the same time, the offsp
of an aware player who is not offered renegotiation, mayforget with small probability that
renegotiation is possible. The players do not observe the outcome of matches involv
player other than their parents.5 The pairings, and the assignment of the role of princ
or agent are anonymous, and independent over time.

Our stability concept entails two separate requirements. The first one is th
population play is “in equilibrium,” given the fraction of aware players in the socie6

The second one is that, given the population play, and the induced aggregate aw
transition, the fraction of aware players is stable over time. We show that the
frequency of non-renegotiated second-best contracts is non-negligible. Whenever to
players are aware of renegotiation, in fact, aware principals choose to monitor.
opponents do not observe renegotiation, and thus they may forget it. Forgetful prin
offer non-renegotiated second-best contracts. For infinitesimal forgetfulness, the
frequency of renegotiation is infinitesimal. In fact, the fraction of aware players is s
only when as many aware players are forgetting renegotiation as there are forgetful
recalling it. This requires that forgetful agents observe renegotiation only with s
probability, when forgetfulness is infinitesimal.

The paper is presented as follows. The second section presents a traditional tre
of moral hazard with simple contracts. The third section presents and discusses ou
learning model in details. The fourth section derives the stability results. Some of the
are in Appendix A.

4 Our homeowner, for instance, may go onto the site to monitor the progress of construction. This f
monitoring is hardly renegotiable. Border and Sobel (1987), instead, consider situations in which the mo
cost is paid after the player takes her action.

5 Unlike standard evolutionary analysis, our learning dynamics are not payoff-monotone, so that the d
of a strategy in the population depends on how often it is used, not on its payoff. Payoff-monotone dynami
first analyzed by Nachbar (1990). For a general review of the evolutionary literature, see Fudenberg and
(1998), or Weibull (1995).

6 Note that this requires that the aware players correctly assess the distribution of types in the popula
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2. Moral hazard with simple contracts

A principal P may motivate a prospective agentA through an incentive contractC
or through the use of a monitoring deviceM. The agent accepts(y) or refuses(n) the
principal’s proposal and then takes a privately observed actiona, consisting of high effor
(H) or low effort (L). That action will influence the probabilitypa that a highh or a lowl

output will result. High output will be more likely under high effort (i.e.,pH > pL). The
incentive contractC prescribes the agent’s compensation profile(ch, cl) as a function of
the output realized. When using the monitoring device, the principal paysk > 0 to know
the action taken by the agent, and compensates her with the profileM = (mH ,mL) as a
function of her observed action.

The utility of the agent isV = U(c) − e(a), wheree(H) = e > e(L) = 0, andc is the
compensation received. The functionU(·) is continuous, twice differentiable, and satisfi
U ′(·) > 0 andU ′′(·) < 0, with the normalizationU(0) = 0. The agent’s reservation utilit
is normalized to 0. The principal is a risk-neutral profit-maximizer.

When the parties sign an incentive contract, the agent’s Von Neumann–Morg
expected utility, and the principal’s profit are:

V (C,a)= (1− pa)U(cl)+ paU(ch)− e(a);
Π(C,a) = (1− pa)(l − cl)+ pa(h− ch).

If the principal proposes, and the agent accepts, a monitoring device, the payoffs ar

V ′(M,a)= U(ma)− e(a);
Π ′(M,a)= (1−pa)l +pah−ma − k.

To make the problem non-trivial, we assume that the principal prefers to motivate the
to work hard, or to monitor her, over letting her shirk and giving her no compensatio
denote that contract by 0). That is, there exists a contractC such thatΠ(C,H) >Π(0,L)

andV (C,H) � V (C,L), and there exists a compensation profileM such thatV ′(M,H)�
V ′(M,L) andΠ ′(M,H) >Π(0,L). For further reference, we denote this game asG0.

The gameG1 is obtained by expandingG0 so as to allow for the possibility tha
the contractC is renegotiated. A renegotiationR is a new contract, proposed by t
principal after the agent’s action is taken and before the output is realized, that assig
compensations(rl, rh). The payoffs will beV (R,a) andΠ(R,a) if the agent acceptsR,
andV (C,a) andΠ(C,a) if she rejectsR. Unlike the incentive contract, the monitorin
option is not renegotiable, because its cost is paid before the agent chooses her effo

First we solve gameG0. In equilibrium, it is well known that the principal offers th
agent the (second-best) contractC∗ that solves forV (C∗,L) = V (C∗,H)= 0. To motivate
the agent to work hard, the principal proposes a contract that makes the agent
better off when she exerts high effort. The most profitable contract gives the agen
informational rent, and (sinceU is strictly concave) makes the agent indifferent betw
exerting low and high effort. In equilibrium, the agent accepts the contractC∗ and exerts
high effort(H); by construction,Π(C∗,H) >Π(0,L).

In any equilibrium of gameG1, instead, it is well known that incentive contracts f
to motivate the agent to work hard with unit probability, and thus second best c
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be achieved. If the agent exerted high effort in equilibrium, in fact, the principal w
renegotiate the initial contract to fully insure the agent. But, anticipating this, the
should exert low effort in the first place.

