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This paper analyzes the equilibrium play of individuals that are randomly
matched to play a contest where the dominant action changes over time. Under
myopic decision making, players adopt imitation strategies similar to those
observed in evolutionary models with sampling from past play in the population. If
the players are patient, equilibrium strategies display elements of experimentation in
addition to imitation. If the changes in the environment are infrequent enough,
these strategies succeed in coordinating almost all of the players on the dominant
action almost all of the time. The myopic rules, on the other hand, result in
miscoordination for a positive fraction of time. Journal of Economic Literature
Classification Numbers: C73, D83, D84. © 2001 Academic Press

1. INTRODUCTION

When economic agents observe outcome samples from the past play in
the population, they can react to the observations in two possible ways.
They may decide to imitate the players who are using the most effective
actions or to experiment with an alternative strategy that they did not
observe in the population sample. When the environment is stable, models
in evolutionary game theory predict that under mild regularity conditions,
myopic players adopt imitative behavior and select the dominant action
whenever it exists. This paper considers an equilibrium model where the
environment changes from period to period, and dominant actions become
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dominated at random times. With myopic players, imitation strategies are
still selected in equilibrium, but the players are not coordinated on the
dominant action all the time. However, in a model with forward-looking
players, we show that sampling from population play yields an equilibrium
where both imitation and experimentation are present. Even though
experimentation provides a public good in the model, the equilibrium rate
of experimentation is sufficiently high to coordinate almost all of the
players on the dominant action almost all the time if the changes in
the environment are infrequent enough.

The model we analyze has two states of nature and two actions. In the
first state, the first action is dominant, in the second state, it is dominated.
In order to represent information transmission through sampling from the
population play, we imagine a continuum of identical players matched
according to a Poisson arrival process. As is customary in the evolutionary
game theory literature, we are interested in the relative payoff comparison
between individuals, rather than the absolute payoffs received by a single
player. In line with that purpose, we assume that the players are matched
to play a zero sum game with the following property. Whenever the players
choose the same action, the game ends in a draw regardless of the true
state, so that the match is not informative on the state of nature. If, on the
other hand, a player wins by playing, say, the first action, then he or
she (and his or her opponent) can deduce the true state of the world at the
moment of the match. The state changes according to a stationary Markov
transition process, independent of any actions taken in the game.

We consider first the case in which players observe the entire history of
play and maximize their myopic utility. The equilibrium in this game takes
a form familiar in evolutionary game theory: players adopt purely imitative
strategies where all players choose the same action as in the previous period
until a loss is observed. Our main result in this context is that under these
imitation dynamics, the population play is not responsive to state changes.
In fact, while the population shares of players choosing either strategy
take all the values in the open unit interval infinitely often, the population
fraction of players choosing, say, the first action crosses any fixed value in
the unit interval very infrequently in comparison to the frequency of state
changes. In other words, most of the state changes do not affect the play of
most of the players.

In the second model, we introduce forward-looking behavior and assume
that all players maximize their expected stream of future utilities. For
simplicity we assume that players retain only single period histories and
hence they condition only on the outcome in the previous match.2 It is not

2 We will show that this boundedly-rational strategy yields almost the same payoff as
fully-rational strategies for our case of interest.

2 SQUINTANI AND VÄLIMÄKI
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hard to see that the symmetric adoption of purely imitative strategies
cannot constitute an equilibrium for this game. If almost all players in the
population are playing a fixed action regardless of the true state of nature,
then it is optimal for an individual player to experiment, i.e., to choose an
action different from the previous action following a draw. To see this,
notice that the losses from an experiment last for a single period. The
choice of a dominated action, in fact, results almost certainly in the detection
of the true state in the next period, and hence the player will revert to his
or her original play. The payoff implications of a successful experiment,
however, persist for more than a single period. The benefits from an experi-
ment accumulate until the next state change. If the state changes are
infrequent enough, then the benefits outweigh the losses, and the symmetric
use of imitation strategies cannot be an equilibrium.

We show that the model with forward-looking players has a symmetric
(and stationary) mixed-strategy equilibrium where all the players rando-
mize with the same probability following the observation of a draw in the
previous match. The main result of the paper is the characterization of
these equilibria for infrequent state changes. In particular, it is shown that
the fraction of time that any fixed population share spends on the
dominated action converges to zero as state changes become infrequent. In
other words, almost all of the players choose the dominant action almost
all of the time, as the state changes become rare. A consequence of this
result is that, with infrequent state changes, it would not be in any given
player’s self interest to sample additional past observation at a positive
cost.

The techniques that we develop for the analysis might be of use in other
contexts such as search models in a changing economic environment.
Between the state changes, aggregate play in this model is deterministic by
the law of large numbers. When the state changes, the law of motion
changes for the aggregate population. The resulting compound stochastic
process is an example of a piecewise-deterministic process as described in
Davis [8]. The ergodic theory of these processes is quite simple, and we
can make repeated use of renewal theory.

The paper is organized as follows. Section 2 presents the literature
review. Section 3 introduces the model. Section 4 analyzes myopic players.
Section 5 contains the equilibrium analysis for the case of forward-looking
players. Section 6 concludes, and the proofs are collected in the Appendix.

2. RELATED LITERATURE

This paper is connected to three strands of literature. In the literature on
herding, Ellison and Fudenberg [12] identify conditions under which

IMITATION AND EXPERIMENTATION 3
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players will select the correct action given the state of the world, when
sampling from the population play and adopting a rule where the individ-
uals may change their action only if they sample some players taking a
better alternative. Banerjee and Fudenberg [2] allow players to adopt fully
rational decision rules. They show that if individuals sample from the
population in a proportional fashion and signals are informative enough
to outweigh the prior, then at the unique stationary outcome all agents
make the correct choice. To our knowledge, the current paper is the first to
study experimentation and social learning in a changing environment with
forward-looking agents. Smith and Sorensen [21] explicitly introduce
forward-looking behavior in a fixed environment and show that the set of
stationary cascades shrinks as individuals become more patient. Moscarini
et al. [17] analyze a social learning model in a changing world with myopic
players.

The implications of sampling from population play have been studied
extensively in the evolutionary game literature. Boylan [5] identifies
matching schemes that allow the approximation of the stochastic population
evolution by means of a dynamic system. Nachbar [16], Friedman [13],
and Samuelson and Zhang [19] independently introduce payoff-monotonic
dynamics and show that in continuous time, iterated strictly dominated
strategies will be extinct in the long-run population if the initial population
play has full support (see also Dekel and Scotchmer [9], Cabrales and
Sobel [7], Bjornestedt [3], and Hofbauer and Weibull [14]). Specific
characterizations of payoff-monotonic dynamics have then been derived in
models of learning by sampling the population play by Bjornestedt [3],
Bjornestedt and Weibull [4], Schlag [20], and Borgers and Sarin [6].

Models of experimentation in a changing world were treated in the single-
agent case by Rustichini and Wolinsky [18] and by Keller and Rady [15]
in a setting where a monopolist chooses between a sure action and an
uncertain alternative whose value changes randomly over time. They show
that patient players will take the optimal action almost all of the time if the
state changes are infrequent enough. In our model, the forward looking
optimal experimentation aspect of these models is combined with the
effects of social learning and imitation.

