Supplementary Material

Let $c_{i}(\xi, \alpha)$ and $w_{i}^{\prime}(\xi, \alpha, \mu)\left(\xi^{\prime}\right)$ be the maximisers in problem (6)-(10) and let $\lambda_{i}(\xi, \alpha, \mu)$ be the Lagrange multiplier associated to constraint (8). Let

$$
\tilde{u}_{i}(\xi, \alpha, \mu)=u_{i}\left(c_{i}(\xi, \alpha)\right)+\beta\left(\xi, \mu_{i}\right) \sum_{\xi^{\prime}} \pi_{\mu_{i}}\left(\xi^{\prime} \mid \xi\right) w_{i}^{\prime}(\xi, \alpha, \mu)\left(\xi^{\prime}\right)
$$

Claim 1. $\tilde{u}_{i}(\xi, \alpha, \mu)$ is nondecreasing in α_{i} for all $\alpha \in \mathbb{R}_{+}^{I}$.
Proof. Let $\tilde{\alpha}, \alpha \in \mathbb{R}_{+}^{I}$ be such that $\tilde{\alpha}_{i}>\alpha_{i}$ and $\tilde{\alpha}_{j}=\alpha_{j}$ for every $j \neq i$. To get a contradiction, suppose $\tilde{u}_{i}(\xi, \tilde{\alpha}, \mu)<\tilde{u}_{i}(\xi, \alpha, \mu)$. Since the constrained set is independent of the welfare weights, then

$$
\sum_{h} \tilde{\alpha}_{h}\left(\tilde{u}_{h}(\xi, \tilde{\alpha}, \mu)-\tilde{u}_{h}(\xi, \alpha, \mu)\right) \geq 0 \text { and } \sum_{h} \alpha_{h}\left(\tilde{u}_{h}(\xi, \alpha, \mu)-\tilde{u}_{h}(\xi, \tilde{\alpha}, \mu)\right) \geq 0
$$

and so, on the one hand,

$$
\sum_{h}\left(\tilde{\alpha}_{h}-\alpha_{h}\right)\left(\tilde{u}_{h}(\xi, \tilde{\alpha}, \mu)-\tilde{u}_{h}(\xi, \alpha, \mu)\right) \geq 0
$$

But, on the other hand,

$$
\sum_{h}\left(\tilde{\alpha}_{h}-\alpha_{h}\right)\left(\tilde{u}_{h}(\xi, \tilde{\alpha}, \mu)-\tilde{u}_{h}(\xi, \alpha, \mu)\right)=\left(\tilde{\alpha}_{i}-\alpha_{i}\right)\left(\tilde{u}_{i}(\xi, \tilde{\alpha}, \mu)-\tilde{u}_{i}(\xi, \alpha, \mu)\right)<0
$$

a contradiction.
Let $\bar{c}_{i}(\xi, \alpha)$ and $\bar{w}_{i}^{\prime}(\xi, \alpha, \mu)\left(\xi^{\prime}\right)$ be the maximisers of the relaxed problem where (8) is ignored. Let

$$
\bar{u}(\xi, \alpha, \mu)=u_{i}\left(\bar{c}_{i}(\xi, \alpha)\right)+\beta\left(\xi, \mu_{i}\right) \sum_{\xi^{\prime}} \pi_{\mu_{i}}\left(\xi^{\prime} \mid \xi\right) \bar{w}_{i}^{\prime}(\xi, \alpha, \mu)\left(\xi^{\prime}\right) .
$$

Claim 2. Let $\alpha \in \mathbb{R}_{+}^{I}$. If $\alpha_{i}<\tilde{\alpha}_{i}$ and $\alpha_{h}=\tilde{\alpha}_{h}$ for all $h \neq i$, then $\bar{u}_{i}(\xi, \alpha, \mu)<\bar{u}_{i}(\xi, \tilde{\alpha}, \mu)$.
Proof. Note that $\bar{c}_{i}(\xi, \alpha)$ is the unique solution to

$$
c_{i}+\sum_{h \neq i}\left(\frac{\partial u_{h}}{\partial c_{h}}\right)^{-1}\left(\frac{\alpha_{i}}{\alpha_{h}} \frac{\partial u_{i}\left(c_{i}\right)}{\partial c_{i}}\right)=y(\xi)
$$