In order to present a complete solution of gameG1, we first need to solve th
moral hazard problem with renegotiation and simple contracts, but without monito
Our results are summarized in Proposition 1.7 The solution concept is Perfect Bayesi
Equilibrium, but as is customary in the renegotiation literature, we restrict attenti
equilibria where, in each subgame starting after an initial contract has been accep
players coordinate on a Pareto-undominated equilibrium.

Proposition 1. On the equilibrium path, the principal initially proposes a contract C

such that V (C,H) = V (C,L) � 0. The agent accepts it, and plays H with proba-
bility x[C] < 1. The principal renegotiates offering the contract R = (U−1(V (C,L)),

U−1(V (C,L))). The agent accepts the offer if and only if she has played L. The princi-
pal’s equilibrium profit Π is strictly smaller than Π(C∗,H). If U satisfies non-decreasing
absolute risk aversion, then C coincides with the second-best contract C∗, and R coincides
with the contract 0.

If, in equilibrium, the principal opts for monitoring, she will choose a contract:8

M∗ = (
m∗

H ,m∗
L

)
such that 0= V ′(M∗,H) � V ′(M∗,L).

We restrict attention to those cases whereΠ ′(M∗,H) > Π : the principal’s profit for
(optimally) monitoring the agent is higher than the profit in the equilibrium of any subg
following an incentive contract with renegotiation. Thus along the equilibrium pat
gameG1, the principal offersM∗, the agent accepts and playsH .

3. Social learning

The players of a continuous large population of players live for two periods. In
second period, they are randomly paired to myopically play gameG1. At the first period
they observe their parents’ play. Matching and role assignment are anonymou
independent across generations. After being matched, each player formulates a m

7 Our result is closely related to the analysis of Fudenberg and Tirole (1990) on moral hazard and reneg
with menu-contracts. They show that in equilibrium, the agent chooses low effort with positive probabilit
that the optimal contract includes a safe scheme for agents who report low effort, and an incentive sch
agents who report high effort. As long as the coefficient of absolute risk aversion is non-decreasing, the
initial contract gives the agent zero informational rent. Under decreasing absolute risk aversion, the equ
rent may be positive.

8 In fact, by assumption, there exists a compensation profileM such thatV ′(M,H) � V ′(M,L) and
Π ′(M,H) > Π(0,L). By definition,U(m∗

H
) = e, soM∗ maximizesΠ(M,H), as long as the agent accep

M∗ and playsH after doing so. In equilibrium, the agent cannot do otherwise, or else the principal wou
have a well-defined best-response. Since for anymH >m∗

H
the agent’s sequentially rational response is to ac

M and work hard, the profit would be strictly decreasing inmH for anymH <m∗
H

, and would discontinuously
drop atm∗ .
H
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the game, the model may or may not include the possibility that the principal pro
a contractual renegotiation, in the latter case, we say that the player is forgetful. F
time t , we denote asρt the fraction of players aware of renegotiation at timet .

The players unaware of renegotiation must also be unaware that they or their opp
could be aware of it, or else, they could not be unaware of renegotiation in the first
The players aware of renegotiation are also aware that their opponents could be a
unaware of it. Since players cannot observe their opponent’s state of mind, each
player formulates a conjecture of the probability of facing an aware opponent. A
same time, each player formulates conjectures on her opponent’s play, depending
conjectured type. Given her conjectures, each player chooses a sequentially rationa
of action. We assume that, when presented with an unforeseen renegotiation offer, fo
agents do not revise their probability assessment of the occurrence ofh andl.

Each player enters into play holding her parent’s model of the game, except in one
two following cases. The offspring of a forgetful agent becomes aware of the poss
of renegotiation if (and only if) her parent is offered renegotiation on the path of p9

The offspring of an aware agent who does not receive a renegotiation offer will be
forgetful with probabilityε. The offsprings of players in the role of principal do not direc
observe opponents’ actions. We thus assume that they maintain their parents’ mode
game. At any timet , the society is described by the current fraction of aware playe
the population, and by the current population play. The evolution of the society is ind
by the aggregate awareness transition given the population play, and by the chang
population play given the awareness transition.

Our stability definition entails two separate requirements. The first one is that,
the stable fraction of aware playersρ, the population play is “in equilibrium” in the sens
that all players’ conjectures are correct. In particular, this requires that forgetful pla
conjectures about the strategy of forgetful players are correct, and that aware p
conjectures about the value ofρ, and the strategies of both forgetful and aware players
correct.10 As is customary in evolutionary game theory, we restrict attention to symm
equilibria, and assume that all players with the same roles and states of mind c
the same strategy. Our second requirement is that given equilibrium population pla
fraction of aware playersρ is (asymptotically) stable under the learning dynamics.

In order to represent population play in equilibrium, we shall make use of the Har
model of games of incomplete information with subjective priors (see Harsanyi, 1967
introduce a state space and let nature choose the state according to a prior distribut
attach a game to each state, and for each player we introduce a type space that co
a partition of the state space. The game is completed by assigning to each player
over the realization of the state; for ease of presentation, we specify beliefs as cond
on types, rather than as prior beliefs.