3. THE MODEL

A continuum population of players indexed by the points in the unit
interval are matched according to a Poisson process with parameter m to
play one of two symmetric 2×2 contests, G1 or G2. In other words, the
probability that player j ¥ [0, 1] is matched to play within the time interval

4 SQUINTANI AND VÄLIMÄKI
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(t, t+Dt) is m Dt for Dt small. The two possible payoff matrices (for the
row player) G1 and G2 are given by:3

3 The normalization to unit gains and losses off the diagonal is made for convenience. The
main results of the paper would go through in the more general case as well.

G1 a1 a2

a1 0 1

a2 − 1 0

G2 a1 a2

a1 0 − 1

a2 1 0

Note that action ai is strictly dominant in game Gi for i=1, 2.4

4 If the players are not sure of which game Gi they are playing, they can tell the two games
apart conditional on observing an outcome off the main diagonal. A diagonal outcome does
not help the players in distinguishing between the two games. This simple specification allows
us to focus our attention on the informational content of relative-payoff comparison among
individuals and to rule out any informational content of the absolute value of a player’s
payoff.

Let a j(t) denote the action that player j would choose if matched
at instant t. Denote the set of player j’s opponents in period t by
j(t) ¥ [0, 1] 2”, where j(t)=” if j is not matched in period t. Define the
function m j(t) — sup{m < t | j(m) ]”}. Notice that because of Poisson
matching, Pr{m j(t) < t}=1, and m j(t) can be interpreted as the last time
before t in which j was matched.5

5 Since the payoffs are defined as expectations over the matching probabilities and other
variables, we can assign any behavior to the zero probability events where m j(t)=t, without
changing payoffs.

Denote the event that game Gi is played in period t by {w(t)=wi}. The
state space describing uncertainty about the game in period t is then given
by W={w1, w2}. We assume that the state changes are also governed by a
Poisson process with parameter l.6 Let {yk}

.

k=1 be the random sequence of

6 Alternatively, we could suppose that the state durations are drawn independently from a
known distribution, Fi(T), for state wi. In other words, if there is a state change at instant t to
state wi, then Pr(w(s)=wi for t < s < u)=Fi(u−t).

state changes, where yk is the physical instant of the kth state switch.
Formally, we set y0=0, and we iteratively define yk=inf{t > yk−1 |
w(t) ] w(yk−1)} for any k > 0. Each state duration (yk, yk+1) is called an
wi-duration if w(t)=wi for t ¥ (yk, yk+1). The evolution of play in the
population is governed by the strategies of the players and the random
state changes.

IMITATION AND EXPERIMENTATION 5
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4. MYOPIC OPTIMIZATION

To set a benchmark that is comparable to previous contributions in
evolutionary game theory, we assume in this section that each player
maximizes his or her payoff in a myopic fashion.

We first define the history observed by player j. Let t be the vector of
previous matching times of j. The vector of actions chosen by j in the pre-
vious matches is denoted by aj, and the actions taken by j −s opponents are
denoted by aj(t). Let uj(aj, aj(t)) denote the vector of realized payoffs. The
history observable to player j at time t is h j(t)=(aj, aj(t), t, uj(aj, aj(t)), t),
where the last component underlines that strategies may depend on calendar
time.

A pure (behavior) strategy of an arbitrary player j at instant t is then
s j: h j(t)Q {a1, a2}, and its mixed extension is s j: h j(t)Q D{a1, a2}, where
s ji(h

j(t)) denotes the probability that player j takes action ai. Denoting by
a(t) the random action of a player from the population at time t, player j
prefers action a1 to action a2 at time t if

E[u(a1, a(t), w(t)) | h j(t)] \ E[u(a2, a(t), w(t)) | h j(t)].

The notion of equilibrium in this game is defined in the standard fashion.

Definition 4.1. An equilibrium is a collection of strategies (s j)j ¥ [0, 1]
such that for all j and all h j(t), s ji(h

j(t)) > 0 only if

E[u(ai, a(t), w(t)) | h j(t)] \ E[u(al, a(t), w(t)) | h j(t)]

for all pairs of actions (ai, al).

For any action ai, we introduce the following event on the set of all
possible histories of player j:

L ji(t)={h j(t): a j(m j(t))=ai, uj(a j(m j(t)), a j(m)(m j(t)))=−1}.

In words, L ji(t) stands for the event where player j lost in the last match
by playing action ai. We denote as pure imitation rule the choice of
maintaining the same action as the previous match, unless defeated by the
opponent. Formally we say that player j adopts the pure imitation rule at
time t if, for any action ai,

s ji(h
j(t))=0 if h j(t) ¥ L jl(t), and s ji(h

j(t))=1 otherwise.

6 SQUINTANI AND VÄLIMÄKI
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The first proposition shows that imitation is the unique equilibrium behavior
in the model.

Proposition 4.1. For all l and m, the unique equilibrium is such that
each player j adopts the pure imitation rule at all times t.

The intuition is simple. Since the gain from a successful experiment is
equal to the loss from an unsuccessful experiment, players will experiment
only when assessing that the probability that the state has changed is at
least one half. This is never the case under Poisson arrivals, because the
probability that no state change has occurred dominates the probability
that exactly one state change has occurred, and the probability that exactly
2k state changes have occurred dominates the probability that 2k+1 state
changes have occurred, for any k > 0.

It is important to notice that if Gi is the game played in all t, the popula-
tion dynamics induced by the imitation rule leads to an asymptotic steady
state where all players correctly assess the state of the world wi and play
action ai. The following analysis shows that in changing environments,
such assessments are often incorrect.

Denote the population fraction of players using a1 in period t by x(t). By
using the law of large numbers, we have

x(t)=Pr{a(t)=a1}

for a randomly picked player in t. To obtain a characterization of the rates
of change of the actions in the population, we need to make a distinction
according to the state of nature that prevails at t. Since the state changes
according to a Poisson process, the time derivatives of the population
fractions exist almost everywhere. As long as the state remains w1, the law
of motion for x(t) is given (almost everywhere) by:

ẋ(t)=m(1−x(t)) x(t). (1)

Of all the matched players (that have instantaneous flow rate of m), only
those playing a2 (fraction (1−xt)) that are matched with players playing a1
(fraction x(t)) adjust their behavior with positive probability. The solution
to this differential equation yields the population share x(t) given an initial
condition x(0):

x(t)=

x(0)
1−x(0)

e
m

2 t

x(0)
1−x(0)

e
m

2 t+e−
m

2 t

=
1

1+
1−x(0)
x(0)

e−mt
. (2)

IMITATION AND EXPERIMENTATION 7
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The dynamics for the population fraction playing a2 follows immediately
from the constant population assumption. A similar derivation can be done
for state w2 to yield:

x(t)=
1

1+
1−x(0)
x(0)

emt
. (3)

The main task in this section is to patch these two dynamics together to
yield the overall population dynamics in the changing environment.

Before presenting the formal treatment, it may be useful to give an
informal outline of the analysis. The first observation is that the closed
forms (2) and (3) identify the movements of a variable along the same
logistic curve, respectively from left to right and from right to left, at the
same speed (controlled by m). Thus equal durations in opposite states offset
each other, and we can summarize the ergodic behavior of the variable by
looking at the cumulative difference in durations. Consider three consecu-
tive state changes: the expected time before the second change equals the
expected time between the second and the third change. Thus the expected
difference over two consecutive durations is equal to zero. Summing up
differences over pairs of durations, one obtains a symmetric random walk,
a recurrent process characterized by fluctuations that are both very wide
and very slow (in a sense specified below). Very wide fluctuations in the
time coordinate mean that the variable will spend almost all time arbi-
trarily close to the extremes of the interval [0, 1]. Very slow fluctuations
mean that the variable will follow almost no state change. Thus the popu-
lation will coordinate on the dominated action almost half of the time.