and so it is strictly increasing in α_{i}. Therefore, $\bar{c}_{i}(\xi, \tilde{\alpha})>\bar{c}_{i}(\xi, \alpha)$. Note that

$$
\bar{\alpha}_{i}^{\prime}(\xi, \alpha, \mu)\left(\xi^{\prime}\right)=\frac{\alpha_{i} \int \pi\left(\xi^{\prime} \mid \xi\right) \mu_{i}^{\prime}(\xi, \mu)\left(\xi^{\prime}\right)(d \pi)}{\sum_{h} \alpha_{h} \int \pi\left(\xi^{\prime} \mid \xi\right) \mu_{h}^{\prime}(\xi, \mu)\left(\xi^{\prime}\right)(d \pi)}
$$

Thus, $\bar{\alpha}_{i}^{\prime}(\xi, \alpha, \mu)\left(\xi^{\prime}\right)$ is nondecreasing in α_{i}. Since $\bar{w}_{i}^{\prime}(\xi, \alpha, \mu)\left(\xi^{\prime}\right)$ satisfies (9) and (10), it follows by Lemma A. 1 and Theorem 1 that $\bar{w}_{i}^{\prime}(\xi, \alpha, \mu)\left(\xi^{\prime}\right)=\bar{u}_{i}\left(\xi^{\prime}, \bar{\alpha}^{\prime}(\xi, \alpha, \mu)\left(\xi^{\prime}\right), \mu^{\prime}(\xi, \mu)\left(\xi^{\prime}\right)\right)$. Thus, Claim 1 implies that $\bar{w}_{i}^{\prime}(\xi, \tilde{\alpha}, \mu)\left(\xi^{\prime}\right) \geq \bar{w}_{i}^{\prime}(\xi, \alpha, \mu)\left(\xi^{\prime}\right)$ for all ξ^{\prime}. We conclude that $\bar{u}_{i}(\xi, \alpha, \mu)<\bar{u}_{i}(\xi, \tilde{\alpha}, \mu)$, as desired.

Proof of Proposition 2. (i) Suppose $\alpha \in \Delta(\xi, \mu)$. Consider first the case where $\alpha_{i}>\underline{\alpha}_{i}(\xi, \mu)$ for all i. By the definition of $\tilde{u}_{i}(\xi, \alpha, \mu)$, we have that $\tilde{u}_{i}(\xi, \alpha, \mu) \geq U_{i}(\xi, \mu)$ and $\sum_{i}^{I} \alpha_{i} \tilde{u}_{i}(\xi, \alpha, \mu)=v^{*}(\xi, \alpha, \mu)$. It follows by Lemma A.1, that $\left(\tilde{u}_{1}(\xi, \alpha, \mu) \ldots \tilde{u}_{I}(\xi, \alpha, \mu)\right) \in \mathcal{U}^{\mathrm{E}}(\xi, \mu)$. Since $\sum_{i}^{I} \alpha_{i} \tilde{u}_{i}(\xi, \alpha, \mu)=v^{*}(\xi, \alpha, \mu)$, it is easy to see that $\left(u_{1}(\xi, \alpha, \mu) \ldots u_{I}(\xi, \alpha, \mu)\right) \in \overline{\mathcal{U}}^{E}(\xi, \mu)$. Then, $\tilde{u}_{i}(\xi, \alpha, \mu)>U_{i}\left(\xi, \mu_{i}\right)$ for all i by definition of $\underline{\alpha}_{i}(\xi, \mu)$. Thus, $\lambda_{i}(\xi, \alpha, \mu)=0$. Let $\alpha \in \Delta(\xi, \mu)$ be such that $\alpha_{i}=\underline{\alpha}_{i}(\xi, \mu)$ for some i. Then there is a sequence $\left\{\alpha^{n}\right\}_{n=1}^{\infty}$ such that $\alpha_{i}^{n}>\underline{\alpha}_{i}(\xi, \mu)$ for all i and n and $\alpha^{n} \rightarrow \alpha$. It follows that

$$
\lambda_{i}(\xi, \alpha, \mu)=\lambda_{i}\left(\xi, \lim _{n \rightarrow \infty} \alpha^{n}, \mu\right)=\lim _{n \rightarrow \infty} \lambda_{i}\left(\xi, \alpha^{n}, \mu\right)=0
$$