9 In principle, forgetful players may suspect that their model is incorrect also when they are unexpe
offered an initial contract different from the second-best one. We explore this possibility in the next sectio

10 Forgetful player, on the other hand, cannot correctly assess the fraction of aware players in the pop
or the aware players’ strategies, as they are not even aware that their opponents could be aware of rene
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Definition 1. Let the Augmented GameAG(ρ) consist of the Harsanyi game with sta
spaceS = {AA,AF,FA,FF }, where

• the nature’s choice isp(AA) = ρ2, p(FA) = p(AF) = (1− ρ)ρ, p(FF) = (1− ρ)2;
• a copy of the gameG1 originates in the statesAA, AF , and a copy of the gameG0

originates in the statesFA, FF ;
• the principal’s types arePA := {AA,AF }, andPF := {FA,FF }, and the principal’s

conditional beliefs arepP (AA | PA) = ρ, pP (FF | PF ) = 1;
• the agent’s types areAA := {AA,FA}, and AF := {AF,FF }, and the agent’s

conditional beliefs arepA(AA | AA) = ρ, pA(FF | AF) = 1.

We say that the population play isin equilibrium given the fraction of aware playersρ,
if it is identified by a Perfect Bayesian Equilibrium(σPA,σPF ;σAA,σAF ) of the augmented
gameAG(ρ), such that the players coordinate on a Pareto-undominated equilibrium in
subform starting after an initial contractC has been accepted. We say that the pair(ρ,σ )

is stable if the population playσ is in equilibrium given the fraction of aware playersρ,
and ifρ is (asymptotically) stable11 under the aggregate learning transition induced byσ .

We conclude this section by discussing the equilibrium concept introduced in D
ition 1. In order to describe symmetric equilibrium population play, we look at a si
representative pair of players. There are four possible combinations of states of min
these combinations make up the state space introduced in Definition 1. The first le
each state represents the state of mind of the principal, and the second the agen
letterA stands for aware, while the letterF stands for forgetful. The nature’s prior assig
the frequencies of the four combinations of states of mind in the population.

If a player is aware, she knows that either her opponent is aware, or that she is for
In equilibrium, she correctly assessesρ, the fraction of aware players in the populatio
These assessments are represented by the conditional beliefs introduced in Defin
SincepP (AA | PA) = ρ andpA(AA | AA) = ρ, conditional on being the aware typ
each player believes she is playing against an aware type of opponent with probabρ.
If a player is forgetful, she chooses her course of actions believing to play a ga
which it is common knowledge that renegotiation is impossible. In Definition 1, s
pP (FF | PF ) = pA(FF | AF) = 1, the forgetful types believe with probability 1 that th
are playing against a forgetful type, and thus they playas if it were common knowledg
that renegotiation were impossible.

The use of subjective priors is required to make sure that forgetful players d
condition their choice on the strategies of aware players in the population. This w
be impossible if the forgetful players knew the fraction of aware playersρ. In such a case
the model would be logically inconsistent. If the forgetful players were to condition
choice on the possibility that their opponents may be aware of renegotiation, in fac
could not be unaware of renegotiation in the first place.

Finally, we should say that the description of the players’ beliefs presente
Definition 1 is to be taken as a primitive. The state-space and the subjective prio

11 A formal definition of asymptotic stability may be found in Weibull (1995, Chapter 6).
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only introduced to generate a representation of the population equilibrium play, an
are not supposed to be subject to epistemic reasoning by the players. If that were
case, upon knowing that the state space includes the possibility that the opponent i
of renegotiation, forgetful players should infer that renegotiation is possible after all.

4. Stability results

Proposition 2 characterizes the unique stable description of the society with infin
mal forgetfulness. The stable fraction of aware playersρ̄ is independent of the probabilit
of forgetting renegotiationε (as long as 0< ε < 1), and is determined as follows. Suppo
that the population play is in equilibrium. Whenever too many players are aware of re
tiation, aware principals choose to monitor. Their opponents do not observe renego
and thus they may forget it. When the proportion of forgetful players is large enough,
principals offer an incentive contract, and then renegotiate it. The fraction of aware
ers is thus stable only if it makes aware principals indifferent between implementin
optimal monitoring schemeM∗, and offering an incentive contract that they subseque
renegotiate.

We will show that in the unique stable description of the society, the most profi
incentive contractC does not yield any informational rent to the agents. Despite this
agents accept contractC, if they are offered it. Aware agents then playL, and forgetful ones
playH . At the renegotiation stage, aware principals assign probability of(1− ρ̄)pH + ρ̄pL

to the realization of outputh. They offer the contractR∗ that maximizes their expecte
profit

Π(R, ρ̄) = [
1− ρ̄pL − (1− ρ̄)pH

]
(l − rl)+ [

(1− ρ̄)pH + ρ̄pL

]
(h− rh),

subject to the condition thatV (R,H) = 0, so that the renegotiated contractR∗ is accepted
both by aware and forgetful agents. We denote byCR∗ the strategy of initially offering a
zero-rent incentive contractC, and then renegotiating it withR∗.