The formal treatment is as follows. Consider first the following limit

xA= lim
TQ.

>T0 IA(x(t)) dt
T

, for A … (0, 1),

where IA(x(t))=1 if x(t) ¥ A and IA(x(t))=0 if x(t) ¨ A. The limit xA
measures asymptotically the fraction of time that x(t) spends in an
arbitrary set A. The next lemma shows that this limit is 0 for all closed A.

Lemma 4.1. For any l and m, xA=0 for all closed A … (0, 1).

We need the following definition to make precise the notion that the play
in the population as described by x(t) is not very sensitive to state changes.

Definition 4.2. The w1-duration (yk, yk+1) is E-undetected if x(t) [ E
for yk [ t [ yk+1. The w2-duration (yl, yl+1) is E-undetected if x(t) \ 1− E
for yl [ t [ yl+1.

8 SQUINTANI AND VÄLIMÄKI
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In words, at most fraction E of players in the population play the
dominant action for the state duration in question. The previous lemma
can be used to prove the following proposition.

Proposition 4.2. For all l and m, the limiting frequency of the state
durations that are E-undetected is 12 for all e > 0.

An alternative statement would be that in the long run, the population
play reacts to only a negligible subset of actual state changes, and as a
result, the majority of the population play a constant action for a time
interval that is by far longer than a single state duration. Therefore even if
the prior is correctly assigned and payoff comparisons are perfectly infor-
mative about the state of the world, sampling from population play fails to
keep track of state changes with myopic agents. In evolutionary game
theory terms, strictly dominated strategies do not vanish in the stationary
distribution implied by any payoff-monotonic regular dynamics.

If the state changes occur with different probabilities, or if the gains from
choosing the dominant action do not coincide in the two states, the players
will not always adopt imitative strategies. Suppose in fact that the state
changes from wl to wi with rate li, and, say, that l2 > l1. Then a player
adopting the optimal decision rule may in some cases play action a2 even
though at the previous match he or she played a1 and tied with the
opponent. The main result of the section, Proposition 4.2, however continues
to hold in the sense that the population play concentrates on the action a2 in
the long run. Therefore the w1-durations will be E-undetected for all E > 0.
This holds also in the case that l1=l2, but the gain for playing a2 on an w2-
duration is larger than the gain for playing a1 on an w1-duration.
In sum, dominated actions are adopted in the long run by a majority
of the population of myopic players for fractions at least min{l1/(l1+l2),
l2/(l1+l2)} of the total time. Additional details are provided in Appendix B.

5. FORWARD-LOOKING OPTIMIZATION

In this section, we assume that each player cares about his or her current
own payoff as well as the future payoffs. At the same time, for analytical
tractability, we use stationary strategies with a single period memory.7 At

7 The main results of the paper, in particular the existence of stationary equilibrium and the
limiting characterization as lQ 0, are valid with k-period memories as well.

the end of this section, we show that such an assumption can be justified if
it is costly to keep track of the history more accurately. As in the previous

IMITATION AND EXPERIMENTATION 9
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section, we present only the case for l1=l2.8 Unlike the previous section,

8 The case for l1 ] l2 yields similar results. The Appendix, when presenting the proofs of the
statements presented in this section, also points out the differences for the case when l1 ] l2.

we focus the analysis on the case where the population matches are very
frequent relative to the state changes.

In this section, the history observable to j at t is

h j(t)=(a j(m j(t)), a j(m
j(t))(m j(t)), u j(m j(t))).

In fact, some of the information is superfluous since the action of the
opponent can be deduced from the payoff realization. Therefore it is more
convenient to define the history as h j(t)=(a j(m j(t)), u j(m j(t))). Notice that
we are assuming here that players do not know m j(t), i.e., the strategies do
not depend on calendar time. Apart from the differences in h j(t), the pure
and mixed strategies are defined as in the previous section.

In order to simplify the calculations, we use the overtaking criterion,
rather than the discounted sum of payoffs, for evaluating sequences of
outcomes.9 Formally, let {mk}

.

k=0 — m be the random sequence of future

9 The limit of means criterion does not discriminate enough between sequences of outcomes
for our purposes, because the effect of any individual decisions is vanishing in the limit (the
processes that result from the analysis are strongly mixing).

matching times for j. The sequence of future actions chosen by j is then
denoted by {a j(mk)}

.

k=0 — aj, and the actions taken by j −s opponents are
denoted by {a j(mk)(mk)}

.

k=0 — aj(m). To evaluate the utilities from various
action profiles, we consider the following infinite summations:

p(aj, aj(m))=C
.

k=0
u(a j(mk), a j(mk)(mk), w(mk)).

If the summation above does not converge, assign the value −. to p.
Since the players are randomly matched, an expectation must be taken over
the future opponents when evaluating the payoffs.

Notice that different initial choices of actions induce different distribu-
tions on continuation plays for each player. Let the future actions of player
j conditional on an initial choice ai be denoted by a ij so that a choice at
matching instant mk following initial choice ai is given by a ji(mk). Let m, a ij ,
and the actions of future opponents, aj(m), be drawn from their respective
distributions.

According to the overtaking criterion, player j prefers action a1 to action
a2 if there is a K̄ <. such that for all K \ K̄,

E C
K

k=0
u(a j1(mk), a

j(mk)(mk), w(mk)) \ E C
K

k=0
u(a j2(mk), a

j(mk)(mk), w(mk)),

10 SQUINTANI AND VÄLIMÄKI
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where the expectations are taken with respect to the random matching
probabilities. In the last part of this section, the impact of the current
choice on the future choices and payoffs is made explicit. In solving for
optimal strategies, we use the recursive formulation based on strong long
run averages as defined in Dutta [11].10 The definition of an equilibrium

10 In what follows, we show that strategies that are optimal according to this criterion are
optimal under overtaking criterion as well, since the process of payoff realizations under the
optimal strategy is stationary and ergodic. This follows since the conditions for Theorem 5 in
Dutta [11] are satisfied. This same theorem shows that the equilibrium policies can be
regarded as limits of the equilibrium policies of a discounted model, as the discount factor
tends to unity.

strategy profile s is the same as in the previous section.
We solve for the symmetric stationary equilibrium strategies of the game.

By using the notation s to denote the mixed strategy of any given player,
we are looking for a strategy s such that it is optimal for each player to use
s if all the other players use s. Notice that here we are assuming that a
player’s own future choices comply with s.

The first two results of this section make the case for imitation and
experimentation. The following lemma, in particular, shows that the
optimal strategy must yield imitation after a history that reveals the state of
the world. The notation si(h j(t)) identifies the probability that any player j
plays ai after history h j(t).

Proposition 5.1. For any l there is a m(l) such that whenever m \ m(l),
in equilibrium, si(ai, 1)=1 and si(al, −1)=1, for any pair of actions (ai, al)
with al ] ai.

While the imitation rule is settled as the optimal strategy when the
history reveals the true state of the world, the next result establishes
the value of experimentation after histories that do not reveal the state of
the world. As long as the states do not change too often, there does not
exist an equilibrium where players play imitation after any such histories.

Proposition 5.2. For any l there is a m(l) such that whenever m \ m(l),
in any stationary symmetric equilibrium, si(ai, 0) < 1 for any action ai.

