Supplementary Materials

Proof of Lemma 1. Observe first that

$$p_i(s_k \left| s^{k-1} \right) = \int_{\Delta^{K-1}} \theta(s_k) \mu_{i,s^{k-1}} \left(d\theta \right)$$

for any $1 \le k \le t$. Then, we have that

$$\begin{split} \int_{\Delta^{K-1}} P^{\theta}\left(B\right) \mu_{i,s^{t}}\left(d\theta\right) &= \int_{\Delta^{K-1}} P^{\theta}\left(B\right) \frac{\theta(s_{t})\mu_{i,s^{t-1}}\left(d\theta\right)}{\int_{\Delta^{K-1}} \theta(s_{t})\mu_{i,s^{t-1}}\left(d\theta\right)} \\ &= \frac{1}{p_{i}(s_{t} \mid s^{t-1})} \dots \frac{1}{p_{i}\left(s_{1} \mid s_{0}\right)} \int_{\Delta^{K-1}} P^{\theta}\left(B\right) \; \theta(s_{t}) \dots \theta\left(s_{1}\right) \mu_{i,0}\left(d\theta\right) \\ &= \frac{1}{P_{i}\left(C(s^{t})\right)} \; \int_{\Delta^{K-1}} P^{\theta}\left(B_{s^{t}}\right) \; \mu_{i,0}\left(d\theta\right) \\ &= \frac{P_{i}\left(B_{s^{t}}\right)}{P_{i}\left(C(s^{t})\right)} = P_{i,s^{t}}\left(B\right). \end{split}$$

Proof of Lemma 12. Boundedness of \mathcal{U} follows because $Y^{\infty}(\xi)$ is bounded. Convexity follows from the strict concavity of u_i .

To prove that $\mathcal{U}(\xi,\mu)$ is closed, take any sequence $\{w^n\}$ such that $w^n \in \mathcal{U}(\xi,\mu)$ for all n and $w^n \to \overline{w} \in \mathbb{R}^I_+$. Take the corresponding sequence $\{c^n\} \subset Y^{\infty}(\xi)$. Since $Y^{\infty}(\xi)$ is compact under the sup-norm, there exists a convergent subsequence $\{c^{n_k}\}$ such that $c^{n_k} \to \overline{c} \in Y^{\infty}(\xi)$. Thus, it follows by definition that $U_i^{P_i}(c_i^{n_k}) \ge w_i^{n_k}$ for all k and for all i. Since u_i is continuous and $\mathbb{C}(s_0)$ is compact, then $U_i^{P_i}$ is continuous under the sup-norm. Thus, it follows that $U_i^{P_i}(\overline{c}_i) \ge \overline{w}_i$, for all i. Consequently, $\overline{w} \in \mathcal{U}(\xi,\mu)$ by definition and $\mathcal{U}(\xi,\mu)$ is closed.

Proof of Lemma 13. That v^* is increasing in α and homogenous of degree one is straightforward. $v^*(\xi, \alpha, \mu)$ is bounded because the constraint set, $Y^{\infty}(\xi)$, is uniformly bounded and $\beta \in (0, 1)$. Let $Y^k(\xi) \equiv \{c \in Y^{\infty}(\xi) : c_i(s^t) \equiv c_{i,t}(s) = 0$ for all $t \geq k\}$ be the *k*-truncated set of feasible allocations. Note that $Y^k(\xi) \subset$ $Y^{k+1}(\xi) \subset Y^{\infty}(\xi)$ and define

$$v_k^*(\xi, \alpha, \mu) \equiv \max_{c \in Y^k(\xi)} \sum_{i \in \mathcal{I}} \alpha_i \ U_i^{P_i}(c_i)$$