The intuition for these results is along the following observations. First note th
cannot be the case that in a stable society, aware principals renegotiate an initial c
and offer a contract accepted only by the agents who shirked. Following the log
Proposition 1, an aware principal offers such a contract only if she expects her op
to exert high effort with probability no larger thanx[C∗]. But if this is the case, by
construction, aware principals strictly prefer to monitor, and this cannot be a s
description of the society. Second, in a stable society aware agents must shirk, b
they expect in equilibrium that aware principals renegotiate the initial contract so
make better off the agents who shirked. Third, since in any stable society forgetful a
work hard when offered zero-rent incentive contracts, and aware agents shirk reg
of the initial contract, it is a waste of resources to initially propose a contract that y
positive rents to the agents.

An immediate consequence of the above results is that the stable fraction of
playersρ̄ is strictly smaller than 1− x[C∗]. Otherwise, aware principal would be ab
to elicit high effort only with probability smaller thanx[C∗]. But then, aware principal
strictly prefer to monitor, and this cannot be a stable description of the society. Foρ̄ to



106 F. Squintani / Games and Economic Behavior 44 (2003) 98–113

y aware
n offer
the

pals
tract
y

egate
type
tion
is

the
d-best
table
n

tion 2
em a
l of the
a case,
he may
ively,
nology,

rtions
be stable, moreover, it must be a stationary state, and thus there must be as man
agents forgetting renegotiation, as there are forgetful agents observing a renegotiatio
on path of play. Whenε is small enough, it is thus required that forgetful agents learn
possibility of renegotiation with infinitesimal probability, and thus that aware princi
playCR∗ with small probability. Forgetful principals implement the second-best con
without renegotiation (we denote this outcome byC∗), that thus occur with frequenc
1− ρ̄.12

Proposition 2. For any ε > 0 small enough, the unique stable pair (ρ̄, σ̄ ) is such that ρ̄
and R∗ solve the system

ρ̄ = Π(R∗,H)−Π ′(M∗,H)

Π(R∗,H)−Π(R∗,L)
,

(1− pH)U(r∗
l )

pHU(r∗
h)

= (1− ρ̄)(1− pH)+ ρ̄(1− pL)

(1− ρ̄)pH + ρ̄pL

, V (R∗,H)= 0,

and such that σ̄PF (C
∗) = 1, σ̄PA(M

∗) = 1 − σ̄PA(CR∗), σ̄PA(CR∗) = ε/(1 − (1 − ε)ρ̄).
The asymptotically stable fraction of aware players ρ̄ is strictly smaller than 1− x[C∗].

Before proving Proposition 2, we present our final results in terms of the aggr
principals’ distribution of play in the stable society, calculated by compounding the
distribution with the principals’ type strategies. Formally, given any equilibrium popula
play σ , and fraction of aware playersρ, the principals’ aggregate distribution of play
f = ρσPA + (1− ρ)σPF .

When the probability of forgetting renegotiation is strictly positive but infinitesimal,
stable frequency of renegotiation will be negligible, and both non-renegotiated, secon
incentive contracts, and monitoring contracts will be observed with non-negligible, s
frequency. Specifically, when taking limits asε → 0, the aggregate principals’ distributio
of play in the stable society is:

f̄ (C∗) = 1− ρ̄ = Π ′(M∗,H)−Π(R∗,L)

Π(R∗,H)−Π(R∗,L)
> 0, f̄ (CR∗) = ρ̄σ̄PA(CR∗) → 0,

f̄ (M∗) = ρ̄
(
1− σ̄PA(CR∗)

) → Π(R∗,H)−Π ′(M∗,H)

Π(R∗,H)−Π(R∗,L)
< 1− x[C∗].

We conclude the presentation of our final results with the following remark. Proposi
shows that in equilibrium, forgetful agents expect that their opponents will offer th
second-best incentive contract. Thus a forgetful player may suspect that her mode
game is incorrect when her opponent makes use of a monitoring device. In such
she may rationalize her opponent behavior in many possible ways. For instance, s
believe that the principal’s choice is the result of an idiosyncratic tremble. Alternat
she may think that her opponent has privately discovered a cheaper monitoring tech

12 Also note that the stable frequency of second-best contracts isincreasing in the profit of the monitoring
option. When monitoring is more valuable, in fact, aware principals will choose to monitor for lower propo
of forgetful players in the population.
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that makes her more willing to monitor, rather than to offer an incentive contract. How
in the case that she rationalizes the principal’s behavior by inferring that the princip
the option to renegotiate incentive contracts, our results change. In such a case, in fa
can show that in the unique stable society all players are aware of renegotiation, and
the analysis of the second section applies. Since the play is myopic and monitored
behavior does not depend on awareness of renegotiation, in fact, it is still the case t
any given awareness population state, aware principal either choose monitoring or p
an incentive contract that they subsequently renegotiate. As a result, all their opp
are immediately made aware of renegotiation, and thus any awareness state with a
positive fraction of forgetful players must be unstable.13

Proof of Proposition 2. The analysis is conducted by first pinning down the popula
play in equilibriumσ as a function of the fraction of aware playersρ, by then deriving the
law of motion ofρ induced by the associated equilibrium play, and finally by determi
the asymptotically stable states of the resulting law of motion.

Lemma 3, proven in Appendix A, characterizes the principal’s equilibrium play in
gameAG(ρ) for anyρ. For brevity, the statement of the lemma does not report the pla
path, or the agents’ play, which are derived in the proof.

