
Supplementary Material

Let ci(⇠,↵) and w0
i(⇠,↵, µ)(⇠

0
) be the maximisers in problem (6) - (10) and let �i(⇠,↵, µ) be the

Lagrange multiplier associated to constraint (8). Let

ũi(⇠,↵, µ) = ui(ci(⇠,↵)) + �(⇠, µi)

X

⇠0

⇡µ
i

(⇠0 |⇠ ) w0
i(⇠,↵, µ)(⇠

0
).

Claim 1. ũi(⇠,↵, µ) is nondecreasing in ↵i for all ↵ 2 RI
+.

Proof. Let ↵̃,↵ 2 RI
+ be such that ↵̃i > ↵i and ↵̃j = ↵j for every j 6= i. To get a contradiction,

suppose ũi(⇠, ↵̃, µ) < ũi (⇠,↵, µ). Since the constrained set is independent of the welfare weights, then

X

h

↵̃h (ũh (⇠, ↵̃, µ)� ũh (⇠,↵, µ)) � 0 and
X

h

↵h (ũh (⇠,↵, µ)� ũh (⇠, ↵̃, µ)) � 0

and so, on the one hand,

X

h

(↵̃h � ↵h) (ũh (⇠, ↵̃, µ)� ũh (⇠,↵, µ)) � 0

But, on the other hand,

X

h

(↵̃h � ↵h) (ũh (⇠, ↵̃, µ)� ũh (⇠,↵, µ)) = (↵̃i � ↵i) (ũi (⇠, ↵̃, µ)� ũi (⇠,↵, µ)) < 0

a contradiction.

Let ci(⇠,↵) and w0
i(⇠,↵, µ)(⇠

0
) be the maximisers of the relaxed problem where (8) is ignored. Let

u(⇠,↵, µ) = ui(ci(⇠,↵)) + �(⇠, µi)

X

⇠0

⇡µ
i

(⇠0 |⇠ ) w0
i(⇠,↵, µ)(⇠

0
).

Claim 2. Let ↵ 2 RI
+. If ↵i < ↵̃i and ↵h = ↵̃h for all h 6= i, then ui (⇠,↵, µ) < ui (⇠, ↵̃, µ) .

Proof. Note that ci(⇠,↵) is the unique solution to

ci +
X

h 6=i

✓

@uh

@ch

◆�1✓ ↵i

↵h

@ui(ci)

@ci

◆

= y(⇠).

and so it is strictly increasing in ↵i. Therefore, ci(⇠, ↵̃) > ci(⇠,↵). Note that

↵0
i(⇠,↵, µ)(⇠

0
) =

↵i

R

⇡(⇠0 |⇠ )µ0
i(⇠, µ) (⇠

0
) (d⇡)

P

h ↵h

R

⇡(⇠0 |⇠ )µ0
h(⇠, µ) (⇠

0
) (d⇡)

Thus, ↵0
i(⇠,↵, µ)(⇠

0
) is nondecreasing in ↵i. Since w0

i(⇠,↵, µ)(⇠
0
) satisfies (9) and (10), it follows by

Lemma A.1 and Theorem 1 that w0
i(⇠,↵, µ)(⇠

0
) = ui(⇠0,↵

0
(⇠,↵, µ)(⇠0), µ0

(⇠, µ)(⇠0)). Thus, Claim 1
implies that w0

i(⇠, ↵̃, µ)(⇠
0
) � w0

i(⇠,↵, µ)(⇠
0
) for all ⇠0. We conclude that ui (⇠,↵, µ) < ui (⇠, ↵̃, µ), as

desired.
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Proof of Proposition 2 . (i) Suppose ↵ 2 �(⇠, µ). Consider first the case where ↵i > ↵i(⇠, µ) for all
i. By the definition of ũi(⇠,↵, µ), we have that ũi(⇠,↵, µ) � Ui(⇠, µ) and

PI
i ↵iũi(⇠,↵, µ) = v⇤ (⇠,↵, µ).