where the second equality follows by continuity of $\lambda_{i}(\xi, \alpha, \mu)$ in α and the last one because weak inequalities are preserved under limits. It follows that, $\tilde{u}_{i}(\xi, \alpha, \mu)=\bar{u}_{i}(\xi, \alpha, \mu)$ and so $c_{i}(\xi, \alpha)=\bar{c}_{i}(\xi, \alpha)$, i.e. $c_{i}(\xi, \alpha)$ solves the relaxed problem.
(ii) Let $\alpha \in \mathbb{R}_{+}^{I}$ and $\alpha^{*} \equiv\left(\frac{\alpha_{1}}{\sum_{i=1}^{I} \alpha_{i}} \cdots \frac{\alpha_{I}}{\sum_{i=1}^{I} \alpha_{i}}\right)$. If $\alpha^{*} \in \Delta(\xi, \mu)$, then $c_{i}(\xi, \alpha)=c_{i}\left(\xi, \alpha^{*}\right)$ because $\tilde{u}_{i}(\xi, \alpha, \mu)$ is homogeneous of degree zero in α. If $\alpha^{*} \notin \Delta(\xi, \mu)$, there is i such that $\alpha_{i}^{*}<\underline{\alpha}_{i}(\xi, \mu)\left(\alpha_{-i}^{*}\right)$.

- First, we show that $\lambda_{i}(\xi, \alpha, \mu)>0$. To get a contradiction, suppose $\lambda_{i}(\xi, \alpha, \mu)=0$. It follows that

$$
\begin{aligned}
\tilde{u}_{i}\left(\xi,\left(\alpha_{i}, \alpha_{-i}\right), \mu\right) & =\tilde{u}_{i}\left(\xi,\left(\alpha_{i}^{*}, \alpha_{-i}^{*}\right), \mu\right) \\
& =\bar{u}_{i}\left(\xi,\left(\alpha_{i}^{*}, \alpha_{-i}^{*}\right), \mu\right) \\
& =\bar{u}_{i}\left(\xi,\left(\frac{\alpha_{i}^{*}}{\underline{\alpha}_{i}(\xi, \mu)\left(\alpha_{-i}^{*}\right)}, \frac{\alpha_{-i}^{*}}{\underline{\alpha}_{i}(\xi, \mu)\left(\alpha_{-i}^{*}\right)}\right), \mu\right) \\
& <\bar{u}_{i}\left(\xi,\left(1, \frac{\alpha_{-i}^{*}}{\underline{\alpha}_{i}(\xi, \mu)\left(\alpha_{-i}^{*}\right)}\right), \mu\right) \\
& =\bar{u}_{i}\left(\xi,\left(\underline{\alpha}_{i}(\xi, \mu)\left(\alpha_{-i}^{*}\right), \alpha_{-i}^{*}\right), \mu\right) \\
& =U_{i}(\xi, \mu)
\end{aligned}
$$

where the first equality follows because \tilde{u}_{i} is homogeneous of degree zero in α, the second one is due to the assumption that $\lambda_{i}(\xi, \alpha, \mu)=0$ and the homogeneity of degree zero of $\lambda_{i}(\xi, \alpha, \mu)$ in α, the third and fifth follows by homogeneity of degree zero of $\bar{u}_{i}(\cdot)$ in α, the inequality follows by Claim 2 and the last equality follows by definition of the minimum enforceable weights. But then, $\tilde{u}_{i}\left(\xi,\left(\alpha_{i}, \alpha_{-i}\right), \mu\right)<U_{i}(\xi, \mu)$ which contradicts constraint (8).

- Second, note that problem (6) - (10) is equivalent to maximising

$$
\sum_{i=1}^{I}\left(\alpha_{i}+\lambda_{i}\right)\left\{u_{i}\left(c_{i}\right)+\beta\left(\xi, \mu_{i}\right) \sum_{\xi^{\prime}} \pi_{\mu_{i}}\left(\xi^{\prime} \mid \xi\right) w_{i}^{\prime}\left(\xi^{\prime}\right)\right\}
$$

subject to constraints (7), (9) and (10).