Lemma 3. In equilibrium, the forgetful principal plays C∗ and does not renegotiate it.
For any ρ, the aware principal either plays M∗, or initially proposes a contract C such
that V (C,L) � V (C,H) = 0, and then renegotiates it with the contract Rρ , defined as the
contract R that solves

(1− ρ)pH + ρpL

(1− ρ)(1− pH )+ ρ(1− pL)
= pHU(rh)

(1− pH )U(rl)

together with V (R,H) = 0 (we denote that course of actions by CRρ). When ρ > ρ̄

she plays M∗, when ρ < ρ̄ she plays CRρ , when ρ = ρ̄ she is indifferent. The threshold
ρ̄ ∈ (0,1− x[C∗]).

For brevity, we henceforth denote the aware principal’s strategiesσ̄PA(M
∗) and

σ̄PA(CRρ) associated with the fraction of aware playersρ, by σM(ρt ) and σCR(ρt ),
respectively, and we omit star superscripts. The aggregate principals’ distribution o
at any periodt is therefore:

ft (M) = ρtσM(ρt ), ft (CRρ) = ρtσCR(ρt ), ft (C) = 1− ρt .

Players are matched and assigned roles in such a way that a fractionρt of the agents
are aware and a fraction 1− ρt are forgetful. The principals play eitherM, CRρ , or C,
in proportionsft (M), ft (CRρ), and ft (C), respectively. This gives six types of pa
of players. In two of them (when an aware agent meets a principal playingM or C),

13 Forgetful players are also surprised when offered a zero-rent incentive contract that does not coinc
the second-best contractC∗. Again, they may rationalize such an offer by inferring that the principal has
option to renegotiate incentive contracts. In such a case, our conclusions still hold, if we select the eq
where aware principals offer contractC∗ in Proposition 2, instead of any arbitrary zero-rent incentive contra
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a fraction ε of the agents (henceε/2 of the players in such pairs) forget. In one
them (when a forgetful agent meets a principal who playsCRρ ), the agents (one half o
the involved players) become aware. Given these transition probabilities, by Alos-
(1999, Theorem 6.4),14 we can approximate the stochastic evolution of a large popula
of players with the following difference equation inρt :

ρt+1 = ρt + 1

2

{
(1− ρt )ft (CRρ)− ερt

[
ft (C)+ ft (M)

]}
.

For expositional purposes, we analyze the problem in continuous-time, rather than di
time, dynamics. As is customary, see Hale (1969), this is done by assuming that
fractionh of the population is called to play during the time[t, t+h), and for the remaining
1−h fraction of the population nothing changes. This is a mere convex combination
above equation and full inertia, i.e.,

ρt+h = (1− h)ρt + h

(
ρt + 1

2

{
(1− ρt )ft (CRρ)− ερt

[
ft (C)+ ft (M)

]})
,

and taking limits whenh → 0 one obtains the following differential equation:

ρ̇t = 1

2

{
(1− ρt )ft (CRρ)− ερt

[
ft (C) + ft (M)

]}
. (1)

The evolution of Eq. (1) at timet depends onft which in turn depends on the equilibriu
σt characterized in Lemma 3. Since Lemma 3 yields one equilibrium forρ < ρ̄, and a
different one forρ > ρ̄, the equation is discontinuous. However, as the system is p
wise continuous, one can apply standard techniques to the segmentsρ > ρ̄ andρ < ρ̄, and
then complete the analysis considering the discontinuity pointρ̄.

Forρ ∈ [0, ρ̄), we obtain:

2ρ̇ = ρ(1− ε)(1− ρ),

and forρ ∈ (ρ̄,1], we obtain:

2ρ̇ = −ερ.

Sinceρ̇ > 0 for anyρ ∈ (0, ρ̄), andρ̇ < 0 for anyρ ∈ (ρ̄,1], the equation admits only th
stationary statep = 0 on the segment[0, ρ̄)∪ (ρ̄,1]. But clearly, the stateρ = 0 is unstable
becausėρ > 0 on(0, ρ̄).

So, the only candidate asymptotically stable state left isρ̄. By Lemma 3, any value
σCR(ρ̄) ∈ [0,1] is possible in equilibrium. In order to have a well-defined differen
equation, one needs to select a uniqueσCR(ρ̄). For the equation to have a stable sta
we needρ̇ = 0 at ρ̄. Solving out, we obtain:

σCR(ρ̄) = ε

1− (1− ε)ρ̄
.

14 Alos-Ferrer (1999) constructs matching schemes under which a continuous population stochastic e
may be approximated with a dynamic system. Boylan (1992), proposes a similar result for countably
populations, with an argument often referred to as a “Law of Large Numbers” in evolutionary games.
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When selecting that value, the above analysis shows that the stateρ̄ is stationary,
asymptotically stable and a global attractor. Also since limρ↑ρ̄ ρ̇ > 0, and limρ↓ρ̄ ρ̇ < 0,
the stateρ̄ is reached in finite time for any initial stateρ ∈ (0,1].