The intuition behind this result is quite simple. If all the other players are
using the pure imitation rule, then it is optimal for a given individual to
change his or her action conditional on observing a tie in his or her
previous match. The reason for this is that by the results in the previous
section, the play within the population does not react to most state changes
in the long run. If the population is currently concentrated on the inferior
action, a single trial leads to a large expected number of wins in the future.
If the population is concentrated on the dominant action, a change of

IMITATION AND EXPERIMENTATION 11
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actions leads to a single period loss. Therefore as long as the matching rate
m is high enough, the gains persist over many periods, while the losses take
place in a single period, and it is optimal to experiment occasionally.

Given that the state changes with the same rate from w1 to w2 and from
w2 to w1, it is meaningful to restrict attention to equilibria where s1(a1, 0)
=s2(a2, 0) and we introduce e=1−si(ai, 0). If the state is not revealed
in the previous match, then the previous action is chosen again with
probability 1− e.

For each fixed m, and for any choice of the experimentation parameter e,
we can derive the law of motion for the population choices of actions. Let
xe(t) denote the fraction of players choosing action a1 in period t. Note
that we are parameterizing the process of population play by the relevant
experimentation probabilities. In state w1, we have:

ẋe(t)=mxe(t)(1−xe(t))+me(1−xe(t))2−mexe(t)2

=m[e+xe(t)(1−2e)−xe(t)2]. (4)

It is easy to calculate the long run level of xe(t) in the case where the
state does not change. For this, we simply set the rate of change in the
above equation equal to zero and solve for the stationary xe. The relevant
root of the quadratic equation is:

x̄e=
1−2e+`1+4e2

2
. (5)

The same reasoning leads to the following law of motion and the corre-
sponding long run steady state in state w2

ẋe(t)=m[e−xe(t)(1+2e)+xe(t)2], (6)

and

x
¯ e
=
1+2e−`1−4e2

2
. (7)

Notice that for e > 0, x̄e < 1, and x
¯ e
> 0. In other words, the process of

population play is bounded away from the boundary of the unit interval.
This induces a qualitative change in the behavior of the system as
compared to the case with pure strategies. For example, it is easy to see
that x(t) has a unique invariant distribution on the open interval (x

¯ e
, x̄e).11

11 Unfortunately the calculation of the invariant distribution is not an easy matter. For
general results on stochastic processes of the type described above, see, e.g., Davis [8].

12 SQUINTANI AND VÄLIMÄKI
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This is in sharp contrast with the pure strategy case where the process
spends asymptotically all of its time arbitrarily close to the boundary of
[0, 1].

An easy intuition for the difference in the results is the following. By
introducing the randomization, the time symmetry in the process is broken.
In particular, in state w1, the rate of increase of x(t) approaches 0 as x(t)
converges to x̄e. On the other hand, in state w2, the rate of decrease of x(t)
(i.e., also the rate of increase of action a2) at x̄e is bounded away from zero
for all e > 0.12

12 The exact laws of motion in the two states can be solved by performing a simple change
of variables. Since the formulas are not used later, they are omitted here.

In order to start the analysis of the individual decision problem, we need
to make an assumption about the initial distribution of the action profile in
the population as well as the initial state w(0). Since we do not want to
give any particular significance to the initial period and since the joint
process (x(t), w(t)) is ergodic on (x

¯ e
, x̄e)×W, a natural initial condition

seems to be that all variables are drawn from the relevant invariant distri-
bution. The implicit assumption then is that this game has been played for
an arbitrarily long history prior to the start of the analysis. A consequence
of this modeling choice is that the decision problem of all the individuals is
the same prior to observing the outcome in the previous match.

The key observation for the analysis of optimal individual decisions is
that the process determining the future opponents of a player and the
population shares of the actions in the population at the matching times
are not influenced by the past actions of the player. The following lemma
states formally that the difference in the distribution of the continuation
play of an individual player induced by a different initial action choice
vanishes in finite time.

Lemma 5.1. For almost all m, a ij , and aj(m), there exists a K <. such
that a j1(mk)=a j2(mk), for all k > K. Furthermore, EK <., where the
expectation is taken with respect to the distribution of m, a ij , and aj(m).

Since the payoffs are evaluated according to the overtaking criterion, we
can concentrate on the differences in the payoffs during the first K periods.
We start by showing that the game has no symmetric pure strategy equi-
libria. Recall that any proposed symmetric stationary equilibrium profile
is characterized by a single parameter, e. The exogenous environment is
parameterized by (l, m). We hold l fixed throughout the discussion and let
m vary. This is without loss of generality since any model with parameters
(pl, pm) is equivalent to (l, m) apart from a linear scaling in the units of
measurement for time. Fix an arbitrary player j and denote by am(e) his

IMITATION AND EXPERIMENTATION 13

File: AP/642-jeth/2889 2889 - Page : 13/29 - Op: AV - Time: 15:23 - Date: 08:11:2001



or her set of optimal experimentation probabilities when all others, as well
as the player in the future periods, experiment at rate e, and the rate of
matches is m.

Lemma 5.2. There is a m̄ such that for all m \ m̄, am(0)=1.

As a result, we conclude that zero experimentation is not a symmetric
equilibrium. The next lemma shows that the rate of experimentation in a
symmetric equilibrium cannot be very high if the frequency of matches is
high.

Lemma 5.3. For any ē > 0, there is a m̄(ē) such that am(e)=0 for all
e \ ē and m \ m̄.

The intuition for this result is also quite straightforward. If there is suf-
ficient heterogeneity in the population, it is very unlikely for a player to
realize the benefits from an experiment for a long string of matches. At
the same time, the action that resulted in a draw is more likely to be the
dominant action, and since a (relatively) large fraction of the opponents are
experimenting, the myopic gain from not experimenting is quite high.

The payoff function of player j is continuous in the population experi-
mentation rate e since it is a time integral of a payoff that is continuous in
e against a Poisson arrival process. Thus Lemma 5.2, Lemma 5.3, and a
simple application of the intermediate value theorem allow us to conclude
the main existence result of this section.

Proposition 5.3. For all m, there is an e > 0 such that e ¥ am(e). More-
over, limmQ. e

¯
(m)=0, where e

¯
(m)=sup{e | e ¥ am(e)}.

In words, we have demonstrated the existence of symmetric equilibria.
Furthermore, we have shown that for large m, the equilibrium experimen-
tation probabilities are small. The remainder of this section investigates the
asymptotic rate at which e converges to zero as m increases. This exercise is
essential if we want to determine how well coordinated the population is on
the dominant action in the long run, as the state changes become very rare
in comparison to the matches.

In order to obtain estimates on the rate of convergence, it is useful to
look at an auxiliary random process that approximates the population
process x(t) for large m. The key to the approximation that we perform is
the observation that the real time that it takes for the frequency of action
a1 to grow from an arbitrarily low level d to 1−d is extremely short for
large m. As a result, for large m, x(t) spends most of its time close to 0 or 1.

14 SQUINTANI AND VÄLIMÄKI
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Hence we approximate the process x(t) by a simpler process that lives on
the two asymptotic values calculated above for the real population process.

Let x̂m(t) ¥ {x
¯ e
, x̄e} be the approximate population process. To make the

approximation valid as mQ., we need to describe how much time is spent
in each of the two possible states. Let T(m, e) be the amount of real time
that the approximating process spends in state x

¯ e
. The approximation is

valid if we require that T(m, e) equals the amount of time that it takes
for the population to increase from x

¯ e
to 1/2. At the same time, we must

make sure that T(m, e) is such that each player is indifferent between
experimenting and not experimenting. Combining these two requirements,
we obtain a characterization of the aggregate equilibrium behavior as
mQ..