- Finally, the latter is equivalent to the relaxed problem with welfare weights $\tilde{\alpha}$ given by

$$
\tilde{\alpha}_{i}=\frac{\alpha_{i}+\lambda_{i}(\xi, \alpha, \mu)}{\sum_{h=1}^{I}\left(\alpha_{h}+\lambda_{h}(\xi, \alpha, \mu)\right)},
$$

Thus, $\bar{u}_{i}(\xi, \tilde{\alpha}, \mu)=\tilde{u}_{i}(\xi, \alpha, \mu) \geq U_{i}(\xi, \mu)=\bar{u}_{i}\left(\xi, \underline{\alpha}_{i}, \mu\right)$. It follows by Claim 2 that $\tilde{\alpha}_{i} \geq \underline{\alpha}_{i}$. Therefore, $\tilde{\alpha} \in \Delta(\xi, \mu)$ and $c_{i}(\xi, \alpha)=\bar{c}_{i}(\xi, \tilde{\alpha})=c_{i}(\xi, \tilde{\alpha})$ as desired.

Now we prove Theorem 11. We begin with some results on Markov Processes.
Lemma 7.1. Let $\left\{z_{t}\right\}_{t=0}^{\infty}$ be a two-state time homogeneous Markov process with transition function F on (Z, \mathcal{Z}) and invariant distribution $\psi: \mathcal{Z} \rightarrow[0,1], P^{F}$ be the probability measure on $\left(Z^{\infty}, \mathcal{Z}^{\infty}\right)$ uniquely induced by F and ψ and let $R: Z \times Z \rightarrow \Re$. Suppose there exists $z_{+} \in Z$ such that
(a) $E^{P^{F}}\left(R\left(z_{1}, z_{2}\right)\right)=0$.
(b) $R\left(z, z_{+}\right)>0$ for all z.
(c) $E^{P^{F}}\left(R\left(z_{0}, z_{1}\right) R\left(z_{1}, z_{2}\right)\right)>0$.

Then $E^{P^{F}}\left(R\left(z_{2}, z_{3}\right) \mid z_{1}=z_{+}\right)<0<E^{P^{F}}\left(R\left(z_{2}, z_{3}\right) \mid z_{1}=z_{-}\right)$iff $F\left(z_{+} \mid z_{+}\right)<\psi\left(z_{+}\right)$.
Proof. Hypothesis (a) and the Markov property implies that $E^{P^{F}}\left(R\left(z_{k}, z_{k+1}\right)\right)=0$ for any k. Thus,

$$
\begin{equation*}
\psi(z-) E^{P^{F}}\left(R\left(z_{k^{\prime}}, z_{k^{\prime}+1}\right) \mid z_{k}=z_{-}\right)=-\psi\left(z_{+}\right) E^{P^{F}}\left(R\left(z_{k^{\prime}}, z_{k^{\prime}+1}\right) \mid z_{k}=z_{+}\right) \tag{34}
\end{equation*}
$$

where $z_{-} \neq z_{+}$. Note also that

$$
\begin{align*}
& E^{P^{F}}\left(R\left(z_{0}, z_{1}\right) R\left(z_{1}, z_{2}\right)\right)=E^{P^{F}}\left(R\left(z_{0}, z_{1}\right) E^{P^{F}}\left(R\left(z_{1}, z_{2}\right) \mid z_{1}\right)\right) \\
= & {\left[P^{F}\left(z_{+}, z_{+}\right) R\left(z_{+}, z_{+}\right)+P^{F}\left(z_{-}, z_{+}\right) R\left(z_{-}, z_{+}\right)\right] E^{P^{F}}\left(R\left(z_{1}, z_{2}\right) \mid z_{1}=z_{+}\right) } \\
& +\left[P^{F}\left(z_{+}, z_{-}\right) R\left(z_{+}, z_{-}\right)+P^{F}\left(z_{-}, z_{-}\right) R_{e}\left(z_{-}, z_{-}\right)\right] E^{P^{F}}\left(R\left(z_{1}, z_{2}\right) \mid z_{1}=z_{-}\right) . \tag{35}
\end{align*}
$$

By hypothesis (a) and (b), $R\left(z, z_{-}\right)<0$ for all z. Therefore,

$$
\begin{aligned}
& P^{F}\left(z_{+}, z_{-}\right) R\left(z_{+}, z_{-}\right)+P^{F}\left(z_{-}, z_{-}\right) R\left(z_{-}, z_{-}\right)<0 \\
& P^{F}\left(z_{+}, z_{+}\right) R\left(z_{+}, z_{+}\right)+P^{F}\left(z_{-}, z_{+}\right) R\left(z_{-}, z_{+}\right)>0
\end{aligned}
$$