We conclude with a remark concerning the case whenσCR(ρ̄) �= ε/(1 − (1 − ε)ρ̄).
In this case, the dynamics converge in finite time toρ̄; but, each time that this state
reached, the dynamics discontinuously jump away. The stateρ̄ is not stationary, hence no
asymptotically stable, but it is still the case that the average frequency ofρt over time is
close toρ̄. Thus, the average frequency of second-best non-renegotiatedft (C) (equal to
1− ρt ) over time is close to 1− ρ̄.

The frequency of monitoring and renegotiation atρ̄ depend on the particularσCR(ρ̄)

selected to complete Eq. (1). Nevertheless, forσCR(ρ̄) > ε/(1 − (1 − ε)ρ̄), the dynamics
jump into the regionρ ∈ (ρ̄,1), where σCR(ρ) = 0. Thus the average frequency
renegotiation over time is approximately zero. Since

lim
ε→0

ε

1− (1− ε)ρ̄
= 0,

we conclude that with infinitesimalε, under Eq. (1), for almost any selectionσCR(ρ̄), the
average frequency of renegotiation over time is negligible.✷
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Appendix A. Omitted proofs

Proof of Proposition 1. The proof consists of 3 different steps.

Step 1. The principal’s equilibrium renegotiation offer, given any initial contractC, and any agent’s effor
strategyx.

At the moment in which she is offered renegotiation, the agent knows the realization of her mixed strax;
for brevity, we denote her as thea-agent if she played actiona. For any contractC ′ we denote byT (C ′, a) =
pHc′

h + (1− pH )c′
l , the expected transfer of the principal to thea-agent.

First suppose that the initial contractC is such thatch > cl . In such a case, sincepH > pL, andU ′′ < 0, it
follows that:

V (R,L) > V (C,L) for anyR such thatV (R,H) = V (C,H) andT (R,H) < T (C,H),

V (R,H) < V (C,H) for anyR such thatV (R,L) = V (C,L) andT (R,L) < T (C,L). (A.1)

The set of conditions (A.1), together with the fact thatU ′′ < 0, implies that the contractRL[C] =
(U−1(V (C,L)),U−1(V (C,L))) maximizes the principal’s profit

ΠL(R,x) := xΠ(C,H) + (1− x)
[
(1− pL)(l − rl) + pL(h− rh)

]
,
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among the offersR accepted in equilibrium only by theL-agent.
Secondly, the set of conditions (A.1) implies that the optimal offer among the renegotiation contracts a

in equilibrium only by theH -agent is the initial contractC itself.
Finally, the set of conditions (A.1) allows us to pin down the contractR[C,x] that maximizes the principal’s

profit

Π(R,x) := [
x(1− pH ) + (1− x)(1− pL)

]
(l − rl )+ [

xpH + (1− x)pL

]
(h− rh).

among the offersR accepted in equilibrium by both theH -agent and theL-agent.
Consider the principal’s rate of substitution ofrh for rl ,

crs(x) = xpH + (1− x)pL

x(1− pH ) + (1− x)(1− pL)
,

and theH -agent’s marginal rate of substitution at the contractC,

MRS = pHU(cl )

(1− pH )U(ch)
.

As long ascrs(x) � MRS, the offerR[C,x] coincides with the contractR that solves:

pHU(rl )

(1− pH )U(rh)
= xpH + (1− x)pL

x(1− pH ) + (1− x)(1− pL)
, V (R,H) = V (C,H). (A.2)

Whencrs(x) < MRS, the optimal offerR[C,x] coincides with the initial contractC.
In order to determine the optimal renegotiation offer as a function ofx and C, first notice that

ΠL(RL[C], x) > ΠL(C,x) as long asx < 1. SinceΠL(C,x) = Π(C,x), it follows thatRL[C] dominatesC
(the optimal offer accepted only by theH -agent), and thatRL[C] dominatesR[C,x] whenevercrs(x) � MRS.

Secondly, whenx = 1, it is the case thatΠL(RL[C], x) = Π(C,x), that crs(x) = pH/(1 − pH ), and
hence thatR[C,x] = (U−1(V (C,H) + e),U−1(V (C,H) + e)). SinceU ′′ < 0, it follows thatΠ(R[C,x], x) >
Π(C,x). ThusR[C,x] strictly dominatesRL[C] for x = 1.

The functionΠ(R[C,x], x) is continuous, strictly increasing inx, and (asU is strictly concave) it is a strictly
convex function ofx. The functionΠL(RL[C], x) is linear inx. Thus, denoting asx′[C] the uniquex ∈ (0,1)
that solves:

Π
(
R[C,x], x) = ΠL

(
RL[C], x)

,

it follows that in equilibrium the principal playsRL[C] for anyx < x′[C], she playsR[C,x] for anyx > x′[C],
and is indifferent forx = x′[C].

When the initial contractC is such thatch � cl , the problem is symmetric to the case in whichch > cl . It
follows that, depending onx, the principal either playsRH [C] = (U−1(V (C,H) + e),U−1(V (C,H) + e)) or
she playsR[C,x], and in either case,rh � rl . Finally, for anyC such thatch = cl , the equilibrium renegotiation
offer coincides with the initial contractC, for any effort strategyx.

Step 2. The optimal choice ofx[C] given the initial contractC and equilibrium renegotiation choices.