It follows by Lemma A.1, that (ũ1(⇠,↵, µ)...ũI(⇠,↵, µ)) 2 UE
(⇠, µ). Since

PI
i ↵iũi(⇠,↵, µ) = v⇤ (⇠,↵, µ),

it is easy to see that (u1(⇠,↵, µ)...uI(⇠,↵, µ)) 2 UE
(⇠, µ). Then, ũi(⇠,↵, µ) > Ui(⇠, µi) for all i by

definition of ↵i(⇠, µ). Thus, �i(⇠,↵, µ) = 0. Let ↵ 2 �(⇠, µ) be such that ↵i = ↵i(⇠, µ) for some i.
Then there is a sequence {↵n}1n=1 such that ↵n

i > ↵i(⇠, µ) for all i and n and ↵n ! ↵. It follows that

�i(⇠,↵, µ) = �i(⇠, lim

n!1
↵n, µ) = lim

n!1
�i(⇠,↵

n, µ) = 0,

where the second equality follows by continuity of �i(⇠,↵, µ) in ↵ and the last one because weak in-
equalities are preserved under limits. It follows that, ũi(⇠,↵, µ) = ui(⇠,↵, µ) and so ci(⇠,↵) = ci(⇠,↵),
i.e. ci(⇠,↵) solves the relaxed problem.

(ii) Let ↵ 2 RI
+ and ↵⇤ ⌘

⇣

↵1P
I

i=1 ↵
i

... ↵
IP

I

i=1 ↵
i

⌘

. If ↵⇤ 2 �(⇠, µ), then ci(⇠,↵) = ci(⇠,↵⇤
) because

ũi(⇠,↵, µ) is homogeneous of degree zero in ↵. If ↵⇤ 62 �(⇠, µ), there is i such that ↵⇤
i < ↵i(⇠, µ)

�

↵⇤
�i

�

.

• First, we show that �i(⇠,↵, µ) > 0. To get a contradiction, suppose �i(⇠,↵, µ) = 0. It follows that

ũi (⇠, (↵i,↵�i) , µ) = ũi

�

⇠,
�

↵⇤
i ,↵

⇤
�i

�

, µ
�

= ui

�

⇠,
�

↵⇤
i ,↵

⇤
�i

�

, µ
�

= ui

 

⇠,

 

↵⇤
i

↵i(⇠, µ)
�

↵⇤
�i

� ,
↵⇤
�i

↵i(⇠, µ)
�

↵⇤
�i

�

!

, µ

!

< ui

 

⇠,

 

1,
↵⇤
�i

↵i(⇠, µ)
�

↵⇤
�i

�

!

, µ

!

= ui

�

⇠,
�

↵i(⇠, µ)
�

↵⇤
�i

�

,↵⇤
�i

�

, µ
�

= Ui(⇠, µ),

where the first equality follows because ũi is homogeneous of degree zero in ↵, the second one is
due to the assumption that �i(⇠,↵, µ) = 0 and the homogeneity of degree zero of �i(⇠,↵, µ) in ↵,
the third and fifth follows by homogeneity of degree zero of ui(·) in ↵, the inequality follows by
Claim 2 and the last equality follows by definition of the minimum enforceable weights. But then,
ũi (⇠, (↵i,↵�i) , µ) < Ui(⇠, µ) which contradicts constraint (8).

• Second, note that problem (6) - (10) is equivalent to maximising

I
X

i=1

(↵i + �i)

8

<

:

ui(ci) + �(⇠, µi)

X

⇠0

⇡µ
i

(⇠0 |⇠ ) w0
i(⇠

0
)

9

=

;

,

subject to constraints (7), (9) and (10).

• Finally, the latter is equivalent to the relaxed problem with welfare weights ↵̃ given by

↵̃i =
↵i + �i(⇠,↵, µ)

PI
h=1 (↵h + �h(⇠,↵, µ))

,

Thus, ui (⇠, ↵̃, µ) = ũi (⇠,↵, µ) � Ui(⇠, µ) = ui (⇠,↵i, µ). It follows by Claim 2 that ↵̃i � ↵i. Therefore,
↵̃ 2 �(⇠, µ) and ci(⇠,↵) = ci(⇠, ↵̃) = ci(⇠, ↵̃) as desired.
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Now we prove Theorem 11. We begin with some results on Markov Processes.