It follows from (34) evaluated at $k=1$ and $k^{\prime}=1$, hypothesis (c) and (35) that

$$
E^{P^{F}}\left(R\left(z_{1}, z_{2}\right) \mid z_{1}=z_{-}\right)<0<E^{P^{F}}\left(R\left(z_{1}, z_{2}\right) \mid z_{1}=z_{+}\right)
$$

and the Markov Property implies

$$
\begin{equation*}
E^{P^{F}}\left(R\left(z_{2}, z_{3}\right) \mid z_{2}=z_{-}\right)<0<E^{P^{F}}\left(R\left(z_{2}, z_{3}\right) \mid z_{2}=z_{+}\right) \tag{36}
\end{equation*}
$$

Condition (34), evaluated at $k=1$ and $k^{\prime}=2$, implies that

$$
E^{P^{F}}\left(R\left(z_{2}, z_{3}\right) \mid z_{1}=z_{-}\right)<0<E^{P^{F}}\left(R\left(z_{2}, z_{3}\right) \mid z_{1}=z_{+}\right) \Leftrightarrow E^{P^{F}}\left(R\left(z_{2}, z_{3}\right) \mid z_{1}=z_{+}\right)>0
$$

In addition,

$$
\begin{aligned}
E^{P^{F}}\left(R\left(z_{2}, z_{3}\right) \mid z_{1}=z_{+}\right)= & E^{P^{F}}\left(R\left(z_{2}, z_{3}\right) \mid z_{1}=z_{+}\right)-E^{P^{F}}\left(R\left(z_{2}, z_{3}\right)\right) \\
= & \left(F\left(z_{2}=z_{+} \mid z_{1}=z_{+}\right)-\psi\left(z_{+}\right)\right) E^{P^{F}}\left(R\left(z_{2}, z_{3}\right) \mid z_{2}=z_{+}\right)+ \\
& \left(F\left(z_{2}=z_{-} \mid z_{1}=z_{+}\right)-\psi\left(z_{-}\right)\right) E^{P^{F}}\left(R\left(z_{2}, z_{3}\right) \mid z_{2}=z_{-}\right) \\
= & \left(F\left(z_{2}=z_{+} \mid z_{1}=z_{+}\right)-\psi\left(z_{+}\right)\right) \times \\
& \left(E^{P^{F}}\left(R\left(z_{2}, z_{3}\right) \mid z_{2}=z_{+}\right)-E^{P^{F}}\left(R\left(z_{2}, z_{3}\right) \mid z_{2}=z_{-}\right)\right)
\end{aligned}
$$

where the first line follows by the definition of unconditional expectation and (a). (36) implies that

$$
E^{P^{F}}\left(R\left(z_{2}, z_{3}\right) \mid z_{1}=z_{+}\right)<0 \Leftrightarrow F\left(z_{2}=z_{+} \mid z_{1}=z_{+}\right)-\psi\left(z_{+}\right)<0
$$

Proof of Theorem 11(a). Consider any CE of an arbitrary baseline growth economy. Since the allocation is PO, it follows by Theorem 8 that (15) holds and the marginal distribution of $\psi_{p o}$ over welfare weights is a point mass on α_{∞}. By standard arguments, there exists $\bar{R}_{p o}:\{l, h\} \times\{l, h\} \rightarrow \Re$ such that for any $\tau \in\{1,2\}$ and $\omega \in \Omega$

$$
\bar{R}_{\tau, p o}(\omega)= \begin{cases}\bar{R}_{p o}(l, l) & \text { if } \xi_{\tau-1}(\omega) \in\{1,3\} \text { and } \xi_{\tau}(\omega) \in\{1,3\} \\ \bar{R}_{p o}(l, h) & \text { if } \xi_{\tau-1}(\omega) \in\{1,3\} \text { and } \xi_{\tau}(\omega) \in\{2,4\} \\ \bar{R}_{p o}(h, l) & \text { if } \xi_{\tau-1}(\omega) \in\{2,4\} \text { and } \xi_{\tau}(\omega) \in\{1,3\} \\ \bar{R}_{p o}(h, h) & \text { if } \xi_{\tau-1}(\omega) \in\{2,4\} \text { and } \xi_{\tau}(\omega) \in\{2,4\}\end{cases}
$$

and

$$
\begin{equation*}
\bar{R}_{p o}(\xi, l)<0<\bar{R}_{p o}(\xi, h) \text { for all } \xi \in\{l, h\} \tag{37}
\end{equation*}
$$

