Supplementary Material

Let ¢;(€,a) and w)(€,a, 1) (€) be the maximisers in problem (6) - (10) and let A;(&,a, ) be the

Lagrange multiplier associated to constraint (8). Let

ﬁl(g) «a, ,LL) = ui(ci(é-a a)) + B(ga /U'z) Z Ty (5/ |€) w:(g’ «, /1“)(5/)
¢

Claim 1. @;(§, o, p) is nondecreasing in oy for all o € R .

Proof. Let &, € Ri be such that &; > «o; and &; = o  for every j # i. To get a contradiction,

suppose @; (&, &, p) < U; (€, «, p). Since the constrained set is independent of the welfare weights, then

D an (an (& @, p) —an (€ a,p) = 0 and Y ap (i (& a, p) — an (€@, 1)) 2 0

h h

and so, on the one hand,

> (an — an) (i (& @, @) — in (& @, 1)) =0

h

But, on the other hand,

> (an — an) (i (& @, ) — in (& 0, 1)) = (&5 — o) (i (€ @&, 1) — s (€, 1)) <0

h

a contradiction. ]

Let ¢; (¢, o) and W} (€, o, 1) (€') be the maximisers of the relaxed problem where (8) is ignored. Let

ﬂ(Ev «, M) = ui(Ei(Ev a)) + 6(57 MZ) Z ﬂ-,U«i (gl |§) w;(ﬁa «, H’)(gl)
I

Claim 2. Let a« € RL. If a; < &; and ap, = &y, for all h # i, then u; (&, o, ) < ; (€, &, p) -

Proof. Note that ¢;(¢, «) is the unique solution to

Ouy, o aul(cl) B
Gt Z ((%h ) (ah oc; = y()-
and so it is strictly increasing in a;. Therefore, ¢;(€, &) > ¢;(£, a). Note that

a; [7(& )€ w) (&) (dm)
Ehahf &8y, (&, 1) (&) (dm)

(& o, m)(€) =

Thus, @;(&, o, 1)(¢') is nondecreasing in «;. Since W,(¢, o, ) (€) satisfies (9) and (10), it follows by
Lemma A.1 and Theorem 1 that w}(€, o, pu)(€) = w(&, (€, v, ) (€)), 1/ (€, 1) (€')). Thus, Claim 1
implies that @), (&, &, p)(€) > W€, o, p)(€) for all €. We conclude that @; (€, o, ) < T (€, @, ), as
desired. O



Proof of Proposition 2 . (i) Suppose o € A(§, ). Consider first the case where o > o, (&, 1) for all
i. By the definition of @; (&, a, ), we have that @; (£, a, u) > U;(€, 1) and Zf ;i (&, p) = v* (& a, ).
It follows by Lemma A.1, that (i (&, o, p)...%7 (€, o, 1)) € UB(E, ). Since ZZI ;i (& oy ) = v* (€, o, ),
it is easy to see that (uq(§, o, p)...ur(&, a,p)) € HE(g,p). Then, @;(&, o, p) > U (&, ;) for all ¢ by
definition of a;(&, p). Thus, A;(§, o, u) = 0. Let o € A(&, ) be such that o; = o;(§, ) for some i.

Then there is a sequence {a”}52 ; such that o > «,(&, 1) for all ¢ and n and o™ — «. It follows that
)\i (57 «, /1“) = )‘z(ga nli)ngo s, ,u‘) - nll)rlgo >\’L (Ea « 7”) = 07

where the second equality follows by continuity of A\;(§, o, ) in v and the last one because weak in-
equalities are preserved under limits. It follows that, @;(§, o, u) = w; (€, a, p) and so ¢; (€, a) = ¢ (€, o),

i.e. ¢;i(§, a) solves the relaxed problem.
(ii) Let @ € R: and o = (f‘illa f) If a* € A(E, p), then ¢;(§, o) = ¢;(€, a*) because

4;(&, o, p) is homogeneous of degree zero in . If a* & A(E, ), there is ¢ such that o < o, (€, p) (a* )

—1

e First, we show that \;(¢, «, ) > 0. To get a contradiction, suppose \;(&, «, ) = 0. It follows that

g (&, (i, g) , 1) =y

where the first equality follows because u; is homogeneous of degree zero in «, the second one is
due to the assumption that \;(¢,«, u) = 0 and the homogeneity of degree zero of \;(§, o, p) in a,
the third and fifth follows by homogeneity of degree zero of %;(+) in «, the inequality follows by
Claim 2 and the last equality follows by definition of the minimum enforceable weights. But then,

U; (&, (o, o), 1) < U; (€, p) which contradicts constraint (8).

e Second, note that problem (6) - (10) is equivalent to maximising

1
D (o + i) S wiled) + B, ) mel& (DR

i=1

subject to constraints (7), (9) and (10).

e Finally, the latter is equivalent to the relaxed problem with welfare weights & given by
- i + Ni(§s o, p)
Yo (an + An(€ 0, )]

Thus, @; (§, 6, ) = @; (&, a,p) > Ui (&, 1) =45 (€, ;, ). Tt follows by Claim 2 that &; > a;. Therefore,
&€ A(&, ) and ¢; (€, @) =¢(§, &) = ¢;(€, @) as desired. ]
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Now we prove Theorem 11. We begin with some results on Markov Processes.