Lemma 7.1. Let {zt}1t=0 be a two-state time homogeneous Markov process with transition function
F on (Z,Z) and invariant distribution  : Z ! [0, 1], PF be the probability measure on (Z1,Z1

)

uniquely induced by F and  and let R : Z ⇥ Z ! <. Suppose there exists z+ 2 Z such that
(a) EPF

(R (z1, z2)) = 0.
(b) R (z, z+) > 0 for all z.
(c) EPF

(R (z0, z1) R (z1, z2)) > 0.

Then EPF

(R(z2, z3)| z1 = z+) < 0 < EPF

(R(z2, z3)| z1 = z�) iff F (z+| z+) <  (z+).

Proof. Hypothesis (a) and the Markov property implies that EPF

(R (zk, zk+1)) = 0 for any k. Thus,

 (z�) EPF

(R(zk0 , zk0+1)| zk = z�) = � (z+) EPF

(R(zk0 , zk0+1)| zk = z+) (34)

where z� 6= z+. Note also that

EPF

(R (z0, z1) R (z1, z2)) = EPF

⇣

R (z0, z1) EPF

(R (z1, z2)| z1)
⌘

=

⇥

PF
(z+, z+)R (z+, z+) + PF

(z�, z+)R (z�, z+)
⇤

EPF

(R (z1, z2)| z1 = z+)

+

⇥

PF
(z+, z�)R (z+, z�) + PF

(z�, z�)Re (z�, z�)
⇤

EPF

(R (z1, z2)| z1 = z�) . (35)

By hypothesis (a) and (b), R (z, z�) < 0 for all z. Therefore,

PF
(z+, z�)R (z+, z�) + PF

(z�, z�)R (z�, z�) < 0,

PF
(z+, z+)R (z+, z+) + PF

(z�, z+)R (z�, z+) > 0.

It follows from (34) evaluated at k = 1 and k0 = 1, hypothesis (c) and (35) that

EPF

(R(z1, z2)| z1 = z�) < 0 < EPF

(R(z1, z2)| z1 = z+)

and the Markov Property implies

EPF

(R(z2, z3)| z2 = z�) < 0 < EPF

(R(z2, z3)| z2 = z+) . (36)

Condition (34), evaluated at k = 1 and k0 = 2, implies that

EPF

(R(z2, z3)| z1 = z�) < 0 < EPF

(R(z2, z3)| z1 = z+) , EPF

(R(z2, z3)| z1 = z+) > 0.

In addition,

EPF

(R(z2, z3)| z1 = z+) = EPF

(R(z2, z3)| z1 = z+)� EPF

(R(z2, z3))

= (F (z2 = z+| z1 = z+)�  (z+))E
PF

(R(z2, z3)| z2 = z+)+

(F (z2 = z�| z1 = z+)�  (z�))E
PF

(R(z2, z3)| z2 = z�)

= (F (z2 = z+| z1 = z+)�  (z+))⇥
⇣

EPF

(R(z2, z3)| z2 = z+)� EPF

(R(z2, z3)| z2 = z�)
⌘

.

where the first line follows by the definition of unconditional expectation and (a). (36) implies that

EPF

(R(z2, z3)| z1 = z+) < 0 , F (z2 = z+| z1 = z+)�  (z+) < 0.
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Proof of Theorem 11(a). Consider any CE of an arbitrary baseline growth economy. Since the
allocation is PO, it follows by Theorem 8 that (15) holds and the marginal distribution of  po over
welfare weights is a point mass on ↵1. By standard arguments, there exists Rpo : {l, h}⇥ {l, h} ! <
such that for any ⌧ 2 {1, 2} and ! 2 ⌦