Let $Z=\{l, h\}, \mathcal{Z}$ be its finest partition, $\tilde{\pi}^{*}$ be the transition function on (Z, \mathcal{Z}) defined as the restriction of π^{*} to (Z, \mathcal{Z}) and let $\tilde{\psi}_{p o}$ be the restriction of the invariant measure $\psi_{p o}$ to (Z, \mathcal{Z}). Let Z^{∞} be the set of infinite sequences with elements in Z and $\mathcal{Z}_{0} \subset \mathcal{Z}_{1} \subset \ldots \subset \mathcal{Z}_{t} \subset \ldots \mathcal{Z}^{\infty}$ be the standard filtration. $P^{\tilde{\pi}^{*}}$ is the probability measure over $\left(Z^{\infty}, \mathcal{Z}^{\infty}\right)$ uniquely induced by $\tilde{\pi}^{*}$ and $\tilde{\psi}_{p o}$. Let $z_{t}: Z^{\infty} \rightarrow Z$ be $\mathcal{Z}_{t}-$ measurable. The collection $\left\{z_{t}\right\}_{t=0}^{\infty}$ on the probability space $\left(Z^{\infty}, \mathcal{Z}^{\infty}, P^{\tilde{\pi}^{*}}\right)$ is a two state time-homogeneous Markov process with transition function $\tilde{\pi}^{*}$ on (Z, \mathcal{Z}) and invariant distribution $\tilde{\psi}_{p o}: \mathcal{Z} \times \mathcal{Z} \rightarrow[0,1]$ satisfying

$$
\begin{equation*}
E^{P^{\tilde{\pi}^{*}}}\left(\bar{R}_{p o}\left(z_{1}, z_{2}\right)\right)=0 \tag{38}
\end{equation*}
$$

First note that (38) and (37) are conditions (a) and (b), respectively, in Lemma 7.1. Second, since the asset displays short-term momentum,

$$
0<E^{P_{p o}}\left(\bar{R}_{1, p o} \bar{R}_{2, p o}\right)=E^{P^{\tilde{\pi}^{*}}}\left(\bar{R}_{p o}\left(z_{0}, z_{1}\right) \bar{R}_{p o}\left(z_{1}, z_{2}\right)\right)
$$

and so condition (c) in Lemma 7.1 also holds. By Lemma 7.1, we conclude that

$$
\begin{equation*}
E^{P^{\tilde{\pi}^{*}}}\left(\bar{R}_{p o}\left(z_{2}, z_{3}\right) \mid z_{1}=h\right)<0<E^{P^{\tilde{\pi}^{*}}}\left(\bar{R}_{p o}\left(z_{2}, z_{3}\right) \mid z_{1}=l\right) \Leftrightarrow \tilde{\pi}^{*}(h \mid h)<\tilde{\psi}_{p o}(h) \tag{39}
\end{equation*}
$$

Let ω^{+}and ω^{-}be such that $\bar{R}_{1, p o}\left(\omega^{+}\right)>0$ and $\bar{R}_{1, p o}\left(\omega^{-}\right)<0$. Then,

$$
\begin{aligned}
& E^{P_{p o}}\left(\bar{R}_{3, p o} \mid \bar{R}_{1, p o}\right)\left(\omega^{+}\right)=E^{P^{\tilde{\pi}^{*}}}\left(\bar{R}_{p o}\left(z_{2}, z_{3}\right) \mid z_{1}=h\right), \\
& E^{P_{p o}}\left(\bar{R}_{3, p o} \mid \bar{R}_{1, p o}\right)\left(\omega^{-}\right)=E^{P^{\tilde{\pi}^{*}}}\left(\bar{R}_{p o}\left(z_{2}, z_{3}\right) \mid z_{1}=l\right)
\end{aligned}
$$