Lemma 7.1. Let {z},°, be a two-state time homogeneous Markov process with transition function

F on (Z,Z) and invariant distribution ¢ : Z — [0,1], PY be the probability measure on (Z°°, Z*)

uniquely induced by F' and v and let R : Z x Z — R. Suppose there exists zy € Z such that

(a) EP" (R (21,2)) = 0.

(b) R(z,24) >0 for all z.

(c) EP" (R(20,21) R(z1,22)) > 0.

Then EP" (R(z2,23)| 21 = 24) < 0 < EP" (R(29,23)| 21 = 2_) iff F (24| 24) < 1 (24).

Proof. Hypothesis (a) and the Markov property implies that EP” (R (2k, zk+1)) = 0 for any k. Thus,
¥ (2=) B (Rzi, 2wi1) 25 = 2) = = (24) BP" (R(zw, 241)] 2k = 24) (34)

where z_ # z,. Note also that

E™" (R (20,21) R(21,22)) = B (R(20,21) B” (R(21,20)] 1))
= [PF (24, 24) R (24, 24) +PF (Z—72+)R(Z—7Z+)} B (R(21,22)| 21 = 24)
+ [PF (24,22 ) R(24,2-) + PF (22, 2_) Re (2—, 2_)] EP" (R(#z1,22)|z1=2-). (3H)
By hypothesis (a) and (b), R (z,2_) < 0 for all z. Therefore,
PF (24,2 )R(24,2-) + P" (2,2 )R(2_,2_) < 0,
PF(zy,2)R(24,24) + PP (2,2, )R(2_,2,) > O.
It follows from (34) evaluated at k = 1 and k' = 1, hypothesis (c) and (35) that
EP" (R(z1,20)| 21 = 2_) < 0 < B (R(z1, 22)| 21 = 24)
and the Markov Property implies
EP" (R(z2,23)| 22 = 2_) < 0 < EF" (R(22,23)| 22 = 2) . (36)

Condition (34), evaluated at k = 1 and k¥’ = 2, implies that

EP" (R(z2,23)| 21 = 2_) < 0 < EP" (R(22,23)| 21 = 21) & EF" (R(22,23)| 21 = 2;) > 0.

In addition,

E™" (R(za,2) 21 = 21) = E7" (R(22,23)| 21 = 24) — BT (R(22, 23))
= (F(zm =24z = 24) =9 (24) BT (R(z2,2)| 22 = 2 )1+
(F(z = 2|21 =24) =9 (22)) BY" (R(22,23)] 22 = 2-)
= (F (22 = 24|21 = 24) = (24)) X
(EPF (R(22,23) 22 = 24) — EP" (R(22, 23)| 22 = z,)) .
where the first line follows by the definition of unconditional expectation and (a). (36) implies that

BF" (R(zo,23)|21=24)<0& F(za=z24|z1=24) =9 (24) <0. -



Proof of Theorem 11(a). Consider any CE of an arbitrary baseline growth economy. Since the
allocation is PO, it follows by Theorem 8 that (15) holds and the marginal distribution of v,, over
welfare weights is a point mass on a. By standard arguments, there exists R, : {l,h} x {[,h} — R

such that for any 7 € {1,2} and w €

B (L) & 1(w) € {1,3} and & (w) € {1,3)
B () = Ry (I,h)  if&oq1(w) € {1,3} and & (w) € {2,4}
v Ryo (1) if &1 (w) € {2,4} and & (w) € {1,3}
Rpo (ha h) if 57—71(0-)) € {214} and g'r(w) € {274}
and
Rpo (§,1) <0< Ry (§,h) forall € € {I,h}. (37)

Let Z = {l,h}, Z be its finest partition, 7* be the transition function on (Z, Z) defined as the
restriction of 7 to (Z, Z) and let 1),, be the restriction of the invariant measure v,, to (Z, Z). Let
Z>° be the set of infinite sequences with elements in Z and 2y C 2, C ... C Z; C ...Z> be the
standard filtration. P™ is the probability measure over (Z°°, Z°°) uniquely induced by 7* and @po.
Let z; : Z*° — Z be Z;—measurable. The collection {z;};°, on the probability space (Z°°, 2>, P™")
is a two state time-homogeneous Markov process with transition function 7* on (Z, £) and invariant

distribution zzpo 1 Z x Z — [0,1] satistying
EP" (Rpo (21,22)) = 0. (38)