When the initial contractC is such thatch � cl , Step 1 shows that in equilibriumrh � rl , thus the agen
setsx[C] = 0.

Suppose the initial contractC is such thatch > cl . Denote byV ∗[C,x,a] the expected utility of thea-agent
(for a ∈ {H,L}) given the initial contractC, the effort strategyx, and the equilibrium renegotiation choices. T
results from Step 1 yield:

V ∗[C,x,L] > V (C,L) for anyx > x′[C], V ∗[C,x,L] = V (C,L) for anyx < x′[C],
V ∗[C,x,L] � V (C,L) for x = x′[C], V ∗[C,x,H ] = V (C,H) for anyx ∈ [0,1]. (A.3)

The set of conditions (A.3) implies that if the contractC satisfiesV (C,L) > V (C,H), thenx[C] = 0.
If the contractC satisfiesV (C,H) = V (C,L), the set of conditions (A.3) implies thatx[C] � x′[C]; but

since we are assuming that in the subgame followingC, the players play a Pareto-undominated equilibrium
follows that the agent must playx′[C].
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Finally, if the contractC satisfiesV (C,H) > V (C,L), the set of conditions (A.3) implies thatx[C] ∈
[x′[C],1). Thusx[C] must coincide with the strategyx ∈ [x′[C],1) satisfyingV (R[C,x],L) = V (R[C,x],H ).

Step 3. The optimal choice of the initial contractC given the equilibrium effort strategiesx[C], and equilibrium
renegotiation choices.

Denote byΠ∗[C] the principal’s expected equilibrium profit after the renegotiation stage, when the
contract isC.

Suppose thatC satisfiesV (C,L) > V (C,H). Steps 1 and 2 then imply thatΠ∗[C] = Π(C,L). In
equilibrium, the agent acceptsC only if V (C,L) � 0. Thus the contractC is dominated by the second-be
contractC∗, which elicits equilibrium agent’s effortx[C∗] > 0, and is renegotiated in equilibrium withRL[C∗]
(which coincides with the contract 0).

If C satisfiesV (C,L) � V (C,H), Steps 1 and 2 imply thatΠ∗[C] = Π(R[C,x[C]], x[C]). Pick an
arbitrary V � 0, introduce the setC = {C: V (C,L) < V (C,H) = V }, and letC ′ be the contract satisfying
V (C ′,L) = V (C ′,H ) = V . We will show thatΠ∗[C ′] >Π∗[C] for anyC ∈ C.

Step 2 shows that for anyx � x[C ′], it is the caseV (R[C ′, x],L) > V (C ′,L) = V . Condition (A.2) implies
thatR[C,x] = R[C ′, x] andV (C,H) = V (R[C,x],H ) for anyx andC ∈ C. Thus

V
(
R[C,x],L)

> V = V (C,H) = V
(
R[C,x],H )

for anyx � x[C ′] and anyC ∈ C.

For any contractC ∈ C, the above result (together with the last result of Step 2) implies thatx[C] < x[C ′], and
thus thatΠ∗[C]<Π∗[C ′], because the profitΠ(R[C,x], x) is strictly increasing inx.

So we are left to compareΠ∗[C] across contractsC such thatV (C,L) = V (C,H) = V . When−U ′′/U ′ is
non-decreasing, sinceU is concave, for any fixedx, theH -agent’s marginal rate of substitutionscrs(x) does not
increase inV . It follows that the equilibrium thresholdx[C] is also non-increasing in the rentV . SinceΠ∗[C]
is strictly decreasing inV , and strictly increasing inx, it follows that the optimal initial contract must yield re
V = 0, and thus coincides with the second-best contractC∗ in equilibrium.15

The result thatΠ <Π(C∗,H ) follows from the fact thatx[C] < 1, and thatΠ(C∗,H ) >Π(0,L). ✷
Proof of Lemma 3. The results of the second section yield the behavior of forgetful types, and imply th
can rule out any monitoring contract other thanM∗ and say that both types of agents playH afterM∗.

Step 1. Equilibrium choices when the aware type of principal does not offerM∗.

First of all note that for any initial contract, the effort equilibrium choice of the agent of typeAA is determined
by the equilibrium choices of the principal of typePA. In fact, upon being initially offered a contractC �= C∗, the
agent of typeAA infers that her opponent is of typePA. If she is offered the contractC∗, her opponent may be o
typePF . But in such a case, she knows that her expected payoff is 0= V (C∗,H ) = V (C∗,L) regardless of the
action she takes.

If PA initially proposes an (individually rational) contractC such thatV (C,H) < V (C,L), both types of
agents playL. Thus the principal is strictly better off initially offering the second-best contractC∗, and then
renegotiating with the contract 0. So we henceforth consider initial contractsC such thatV (C,H) � V (C,L).

Consider the equilibrium choice ofPA at the renegotiation stage, given that the initial contract isC, and
agent of typeAA playsH with probabilityσH . The principal of typePA knows her opponent has playedH with
probabilityµ = 1−ρ +ρσH . Substitutingµ for x in the proof of Proposition 1 (Step 1), we obtain thatPA offers
R[C,µ] wheneverµ> µ′[C], andRL[C] if µ<µ′[C].