Proposition 5.4. For any e(m) such that e(m) ¥ am(e(m)),

lim
mQ.

mT(m, e(m))=O(`m ) (8)

lim
mQ.

e(m) % 1
2 e
−`2m. (9)

The validity of the approximation used to get this result is also shown in
the Appendix. The message of the theorem is clear. Since the total expected
number of matches grows linearly in m, and since the number of matches
before a 1

2 -detected (and hence also c-detected for any c < x̄e) state change
grows linearly in `m , almost all the players are choosing the dominant
action almost all of the time when mQ.. Thus we are close to full
optimality in a qualitative sense even though the public goods nature of
experimentation leads to some suboptimality.

In the remainder of the section, we sketch an argument to show that it is
not in any player’s interest to buy costly information about past matches.
With that in mind, we may interpret the model as one of endogenously
imperfect recall.

Fix as a baseline the full information optimal strategy: play ai at t if and
only if w(t)=wi. Consider an w1-duration (yk, yk+1). Set l=1, and for any
small d > 0, let T be such that x(T+yk)=x̄e−d. Against the bounded-
memory equilibrium population dynamics, the optimal-strategy average
payoff on the state duration is bounded above by [T+(1−x̄e+d)(1−T)].
For m large enough, we know that T % 0, and that x̄e % 1− eQ 0, so that
the payoff from using the optimal strategy is bounded above by a value
close to d. If the players were able to purchase full information in each
period at cost C, their optimal average payoff would thus be bounded
above by a value close to d−C. For m large enough, x(yk+1) % x̄e almost
surely, so that we can choose d % 0.

IMITATION AND EXPERIMENTATION 15
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Consider the average payoff when using the bounded-memory equilib-
rium strategy. By revealed preference we know that such a payoff is not
smaller than the average payoff obtained by a player using the pure imita-
tion rule. This payoff is bounded below by −1/m; as with probability close
to 1, player j will face an opponent taking a1, receive a payoff of −1, and
play a2 thereafter. For an arbitrary C > 0, we can choose m large enough to
have − 1m > −C.

6. CONCLUSION

In this paper, we considered the evolution of play in a changing envi-
ronment. The particular model was chosen to reflect the idea that players
can learn from relative payoff comparisons, but not from their absolute
stage game payoffs. A more realistic assumption would be to allow for
some learning from one’s own past choices regardless of the actions that
other agents chose. The techniques developed here would be useful for
those models too, as long as social learning is not swamped by learning
from one’s own past experiences.

Consider, for example, a model where the players choose between a safe
action whose payoff is independent of the state of the world and an uncer-
tain action that yields a high payoff in one of the states and a low payoff in
the other. Assume also that prior to choosing their next action, the players
observe the action and the payoff of a randomly selected player in the
population. Using the techniques of this model, we could show that equi-
libria of that model are approximately efficient as the state changes become
infrequent enough.

APPENDIX A

Proofs Omitted from Section 4

Proof of Proposition 4.1. We show that regardless of the opponents’
strategies, the strictly dominant strategy of each player j is to adopt the
pure imitation rule. It follows that in the unique equilibrium all players
adopt the pure imitation rule.

Pick any player j and time t. Set

m jg(t)=sup{m < t : uj(a j(m j(t)), a j(m)(m j(t))) ] 0},

16 SQUINTANI AND VÄLIMÄKI
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and

k
a
=sup{k: yk < m

j
g(t)}, k̄=sup{k: yk < t}, and K=k̄−k

a
.

Setting wi=w(m
j
g(t)), the optimal action of player j at t coincides with

ai if K is an even number, and it coincides with the opposite action if K is
an odd number. Since the state changes are governed by a Poisson process,
for any x [ t, the renewal system of K is

Pr(0; x, t)=e−l(t−x)

and

Pr(K; x, t)=F
t

x
le−ls Pr(K−1; s, t) ds

iteratively for any K > 0. Recursive calculations show that for any t,
any m jg(t), and any l \ 0, it must be the case that Pr(2l; m jg(t), t) >
Pr(2l+1; m jg(t), t). Therefore player j plays ai at time t. This means that j
adopts the imitation rule at t.

Proof of Lemma 4.1. Given the monotonicity of xA in the set inclusion,
it is sufficient to check that the claim holds for all closed intervals,
A=[E, 1− E].

Given the random sequence of state change times {yi}
.

i=0, in order to
derive the asymptotic properties of the process x, it is sufficient to calculate
x(t) on {yi}

.

i=0. Start the system without loss of generality at x(0)=1/2,
w(0)=w1. For i odd, the switches are from w1 to w2 and for i even, they
are from w2 to w1. It follows x(yi) < x(yi+1) for i even and the reverse
inequality holds for i odd. Define the sequence of random durations
{sk}k\ 1, {ys}s\ 1, and {bk}k\ 1 as follows. For any s\ 1, set D1s=y2s−1−y2(s−1)
and D2s=y2s−y2s−1. As the state changes are characterized by a Poisson
arrival process of parameter l, it follows that for i=1, 2, Dis ’ exp(1/l),
i.i.d. For any s \ 1, and k \ 1, put

ys=D1s−D2s, sk=C
k

s=1
ys, bk=sk+D2k.

The sequence {sk} is a driftless random walk with a strictly positive,
constant, bounded variance. Notice that for any k, we can express bk as
D10+ck, where {ck} is also a driftless random walk with a strictly positive,
constant, bounded variance. By construction,

IMITATION AND EXPERIMENTATION 17
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x(y2k)=x(sk)=
1

1+
1−x0
x0

e−msk

(A1)

x(y2k−1)=x(bk)=
1

1+
1−x0
x0

e−mbk
.

For any E, choose K(E) such that

x(K(E))=
1

1+
1−x0
x0

e−mK(E)
\ 1− E.

This implies that x(y2k−1) > 1− E if bk > K(E), and a fortiori if ck > K(E).
By symmetry, this also implies that x(y2k) < E whenever sk < −K(E). By
the contrapositive of the Wald equation (see [10], the expected time of
re-entry of sk from (K(e),.) to (−., K(E)] is infinite. Conversely, also
the expected time of re-entry of ck from (−., −K(E)) to [−K(e),.) is
infinite.

Starting inside [−K(E), K(E)], the expected hitting time for sk (and also
for ck) to (K(E),.) 2 (−., −K(E)) is bounded above by K(E)2/E[y21]
<.. Since s2k−kE[y

2
1] is a martingale, in fact, it follows that for any k,

E[s2k−kE[y
2
1]]=0. Setting T=inf{k: sk ¨ [−K(E), K(E)]}, this implies

that K(E)2=E[s2T]=E[T] E[y21].
We have shown that

lim
TQ.

>T0 I[E, 1− E](x(t)) dt
T

=0 a.s.

Proof of Proposition 4.2. We need to show that for all E > 0,

lim
lQ.

#{l: x(t) [ E for y2l [ t [ y2l+1}+#{l: x(t) \ 1− E for y2l+1 [ t [ y2(l+1)}
2l

=
1
2
.

Choose K(E) to be such that bk > K(E); it follows that x(bk) > 1− E.
By Lemma 4.1, we know that x(t) spends all of its total time in
(0, E) 2 (1− E, 1). The claim is then true unless the process crosses from
(0, E) to (1− E, 1) on a positive fraction of the total state changes. But this
would contradict x[E, 1− E]=0.