R⌧,po (!) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

Rpo (l, l) if ⇠⌧�1(!) 2 {1, 3} and ⇠⌧ (!) 2 {1, 3}

Rpo (l, h) if ⇠⌧�1(!) 2 {1, 3} and ⇠⌧ (!) 2 {2, 4}

Rpo (h, l) if ⇠⌧�1(!) 2 {2, 4} and ⇠⌧ (!) 2 {1, 3}

Rpo (h, h) if ⇠⌧�1(!) 2 {2, 4} and ⇠⌧ (!) 2 {2, 4}

and
Rpo (⇠, l) < 0 < Rpo (⇠, h) for all ⇠ 2 {l, h} . (37)

Let Z = {l, h}, Z be its finest partition, ⇡̃⇤ be the transition function on (Z,Z) defined as the
restriction of ⇡⇤ to (Z,Z) and let ˜ po be the restriction of the invariant measure  po to (Z,Z). Let
Z1 be the set of infinite sequences with elements in Z and Z0 ⇢ Z1 ⇢ ... ⇢ Zt ⇢ ...Z1 be the
standard filtration. P ⇡̃⇤

is the probability measure over (Z1,Z1
) uniquely induced by ⇡̃⇤ and ˜ po.

Let zt : Z1 ! Z be Zt�measurable. The collection {zt}1t=0 on the probability space
�

Z1,Z1, P ⇡̃⇤�

is a two state time-homogeneous Markov process with transition function ⇡̃⇤ on (Z,Z) and invariant
distribution ˜ po : Z ⇥ Z ! [0, 1] satisfying

EP ⇡̃

⇤
�

Rpo (z1, z2)
�

= 0. (38)

First note that (38) and (37) are conditions (a) and (b), respectively, in Lemma 7.1. Second, since
the asset displays short-term momentum,

0 < EP
po

�

R1,po R2,po

�

= EP ⇡̃

⇤
�

Rpo (z0, z1) Rpo (z1, z2)
�

and so condition (c) in Lemma 7.1 also holds. By Lemma 7.1, we conclude that

EP ⇡̃

⇤
�

Rpo(z2, z3)
�

� z1 = h
�

< 0 < EP ⇡̃

⇤
�

Rpo(z2, z3)
�

� z1 = l
�

, ⇡̃⇤
(h|h) < ˜ po (h) . (39)

Let !+ and !� be such that R1,po (!+
) > 0 and R1,po (!�

) < 0. Then,

EP
po

�

R3,po

�

�R1,po

� �

!+
�

= EP ⇡̃

⇤
�

Rpo(z2, z3)
�

� z1 = h
�

,

EP
po

�

R3,po

�

�R1,po

� �

!��
= EP ⇡̃

⇤
�

Rpo(z2, z3)
�

� z1 = l
�

.

It follows from (39), ⇡̃⇤
(h|h) = ⇡⇤

(2| 2) + ⇡⇤
(4| 2) and ˜ po (h) =  po (2) +  po (4) that

EP
po

�

R3,po

�

�R1,po

� �

!+
�

< 0 < EP
po

�

R3,po

�

�R1,po

� �

!��, ⇡⇤
(2| 2) + ⇡⇤

(4| 2) <  po (2) +  po (4)

that is, EP
po

�

R3,po

�

�R1,po

�

reverts to the mean if and only if ⇡⇤
(2| 2) + ⇡⇤

(4| 2) <  po (2) +  po (4).
By Proposition 9, the asset displays long-term reversal if ⇡⇤

(2| 2) + ⇡⇤
(4| 2) <  po (2) +  po (4). To

show the converse, suppose that ⇡⇤
(2| 2)+⇡⇤

(4| 2) �  po (2)+ po (4). Then by the argument above,
EP

e

�

R3,po|R1,e

�

trends and it follows by Proposition 9 that the 2nd-order autocorrelation is positive
and so long-run reversal fails.
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Proof of Theorem 11(b). Consider any CESC of an arbitrary baseline growth economy. The price
of an asset at state (⇠,↵) must satisfy the Bellman equation:

p (⇠,↵) =
X

⇠0

Q (⇠,↵) (⇠0) (p (⇠0,↵0
(⇠,↵) (⇠0)) + d (⇠0))  cpo � a.s.