For any contractC, consider the gameG1 equilibrium strategyx[C] determined in Proposition 1. Also, fo
any fractionρ, let σH [C,ρ] be the equilibrium effort strategy ofAA , introduceµ[C,ρ] := 1− ρ + ρσH [C,ρ],
and letΠ∗(C,ρ) be the principal’s equilibrium expected profit.

15 If −U ′′/U ′ is strictly decreasing, thenx[C] is strictly decreasing inV . Thus for(pH − pL)(h − l) large
enough, the optimal contractC yields the agentV > 0.
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Case 1. ρ < 1− x[C].

For any initial contractC, it follows that µ[C,p] � 1 − ρ > x[C] and PA renegotiatesC offering
R[C,µ[C,ρ]]. Sinceµ[C,ρ] > x[C], from the proof of Proposition 1 (Step 2), we know that

V
(
R

[
C,µ[C,ρ]],L)

> V (C,L) = V (C,H) = V
(
R

[
C,µ[C,ρ]],H )

,

so thatσH [C,ρ] = 0. It thus follows thatµ[C,ρ] = 1− ρ andΠ∗(C,ρ] = Π(R[C,1− ρ],1− ρ).
For any arbitraryV , let C(V ) := {C: V (C,L) � V (C,H) = V }. From the proof of Proposition 1 (Step 3) w

know thatV (R[C,x],H ) = V (C,H) = V for anyx andC ∈ C(V ). Sinceρ is independent ofV , it follows that
Π(R[C,1− ρ],1− ρ) is decreasing inV . Thus we conclude thatΠ∗(C∗, ρ) >Π∗(C,ρ) for anyC /∈ C(0), and
thatΠ∗(C∗, ρ) = Π∗(C,ρ) for anyC ∈ C(0).

Case 2. ρ � 1− x[C].

First, notice that there cannot exist any equilibrium in which, following any contractC, it is the case tha
µ[C,ρ] > x[C]. Otherwise,PA would offer R[C,µ[C,ρ]]. From the proof of Proposition 1 (Step 2), w
know thatx[C] coincides with the strategyx that satisfiesV (R[C,x],L) = V (R[C,x],H ), and that, since
µ[C,ρ] > x[C], it is the case thatV (R[C,µ[C,ρ]],L) > V (R[C,µ[C,ρ]],H ). ThusAA would be better off
playingL, and so it would be the case thatµ[C,ρ] � x[C].

Secondly, since we are restricting attention to equilibria in which the play in the subform following
contractC is a Pareto-undominated equilibrium, we select the equilibria such thatµ[C,ρ] = x[C]. We thus
conclude thatΠ∗(C,ρ) = Π∗(C,1) for anyρ ∈ [1− x(C),1].

For the case whenρ = 1− x(C), we have shown thatσH [C,ρ] = 0, and thusΠ∗(C,ρ) = Π(R[C,1− ρ],
1− ρ). As in Case 1 it follows thatΠ∗(C∗, ρ) > Π∗(C,ρ) if C /∈ C(0), and thatΠ∗(C∗, ρ) = Π∗(C,ρ) if
C ∈ C(0).

Wrapping together Cases 1 and 2 allows us to determine the optimal initial contract.
Suppose thatC �= C∗. Sincex[C] > x[C∗], there is a unique thresholdρ′ such that

Π
(
R[C∗,1− ρ′],1− ρ′) = Π∗(C,1),

andρ′ ∈ (1 − x[C],1 − x[C∗]). The principal of typePA choosesC if ρ > ρ′ , and any contractC ∈ C(0) if
ρ < ρ′, and is indifferent between these two alternatives forρ = ρ′ .

If C = C∗, instead,PA initially offers contractC∗ if 1 − ρ < x[C∗], and any contractC ∈ C(0) if
1− ρ � x[C∗].

Step 2. The aware principal’s choice between a contractC, and the monitoring optionM∗ .

By construction, it is the case that

Π ′(M∗,H ) >Π∗[C,1] = Π∗[C,ρ] for anyρ ∈ [
1− x[C],1

]
,

and (hence) thatΠ ′(M∗,H ) >Π∗[C∗, ρ] for anyρ ∈ [1− x[C∗],1].
Forρ = 0, Step 1 shows that for anyC ∈ C(0), it is the case that

Π∗[C,ρ] = Π∗[C∗, ρ] >Π(C∗,H ) >Π ′(M∗,H ),

where the last inequality is by construction.
SinceΠ∗[C∗, ρ] is strictly decreasing inρ on the interval[0,1− x[C∗]], it follows that there exists a uniqu

valueρ̄ satisfying

Π∗[C∗, ρ̄] = Π ′(M∗,H ),

and thatρ̄ ∈ [0,1− x[C∗]]. Whenρ > ρ̄, the principal of typePA choosesM∗, whenρ < ρ̄ she initially offers a
contractC ∈ C(0) and then she renegotiates it withR[C∗,1− ρ], and finally she is indifferent between these t
courses of action whenρ = ρ̄.

The expression for̄ρ andR∗ in the statement of the lemma follows from the definitions ofΠ∗[C∗, ρ̄], and
R[C∗,1− ρ̄]. ✷
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