18 SQUINTANI AND VÄLIMÄKI
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APPENDIX B

Myopic Players with l1 ] l2

In this section we characterize the optimal strategy of myopic players
when the state changes occur with different probabilities and show that the
population will concentrate on the action that corresponds to the state with
highest flow rate, so that all durations in the state with the smallest flow
rate will be undetected.

The determination of the optimal decision of players conditioning their
choice on the complete history of play and on calendar time when l1 ] l2
is rather involved and is thus postponed to further research. For our
current purposes, it suffices to point out that it will not consist of purely
imitative strategies.

First note that if l1 is very dissimilar to l2, the optimal strategy cannot
be imitation. It is in fact straightforward to notice that as l2/l1 Q., and m
is fixed, the problem approximates one where no significant uncertainty
about the environment occurs, and so the optimal strategy is to play always
a2, the dominant strategy when the true state of the world is w2. Also, since
strategies depend on calendar time, for any triple (l1, l2, m), one can find
histories after which players will not adopt the imitation. Suppose in fact
that l2 > l1; pick any player j and time t such that a j(m j(t))=a1 and
u j(m j(t))=0. For m j(t) large enough, since the process is strongly mixing,
the probability that w(t)=w2 approximates l2/[l1+l2], and thus player j
will play action a2. On the other hand, a straightforward extension of the
proof of Proposition 4.1 yields that in equilibrium s j2(h

j(t))=1 as long as
h j(t) ¨ L j2(t). Player j never abandons action a2 unless it was defeated at the
previous match.

The next proposition shows that if l2 > l1, then the w1-durations are
not detected by the population dynamics induced by pure imitation. This
result holds a fortiori for the equilibrium population dynamics, because we
have shown above that in equilibrium the players play a1 on a set of
histories which is not larger than the set of histories where a1 is prescribed
by the pure imitation rule.

Proposition B.1. For any m, when all players adopt the pure imitation
rule, if l2 > l1 then limtQ. x(t)=0 a.s, and if l1 > l2 then limtQ. x(t)=1
a.s.

Proof. Recall the construction of the random durations Dis, {sk}, and
{ys}, from the proof of Lemma 4.1. Since for any i=1, 2, and l ] i,
Dis ’ exp(1/ll), i.i.d, the sequence {sk} is a random walk with drift and
strictly positive, constant, bounded variance. The recurrence properties of
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this walk depend on the sign of the mean of ys. If this mean is strictly
negative, i.e., l2 > l1, then by the strong law of large numbers, for all K,
Pr{sk > K for infinitely many k}=0. By construction,

x(y2k)=x(sk)=
1

1+
1−x0
x0

e−msk
.

For any e, choose K(e) such that

x(K(e))=
1

1+
1−x0
x0

e−mK(e)
[ 1− e.

Since sk < K(e) for all but finitely many k, the almost sure convergence of
the process x(t) to 0 follows. A similar construction applies to the case
where l1 > l2. L

APPENDIX C

Proof Omitted from Section 5

Proof of Proposition 5.1. Consider any arbitrary player j at any time t,
such that uj(a j(m j(t)), a j(m)(m j(t))) ] 0. Setting y −=inf{yk > m j(t)}, and
wi=w(m j(t)), the optimal action of player j at t coincides with ai if t < y −.
Since matches and state changes are governed by a Poisson process,

Pr{t < y −}=F
.

0

5F.
s
lle−lt dt6 me−ms ds=

m

m+ll
Q 1, for mQ.,

where ll is the flow rate from state wi to state wl, l ] i.

Proof of Proposition 5.2. Consider first the case for l1 ] l2, and say
without loss of generality that l2 > l1. Proceed by contradiction, and
suppose that the symmetric adoption of the pure imitation rule is a
stationary equilibrium. Let x denote the induced population dynamics. In
the proof of Proposition 2.1, we have shown that, for all E > 0, there is a
finite time T(E) such that x(t) ¥ (0, E) for any t \ T(E).

Consider a triple of consecutive state changes {yi−1, yi, yi+1} such that
yi−1 > T(E) and w(t)=w1 for any t ¥ (yi−1, yi). We want to determine
Du(a2, 0), the expected difference in utility for playing a1 instead of a2, on
histories where the pure imitation rule prescribes a2.

20 SQUINTANI AND VÄLIMÄKI
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Say that a player j is matched at a time t ¥ (yi−1, yi+1) such that
h j(t)=(a2, 0). Let Du(a2, 0 |w(t), t) be the expected difference in utility
for playing a1 instead of a2 at t. First say that t ¥ (yi−1, yi). Consider
the random sequence of future matches {mk}k \ 1, and let m̄=inf{mk:
mk > yi}. Since yi−1 > T(E), with probability close to 1, by playing a2
instead of a1, player j gains a payoff of 1 at t and plays a1 at match m1.
Proceeding recursively, with probability close to 1, j plays a1 at any mk [ m̄
and plays a2 at any mk > m̄. For m large enough, it follows that
Du(a2, 0 |w1, t) % m[yi−t].

Second say that t ¥ (yi, yi+1), by playing a1 instead of a2, player j loses a
payoff of 1 with probability close to 1, and he or she reverts to a2 at m1. It
follows that Du(a2, 0 |w2, t) % −1.

Solving a simple compound renewal (Poisson) process, we obtain that
Pr(t ¥ (yi, yi+1))=l1/[l1+l2] and Pr(t ¥ (yi−1, yi))=l2/[l1+l2]. Since
matches and state changes are independent processes, we have for m large
enough,

Du(a2, 0) % 5
l2

l1+l2
F
yi

yi−1

m[yi−t]
yi−yi−1

dt−
l1

l1+l2
6 > 0.

For l1=l2, it is the case that l1/[l1+l2]=1/2=l2/[l1+l2], that x(t) ¥
{(0, e), (1− e, 1)} for almost all t, and that 1/2 of the state durations
are E-undetected, for any E > 0. The argument presented for the case of
l2 > l1 can be repeated with no modifications if the duration (yi, yi+1) is
E-undetected. If it is E-detected, then Du(a2, 0 |w1, t) is bounded below by
−1. Compounding E-detected with E-undetected durations, we obtain that
Du(a2, 0) \ m2/16−3/4 > 0, for m large enough.

Proof of Lemma 5.1. Consider the choice of an arbitrary player j at an
arbitrary matching time t such that either h j(t)=(a1, 0) or h j(t)=(a2, 0).
First take the case when w(t)=w1 and h j(t)=(a2, 0). For any future
matching time mk, we denote by xk the population play x(mk); note that xk
is independent of a j(t). Consider the sequence {y −k}

.

k=1 of state changes
taking place after t, constructed in the proof of Proposition 5.1. For any k,
the realizations of mk and y −k are independent of j’s choice at t.

The transition of j’s histories on the sequence {mk}
.

k=1 can be expressed
as a Markov process {Xk} with initial state (a j(t), u j(t)). As long as
mk < y

−

1, {Xk} can be described as a Markov chain with states S=
{(a1, 0), (a2, 0), (a1, 1), (a2, −1)}. We introduce the state space S2, where
for each (s1, s2) ¥ S2, s1 identifies a state on the continuation induced
by a j(t)=a1 and s2 a state on the continuation of a j(t)=a2. We denote
by {Yk} the joint process with state space S2, generated by running
two copies of {Xk} with different initial states (a j(t), u j(t)). Since
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h j(t)=(a2, 0), the initial distribution of state Y0 assigns probability 1−x(t)
to state (a1, 1; a2, 0) and probability x(t) to state (a1, 0; a2, −1).