It follows from (39), $\tilde{\pi}^{*}(h \mid h)=\pi^{*}(2 \mid 2)+\pi^{*}(4 \mid 2)$ and $\tilde{\psi}_{p o}(h)=\psi_{p o}(2)+\psi_{p o}(4)$ that $E^{P_{p o}}\left(\bar{R}_{3, p o} \mid \bar{R}_{1, p o}\right)\left(\omega^{+}\right)<0<E^{P_{p o}}\left(\bar{R}_{3, p o} \mid \bar{R}_{1, p o}\right)\left(\omega^{-}\right) \Leftrightarrow \pi^{*}(2 \mid 2)+\pi^{*}(4 \mid 2)<\psi_{p o}(2)+\psi_{p o}(4)$ that is, $E^{P_{p o}}\left(\bar{R}_{3, p o} \mid \bar{R}_{1, p o}\right)$ reverts to the mean if and only if $\pi^{*}(2 \mid 2)+\pi^{*}(4 \mid 2)<\psi_{p o}(2)+\psi_{p o}(4)$. By Proposition 9, the asset displays long-term reversal if $\pi^{*}(2 \mid 2)+\pi^{*}(4 \mid 2)<\psi_{p o}(2)+\psi_{p o}$ (4). To show the converse, suppose that $\pi^{*}(2 \mid 2)+\pi^{*}(4 \mid 2) \geq \psi_{p o}(2)+\psi_{p o}(4)$. Then by the argument above, $E^{P_{e}}\left(R_{3, p o} \mid \bar{R}_{1, e}\right)$ trends and it follows by Proposition 9 that the 2nd-order autocorrelation is positive and so long-run reversal fails.

Proof of Theorem 11(b). Consider any CESC of an arbitrary baseline growth economy. The price of an asset at state (ξ, α) must satisfy the Bellman equation:

$$
p(\xi, \alpha)=\sum_{\xi^{\prime}} Q(\xi, \alpha)\left(\xi^{\prime}\right)\left(p\left(\xi^{\prime}, \alpha^{\prime}(\xi, \alpha)\left(\xi^{\prime}\right)\right)+d\left(\xi^{\prime}\right)\right) \quad \psi_{c p o}-a . s .
$$

It is easy to see that the invariant distribution places positive mass only on points (ξ, α) such that $\alpha \in \underline{\Delta} \cap \Delta\left(\xi, \mu^{\pi^{*}}\right)$ where $\underline{\Delta}=\left\{\left(\alpha_{1}, \alpha_{2}\right) \in \Delta: \exists \xi \in S\right.$ such that $\alpha_{1}=\underline{\alpha}_{1}(\xi)$ or $\left.\alpha_{2}=\underline{\alpha}_{2}(\xi)\right\}$. The hypothesis $\underline{\alpha}_{1}(1)=\underline{\alpha}_{1}(2)$ and symmetry implies that $\underline{\alpha}_{2}(3)=\underline{\alpha}_{2}(4)$. If $p_{\xi}, q_{\xi \xi^{\prime}}$ and d_{ξ} denotes $p(\xi, \underline{\alpha}(\xi)), Q(\xi, \underline{\alpha}(\xi))\left(\xi^{\prime}\right)$ and $d(\xi)$, respectively, then the Bellman equation becomes

$$
p_{\xi}=\sum_{\xi^{\prime}} q_{\xi \xi^{\prime}}\left(p_{\xi^{\prime}}+d_{\xi^{\prime}}\right) \quad \text { for all } \xi
$$

which can be written as $(I-Q) P=Q D$ where Q is the 4×4 matrix with entries $q_{\xi \xi^{\prime}}, P$ is the 4×1 vector with entries p_{ξ} and D is the 4×1 vector with entries p_{ξ}. Note that

$$
c_{1}(1, \underline{\alpha}(1))=c_{2}(3, \underline{\alpha}(3)) \quad \text { and } \quad c_{1}(2, \underline{\alpha}(2))=c_{2}(4, \underline{\alpha}(4))
$$

and so

$$
\begin{aligned}
& q_{\xi 1}=\beta(\xi, \mu) \pi(1 \mid \xi) \frac{\partial u\left(c_{1}(1, \underline{\alpha}(1)) / \partial c_{1}\right.}{\partial u\left(c_{1}(\xi, \underline{\alpha}(\xi))\right) / \partial c_{1}}=\beta(\xi, \mu) \pi(3 \mid \xi) \frac{\partial u\left(c_{2}(3, \alpha(3)) / \partial c_{1}\right.}{\partial u\left(c_{2}(\xi, \underline{\alpha}(\xi))\right) / \partial c_{1}}=q_{\xi 3} \\
& q_{\xi 2}=\beta(\xi, \mu) \pi(2 \mid \xi) \frac{\partial u\left(c_{1}(2, \underline{\alpha}(2)) / \partial c_{1}\right.}{\partial u\left(c_{1}(\xi, \underline{\alpha}(\xi))\right) / \partial c_{1}}=\beta(\xi, \mu) \pi(4 \mid \xi) \frac{\partial u\left(c_{2}(4, \underline{\alpha}(4)) / \partial c_{1}\right.}{\partial u\left(c_{2}(\xi, \underline{\alpha}(\xi))\right) / \partial c_{1}}=q_{\xi 4} .
\end{aligned}
$$