It is easy to see that the invariant distribution places positive mass only on points (⇠,↵) such that
↵ 2 � \ �

�

⇠, µ⇡⇤�
where � = {(↵1,↵2) 2 � : 9⇠ 2 S such that ↵1 = ↵1 (⇠) or ↵2 = ↵2 (⇠)} . The

hypothesis ↵1 (1) = ↵1 (2) and symmetry implies that ↵2 (3) = ↵2 (4). If p⇠, q⇠⇠0 and d⇠ denotes
p (⇠,↵ (⇠)), Q (⇠,↵ (⇠)) (⇠0) and d (⇠), respectively, then the Bellman equation becomes

p⇠ =

X

⇠0

q⇠⇠0 (p⇠0 + d⇠0) for all ⇠

which can be written as (I �Q)P = QD where Q is the 4⇥ 4 matrix with entries q⇠⇠0 , P is the 4⇥ 1

vector with entries p⇠ and D is the 4⇥ 1 vector with entries p⇠. Note that
c1(1,↵ (1)) = c2(3,↵ (3)) and c1(2,↵ (2)) = c2(4,↵ (4))

and so
q⇠1 = �(⇠, µ) ⇡(1 |⇠ ) @u(c1(1,↵(1))/@c1

@u(c1(⇠,↵(⇠)))/@c1
= �(⇠, µ) ⇡(3 |⇠ ) @u(c2(3,↵(3))/@c1

@u(c2(⇠,↵(⇠)))/@c1
= q⇠3,

q⇠2 = �(⇠, µ) ⇡(2 |⇠ ) @u(c1(2,↵(2))/@c1
@u(c1(⇠,↵(⇠)))/@c1

= �(⇠, µ) ⇡(4 |⇠ ) @u(c2(4,↵(4))/@c1
@u(c2(⇠,↵(⇠)))/@c1

= q⇠4.

It follows that Q has rank 2. Therefore, p1 = p3 and p2 = p4.
Let ⇡̃⇤ and (Z1,Z1

) be the transition matrix and the measurable space, respectively, introduced
in the proof of Theorem 11(a). P ⇡̃⇤

is the probability measure over (Z1,Z1
) uniquely induced by

⇡̃⇤ and ˜ cpo. Let zt : Z1 ! Z be Zt�measurable. The collection {zt}1t=0 on the probability space
�

Z1,Z1, P ⇡̃⇤�
is a two state time-homogeneous Markov process with transition function ⇡̃⇤ on (Z,Z)

and invariant distribution ˜ cpo : Z ⇥ Z ! [0, 1] .

Let p (l) ⌘ p1, p (h) ⌘ p2, Rcpo (z, z0) ⌘ p
z

0+d
z

0
p
z

for all z 2 {l, h} and Rcpo : {l, h}⇥ {l, h} ! < be
such that

R⌧,cpo (!) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

Rcpo (l, l) if ⇠⌧�1(!) 2 {1, 3} and ⇠⌧ (!) 2 {1, 3}

Rcpo (l, h) if ⇠⌧�1(!) 2 {1, 3} and ⇠⌧ (!) 2 {2, 4}

Rcpo (h, l) if ⇠⌧�1(!) 2 {2, 4} and ⇠⌧ (!) 2 {1, 3}

Rcpo (h, h) if ⇠⌧�1(!) 2 {2, 4} and ⇠⌧ (!) 2 {2, 4}

(40)

Moreover,
Rcpo (z, l) < 0 < Rcpo (z, h) for all z 2 {l, h} (41)

and
EP ⇡̃

⇤
�

Rcpo (z1, z2)
�

= 0. (42)

It follows from (40) that for any k 2 {2, 3}

EP
cpo

�

R1,cpo Rk,cpo

�

= EP ⇡̃

⇤
�

Rcpo (z0, z1) Rcpo (z1, zk) .

Note that (42) and (41) are conditions (a) and (b) in Lemma 7.1. Since the asset displays short-term
momentum,

EP ⇡̃

⇤
�

Rcpo (z0, z1) Rcpo (z1, z2)
�

= EP
cpo

�

R1,po R2,po

�

> 0,

and so (c) in Lemma 7.1 also holds. The rest of the proof is identical to that in Theorem 11(a).
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