First note that (38) and (37) are conditions (a) and (b), respectively, in Lemma 7.1. Second, since

the asset displays short-term momentum,
0 < EFre (El,po Eg)po) = EP;(* (Epo (20,21) Rpo (21, 22))
and so condition (c¢) in Lemma 7.1 also holds. By Lemma 7.1, we conclude that
ET" (Rpolz2,28)| 21 = h) <0 < BP™ (Rpo(22,23)| 21 = 1) & 7% (h|h) < Py (h) . (39)
Let wt and w™ be such that Ry p, (wT) > 0 and Ry p, (w™) < 0. Then,

B (Rapo| Bipo) (wF) = EP (Bpol2a,23)| 21 = 1),
BT (R3po| Ripo) (w7) = B (Rpol22,23)[ 21 =1) -

It follows from (39), 7* (h|h) = m* (2]2) + 7* (4] 2) and Vo (h) = Ppo (2) + thpo (4) that
Ef (R po| Ripo) (w) <0< EP? (R po| Ripo) (w™) € 7 (2]2) + 7 (4]2) < thpo (2) + thpo (4)

that is, EP (R3po| R1po) Teverts to the mean if and only if 7 (2]2) + 7 (4]2) < ¥po (2) + ¥po (4).
By Proposition 9, the asset displays long-term reversal if 7* (2| 2) + 7* (4] 2) < 9¥po (2) + ¥po (4). To
show the converse, suppose that 7* (2]2) +7* (4]2) > 10 (2) + 1o (4). Then by the argument above,
EF. (R37po| RLe) trends and it follows by Proposition 9 that the 2nd-order autocorrelation is positive

and so long-run reversal fails. O



Proof of Theorem 11(b). Consider any CESC of an arbitrary baseline growth economy. The price

of an asset at state (f, a) must satisfy the Bellman equation:

ZQ £0) () (P(€, 0/ (£,0) (E) +d(E))  tepo — aus

It is easy to see that the invariant distribution places positive mass only on points (£, &) such that
a € ANA(&u™) where A = {(a1,a2) € A: 3¢ € S such that a; = ay (§) or as = a, (§)}. The
hypothesis o (1) = ¢; (2) and symmetry implies that o, (3) = ay (4). If pe, geer and de denotes
p(&a(f)), Q& a(f)) (&) and d(£), respectively, then the Bellman equation becomes
pe =Y _ace (per +de) forall €
&'/
which can be written as (I — Q) P = QD where Q is the 4 x 4 matrix with entries gee/, P is the 4 x 1
vector with entries ps and D is the 4 x 1 vector with entries p.. Note that
ala(l) = c@G,a@) and  a@a@)=ca)

and so
_ Ou(cy1(1,a(1))/0er Ou(ca(3,a(3))/0ca
g1 = B&p) m(1]§) m A& p) m(3[E) m g3
Ou(c1(2,a(2))/dcy Ou(ca(4,a(4))/0c1

G2 = B&p) (2\5)W—5(§,M)W(4|§)W_q54

It follows that @ has rank 2. Therefore, p; = p3 and ps = py4.

Let 7* and (Z°°, Z2°°) be the transition matrix and the measurable space, respectively, introduced
in the proof of Theorem 11(a). P™ is the probability measure over (Z°°, Z°°) uniquely induced by
7* and @cpo. Let z; : Z* — Z be Z,—measurable. The collection {z;},-, on the probability space
( 2>, Pﬁ*) is a two state time-homogeneous Markov process with transition function 7* on (Z, Z)
and invariant distribution 9.y, : Z x Z — [0,1].

Let p (1) = p1, p(h) = p2, Repo (2,2) = pz’p# for all z € {l,h} and R.p, : {I,h} x {l,h} — R be
such that

Repo(LD) i€ 1(w) € {1,3} and & (w) € {1,3}
o) ) Faolt) 6 € (L3} md &) € 2.4 o)
Bpo (D) i€ 1(w) € (2,4} and &(w) € {1,3)
Repo (hyh)  if &-1(w) € {2,4} and & (w) € {2,4}
Moreover,
Repo (2,1) <0 < Repo (2,h) for all z € {I,h} (41)
and
EP" (Repo (21, 22)) = 0. (42)

It follows from (40) that for any k € {2, 3}
E cpe (Rl cpo Rk cpo) EP% (cho (ZO7 zl) Ecpo (217 Zk) .

Note that (42) and (41) are conditions (a) and (b) in Lemma 7.1. Since the asset displays short-term

momentum,

EP%* (cho (20,21) Ecpo (217 Z2)) = EFere (El,po RZPO) >0,

and so (c¢) in Lemma 7.1 also holds. The rest of the proof is identical to that in Theorem 11(a). O