It follows that Q has rank 2. Therefore, $p_{1}=p_{3}$ and $p_{2}=p_{4}$.
Let $\tilde{\pi}^{*}$ and $\left(Z^{\infty}, \mathcal{Z}^{\infty}\right)$ be the transition matrix and the measurable space, respectively, introduced in the proof of Theorem $11(a)$. $P^{\tilde{\pi}^{*}}$ is the probability measure over $\left(Z^{\infty}, \mathcal{Z}^{\infty}\right)$ uniquely induced by $\tilde{\pi}^{*}$ and $\tilde{\psi}_{c p o}$. Let $z_{t}: Z^{\infty} \rightarrow Z$ be $\mathcal{Z}_{t}-$ measurable. The collection $\left\{z_{t}\right\}_{t=0}^{\infty}$ on the probability space $\left(Z^{\infty}, \mathcal{Z}^{\infty}, P^{\tilde{\pi}^{*}}\right)$ is a two state time-homogeneous Markov process with transition function $\tilde{\pi}^{*}$ on (Z, \mathcal{Z}) and invariant distribution $\tilde{\psi}_{c p o}: \mathcal{Z} \times \mathcal{Z} \rightarrow[0,1]$.

Let $p(l) \equiv p_{1}, p(h) \equiv p_{2}, R_{c p o}\left(z, z^{\prime}\right) \equiv \frac{p_{z^{\prime}}+d_{z^{\prime}}}{p_{z}}$ for all $z \in\{l, h\}$ and $\bar{R}_{c p o}:\{l, h\} \times\{l, h\} \rightarrow \Re$ be such that

$$
\bar{R}_{\tau, c p o}(\omega)= \begin{cases}\bar{R}_{c p o}(l, l) & \text { if } \xi_{\tau-1}(\omega) \in\{1,3\} \text { and } \xi_{\tau}(\omega) \in\{1,3\} \tag{40}\\ \bar{R}_{c p o}(l, h) & \text { if } \xi_{\tau-1}(\omega) \in\{1,3\} \text { and } \xi_{\tau}(\omega) \in\{2,4\} \\ \bar{R}_{c p o}(h, l) & \text { if } \xi_{\tau-1}(\omega) \in\{2,4\} \text { and } \xi_{\tau}(\omega) \in\{1,3\} \\ \bar{R}_{c p o}(h, h) & \text { if } \xi_{\tau-1}(\omega) \in\{2,4\} \text { and } \xi_{\tau}(\omega) \in\{2,4\}\end{cases}
$$

Moreover,

$$
\begin{equation*}
\bar{R}_{c p o}(z, l)<0<\bar{R}_{c p o}(z, h) \text { for all } z \in\{l, h\} \tag{41}
\end{equation*}
$$

and

$$
\begin{equation*}
E^{P^{\tilde{\pi}^{*}}}\left(\bar{R}_{c p o}\left(z_{1}, z_{2}\right)\right)=0 \tag{42}
\end{equation*}
$$

It follows from (40) that for any $k \in\{2,3\}$

$$
E^{P_{c p o}}\left(\bar{R}_{1, c p o} \bar{R}_{k, c p o}\right)=E^{P^{\tilde{\pi}^{*}}}\left(\bar{R}_{c p o}\left(z_{0}, z_{1}\right) \bar{R}_{c p o}\left(z_{1}, z_{k}\right)\right.
$$

Note that (42) and (41) are conditions (a) and (b) in Lemma 7.1. Since the asset displays short-term momentum,

$$
E^{P^{\tilde{\pi}^{*}}}\left(\bar{R}_{c p o}\left(z_{0}, z_{1}\right) \bar{R}_{c p o}\left(z_{1}, z_{2}\right)\right)=E^{P_{c p o}}\left(\bar{R}_{1, p o} \bar{R}_{2, p o}\right)>0
$$

and so (c) in Lemma 7.1 also holds. The rest of the proof is identical to that in Theorem $11(a)$.