Define as coupling event the set of states (s1, s2) such that s1 and s2 induce
the same equilibrium choice. Formally, let C={(s1, s2) : s1(s1)=s1(s2)}.
Conditional on the event C, the distribution on the continuation induced
by a j(t)=a1 is identical to the distribution on the continuation induced by
a j(t)=a2. The process {Yk} is thus summarized by a five-state nonauto-
nomous Markov chain with state space S −={(a1, 1; a2, 0), (a1, 0; a2, −1),
(a2, −1; a1, 0), (a2, 0; a1, 1), C} and transition matrix

P=|
(1−xk)(1− e) 0 e(1−xk) 0 0
(1− e) xk 0 exk 0 0

0 exk 0 (1− e) xk 0
0 e(1−xk) 0 (1− e)(1−xk) 0
e 1− e 1− e e 1

} .
By inspecting the transition matrix P, we see that for any e > 0, since
0 < xk < 1 for any k, the process Yk is nondecomposable, and C is the
unique absorbing state. Setting K1=inf{k: Yk=C}, we obtain that for any
initial state Y0, Pr(K1 <. | Y0)=1 and that E(K1) <..

The process {Yk} may also be used to describe the continuations of a
player j with h j(t)=(a1, 0), if for any (s1, s2) ¥ S, s1 identifies a state on the
continuation induced by a j(t)=a2, and s2 a state on the continuation of
a j(t)=a1. The initial distribution of state Y0 would assign probability
1−x(t) to state (a2, 0; a1, 1) and probability x(t) to state (a2, −1; a1, 0).

The joint process for the case that w(t)=w2 is analogously constructed
and displays the same recurrence properties. These results imply that for
almost all m, a ij , and aj(m), there exists a K <. such that a j1(mk)=a j2(mk),
for all k > K, and moreover EK <..

Proof of Lemma 5.2. Already shown in the proof of Proposition 5.2.

Proof of Lemma 5.3. Consider the choice of an arbitrary player j at an
arbitrary t such that either h j(t)=(a2, 0) or h j(t)=(a1, 0). Given the
random sequence {xk} defined in the proof of Lemma 5.1, and the random
time y−1 constructed in the proof of Proposition 5.1, set xK=sup{xk: xk < y

−

1},
set x0=x(t), and x={x0, x1, ..., xK}. Letting ai=a j(m j(t)), we denote by
Du(h j(t) |w(t), x, e) the expected difference of utility on the finite sequence
{t, m1, ..., mK} for playing action al at t instead of ai, where l ] i.

Step 1. For any e \ ē, DU(a2, 0 |w1, x, e) admits a finite upper bound
uniform in x and a strictly positive lower bound.

22 SQUINTANI AND VÄLIMÄKI
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Consider the joint process {Yk} derived in the proof of Proposition 5.1.
We introduce DU(a1, 1; a2, 0 |w1, x, e) and DU(a1, 0; a2, −1 |w1, x, e),
respectively, as the expected difference of utility on the finite sequence
{t, m1, ..., mK} between playing a1 and a2 at t given that j’s opponent plays
a2 and given that he or she plays a1. Standard calculations that can be
obtained upon request from the authors show that

DU(a1, 1; a2, 0 |w1, x, e) < C
M

k=0
(1− e)k <

1
e

and

DU(a1, 0; a2, −1 |w1, x, e) < 1+e2 C
M−1

k=0
(1− e)k < 1+e.

Compounding the two cases with the initial distribution of Y0 we obtain

DU(a2, 0 |w1, x, e) < x0
1
e
+(1−x0)(1+e) <

1
ē
+2,

so that there is a finite bound D̄, uniform in x, such that DU(a2, 0 |w1, x, e)
< D̄.

With analogous calculations, we conclude that

DU(a2, −1; a1, 0 |w1, x, e) < (1−x1)(e2+e−1),

and

DU(a2, 0; a1, 1 |w1, x, e) < (1−2e+e3)(x1−1)−1,

so that there is bound D̂(x) < 0 such that DU(a1, 0 |w1, x, e) < D̂(x).
For any x, denote by 1−x the sequence {1−xk}

K
k=0 where xk ¥ x.

By symmetry of the population strategies, it must be the case that
DU(a2, 0 |w1, x)=−DU(a1, 0 |w1, 1−x), and thus that DU(a2, 0 |w1, x) >
D̂(1−x) > 0.

Step 2. Calculation of DU(a2, 0 | e).

By symmetry of the population strategies, it must be the case that
DU(a2, 0 |w2, 1−x)=−DU(a2, 0 |w1, x). Thus, for any d ¥ (x

a e
, x̄e), we can

expand DU(a2, 0 | e) as follows (for notational ease, we shall drop e from
the formula).
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DU(a2, 0)

=DU(a2, 0 |w1) Pr(w1 | a2, 0)+DU(a2, 0 |w2) Pr(w2 | a2, 0)

=F
{x | x0 < x̄e−d}

[DU(a2, 0 |w1, x) Pr(w1 | (a2, 0), x)

+DU(a2, 0 |w2, x) Pr(w2 | (a2, 0), x)] d Pr(x | x0 < x̄e−d) Pr(x0 < x̄e−d)

+F
{x | x0 > x̄e−d}

[DU(a2, 0 |w1, x) Pr(w1 | (a2, 0), x)

+DU(a2, 0 |w2, x) Pr(w2 | (a2, 0), x)] d Pr(x | x0 > x̄e−d) Pr(x0 > x̄e−d)

=F
{x | x0 < x̄e−d}

{DU(a2, 0 |w1, x)[Pr(w1 | (a2, 0), x)−Pr(w2 | (a2, 0), 1−x)]}

×d Pr(x | x0 < x̄e−d) ·Pr(x0 < x̄e−d)

+F
{x | x0 > x̄e−d}

{DU(a2, 0 |w1, x)[Pr(w1 | (a2, 0), x)−Pr(w2 | (a2, 0), 1−x)]}

×d Pr(x | x0 > x̄e−d) ·Pr(x0 > x̄e−d) (C.1)

Step 3. For any e \ ē, and any d ¥ (x
ae
, x̄e), there is m̄(ē, d) such that for

all m \ m̄, the first term in Eq. (C.1) above vanishes.

Let x(t −) denote the solution of the Cauchy problem identified by Eq. (4)
and x(0)=x

¯ e
. Let T(d, e, m) be the time t − such that x(t −)=x̄e−d. We

know that T(d, e, m)Q 0 for mQ.. Set yi
¯
=sup{yi < t}, and set T̂(d, e, m)

=inf{t − > yi
¯
: x(t −)=x̄e−d}−yi

¯
.

For m large enough T̂(d, e, m) exists, T̂(d, e, m) < yi
¯
+1−yi

¯
, and T̂(d, e, m)

< T(d, e, m). Since E(yi
¯
+1−yi

¯
)=1/l, it follows that Pr(x0 < x̄e−d) % 0 for

m large enough. By Step 1, DU(a2, 0 |w1, x, e) is bounded uniformly in x,
thus the first term in Eq. (C.1) vanishes.

Step 4. For any e \ ē, the second term in Eq. (C.1) is strictly positive.

Consider the likelihood ratio:

L=
Pr(w1 | (a2, 0), x)

Pr(w2 | (a2, 0), 1−x)
=

Pr(w1, (a2, 0), x)
Pr(w2, (a2, 0), 1−x)

.

The symmetry of population strategies implies that Pr(a2, 0 | 1−x, w2)=
Pr(a1, 0 | 1−x, w1) and that, since the match process and the state-change
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process run independently, Pr(1−x |w2)=Pr(x |w1). The symmetry of the
state-change process yields Pr(w2)=Pr(w1). Thus, the relation

Pr(w2, (a2, 0), 1−x)=Pr(w1, (a1, 0), x)

must hold. Since both probabilities are bounded away from zero, we obtain
that

L=
Pr(w1, (a2, 0), x)

Pr(w1, (a1, 0), 1−x)
=

Pr(a2, 0 |w1, x)
Pr(a1, 0 |w1, 1−x)

=
1−x0
x0

< 1−b

for some positive bound b. By Step 1, DU(a2, 0 |w1, x) > D̂(1−x) > 0,
it follows that DU(a2, 0, e) < 0. Note that, by symmetry, DU(a1, 0, e)=
DU(a2, 0, e) < 0. Recall the construction of the joint process {Yk} in the
proof of Proposition 5.2. We have shown that letting C be the coupling
event, and setting K1=inf{k: Yk=C}, it is the case that Pr(K1 <.)=1.
For m large enough, it must be the case that Pr(K1 > K) % 0. Therefore
DU(a2, 0, e) < 0 implies that for all K − > K1,

E C
K −

k=0
u(a jk2 , a

jk(mk), w(mk)) > E C
K −

k=0
u(a jk1 , a

jk(mk), w(mk)).

The overtaking criterion thus implies that a(e)=0.
For l1 ] l2, the above arguments can be extended as long as

|l1−l2 | < M(m), for some M(m), where as in Lemma 5.1, the function M
is strictly positive, strictly increasing, and M(m)Q. for mQ..

Proof of Proposition 5.3. Consider the choice of a player j at an
arbitrary time t such that h j(t)=(a2, 0). Given m, and the population
experimentation rate e, j chooses the optimal experimentation rate a out
of the compact set [0, 1]. Consider the joint process {Yk} associated with
w(mk)=w1. Set Du(s1, s2, w1)=1 for (s1, s2)=(a1, 1; a2, 0) and (s1, s2)=
(a1, 0; a2, −1), put Du(s1, s2, w2)=−1 for (s1, s2)=(a2, −1; a1, 0) and
(s1, s2)=(a2, 0; a1, 1), and set Du(C)=0. The assignment of Du(s1, s2, w2)
is analogous. It follows that:

DU(a2, 0 | e)=E 5 C
.

k=0
Du(Yk, wi) : (a2, 0), e6 .

Since the population law of motion x(t) is continuous in e, and since the
matching and state-change processes are independent of e, the expression
Pr(Yk, wi | (a2, 0), e) must be continuous in e, for any k, Yk, and i. Thus
DU(a2, 0 | e) is continuous in e. Since DU(a2, 0 | 1) < 0 (Lemma 5.3) and
DU(a2, 0 | 0) > 0 (Lemma 5.2), by continuity and the intermediate value
theorem, there must exist a e ¥ (0, 1) such that DU(a2, 0 | e)=0. Since the
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population strategies are symmetric, it follows that DU(a1, 0 | e)=0, too.
This means that e ¥ am(e)=[0, 1].

Lemma 5.3 shows that for any ē > 0, there is m̄(ē) such that for any
m \ m̄(ē), it is the case that DU(a2, 0, e) < 0 unless e < ē. It follows that
limmQ. sup{e | e ¥ am(e)}=0.

Proof of Proposition 5.4. We proceed in two steps.

Step 1. Construction of the auxiliary process x̂m.

Let xm, e(t −, x0) be the solution to the Cauchy problem identified by
Eq. (3) and by the initial state x0. Let Tm, e(x0, x) be the time t − such that
xm, e(t −, x0)=x; set T(e, m)=Tm, e(x¯ e

, 1/2). For any small d > 0, straight-
forward but tedious calculations show that:

lim
eQ 0
mQ.

Tm, e(x¯ e
, x
¯ e
+d)

Tm, e(x¯ e
, 1/2)

=1 and lim
eQ 0
mQ.

Tm, e(x̄e−d, x̄e)
Tm, e(1/2, x̄e)

=1.

Consider an arbitrary w1-duration (yi, yi+1). For m large enough, x(yi) % x¯ eand x(yi+1) % x̄e almost surely. This means that, for e small and m large, for
any t ¥ (yi, yi+1),

Pr(x(t)−x
¯ e

¥ (0, d) | x(t)[ 1/2)% 1, Pr(x̄e−x(t) ¥ (0, d) | x(t) > 1/2)% 1.

Thus for any t < T(e, m)+yi, we can approximate x(t) with x
¯ e
+d/2; for

any t > T(e, m)+yi, we can approximate x(t) with x̄e−d/2 . Since

lim
eQ 0
dQ 0

x
¯ e
+d/2
e

=1, and lim
eQ 0
dQ 0

x̄e−d/2
1− e

=1,

we can further approximate x(t) % e for any t < T(e, m)+yi and x(t) % 1− e
for any t > T(e, m)+yi. On the w2-duration (yi+1, yi+2), by symmetry, we
can approximate x(t) % 1− e for any t < T(e, m)+yi+1 and x(t) % e for any
t > T(e, m)+yi+1.

By Lemmas 5.3 and 5.2, in equilibrium it must be the case that
DU(a2, 0 | e)=0. We rewrite this expression conditioning on the events
{t < T(e, m)} and {t > T(e, m)} and making explicit the dependence of
DU(a2, 0 | e) on m:

T(m, e) DU(m, e, t < T(m, e))+(1−T(m, e)) DU(m, e, t > T(m, e))=0.
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We know that T(m, e)Q. for eQ 0 and that T(m, e)Q 0 almost surely
for mQ.. Since we want to study the value of T(m, e) for eQ 0 and
mQ., we isolate the time T and rewrite the equation above as follows:

0=T DU(m, e, t [ T)+(1−T) DU(m, e, t > T) (C.2)

and

T=T(m, e). (C.3)

Step 2. Approximation of e(m) for m large and e small.

For e small and m large, one can show (calculations available upon
request to the authors) that Eq. (C.2) is approximated by the following
expression:

(12 mT−
1
3 m

2T3) e+1
2 mT

2−1 % 0.

This is a cubic equation that has only one admissible solution T(m, e) ¥
(0, 1); the solution is continuous in e. Since we are interested in approxi-
mation for small e, we first set e=0 and solve for T(m, 0). The unique
admissible solution of the equation 1

2 mT(m, 0)
2−1=0 is

T(m, 0)=
1

`m
`2 .

By applying Dini’s implicit function theorem, we can write a linear
approximation for e small:

T(e, m) %
`2m

m
+
1
6
e.

Straightforward but tedious manipulations of Eq. (C.3) yield:

T(m, e)=

ln 1 1

2e(−2e+`(1+4e2))
2

m`(1+4e2)
.

Note that mT(m, e)Q., for eQ 0. Solving the system identified by the two
equations above, we obtain that for e small and m large,

ln 1 1

2e(−2e+`(1+4e2) )
2

`(1+4e2)
%`2m+

1
6
me.
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For e % 0, the above condition is approximated by the expression:

e % 1
2 e
−`2m.

When l1 ] l2, one needs to expand system (C.2) so as to allow for two
different transition times, T1(m, e) and T2(m, e), associated with the states
w1 and w2. When deriving T1(m, e) and T2(m, e) from the associated law of
motions, we see that T1(m, e)/T2(m, e)Q 1 for mQ.. Thus the derivation
of Condition (C.4) is analogous to the case where l1=l2.
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