Suppose that $\left\{ (\mu_i^n)_{i=1}^I \right\}$ is a sequence of probability measures such that μ_i^n converges

weakly to $\overline{\mu}_i \in \mathcal{P}(\Delta^{K-1})$ for all *i*. Given *k*, note that

$$\sum_{t=0}^{k} \beta^{t} \int_{\Delta^{K-1}} \left(\sum_{s^{t}} P^{\theta} \left(C(s^{t}) \right) u_{i}(c_{i}(s^{t})) \right) \mu_{i}^{n} \left(d\theta \right) \to \sum_{t=0}^{k} \beta^{t} \int_{\Delta^{K-1}} \left(\sum_{s^{t}} P^{\theta} \left(C(s^{t}) \right) u_{i}(c_{i}(s^{t})) \right) \overline{\mu}_{i} \left(d\theta \right)$$

since $P^{\theta}(C(s^t))$ is continuous and bounded for all t and s^t . Thus, it follows from the Maximum Theorem that $v_k^*(\xi, \alpha, \mu)$ is continuous in (μ, α) for all ξ .

Note that $v_k^*(\xi, \alpha, \mu) \leq v_{k+1}^*(\xi, \alpha, \mu) \leq v^*(\xi, \alpha, \mu)$ for all (ξ, α, μ) . Hence, $v_k^*(\xi, \alpha, \mu) \rightarrow v^*(\xi, \alpha, \mu)$ for each (ξ, α, μ) since there exists some $c^* \in Y^{\infty}(\xi)$ attaining $v^*(\xi, \alpha, \mu)$. Now we show that this convergence is uniform.

Given any (ξ, α, μ) , let $c^* \in Y^{\infty}(\xi)$ attain $v^*(\xi, \alpha, \mu)$ and define c^{*^k} as its k-truncated version. Then,

$$0 \le v^*(\xi, \alpha, \mu) - v_k^*(\xi, \alpha, \mu) \le \sum_{i=1}^{I} \alpha_i (U_i^{P_i}(c_i^*) - U_i^{P_i}(c_i^{*^k})) \le \frac{\beta^k}{1 - \beta} \max_i u_i(\overline{y}).$$

Since $\beta \in (0, 1)$, this convergence is uniform (i.e., the RHS is independent of (ξ, α, μ)) and thus $v^*(\xi, \alpha, \mu)$ is continuous.

Proof of Lemma 14. Observe that $v^*(\xi, \alpha, \mu) \ge \alpha u$ for all $\alpha \in \Delta^{I-1}$ holds if and only if

$$\min_{\widetilde{\alpha}\in\Delta^{I-1}}\left[v^*(\xi,\widetilde{\alpha},\mu)-\sum_{i=1}^{I}\widetilde{\alpha}_i \ w_i\right]\geq 0.$$

Therefore, it suffices to show that $w \in \mathcal{U}(\xi, \mu)$ if and only if $w \ge 0$ and $v^*(\xi, \alpha, \mu) \ge \alpha w$ for all $\alpha \in \Delta^{I-1}$.

For any $w \in \mathcal{U}(\xi, \mu)$, (28) implies that $v^*(\xi, \alpha, \mu) \ge \alpha w$ for all $\alpha \in \Delta^{I-1}$.

To show the converse, suppose that $w \ge 0$ and $v^*(\xi, \alpha, \mu) \ge \alpha w$ for all $\alpha \in \Delta^{I-1}$ but $w \notin \mathcal{U}(\xi, \mu)$. This implies that $\nexists \widetilde{w} \in \mathcal{U}(\xi, \mu)$ such that $\widetilde{w} \ge w$. Since $\mathcal{U}(\xi, \mu)$ is convex, it follows by the separating hyperplane theorem that $\exists \eta \in \mathbb{R}^I_+/\{0\}$ such that $\eta w \ge \eta \widetilde{w}$ for all $\widetilde{w} \in \mathcal{U}(\xi, \mu)$. Since $\mathcal{U}(\xi, \mu)$ is closed, $\eta w > \eta \widetilde{w}$ for all $\widetilde{w} \in \mathcal{U}(\xi, \mu)$, where η can be normalized such that $\eta \in \Delta^{I-1}$. But then $v^*(\xi, \eta, \mu) \ge \eta w > \eta \widetilde{w}$ for all $\widetilde{w} \in \mathcal{U}(\xi, \mu)$. This contradicts (28).

Proof of Step 3, Theorem 3. We show that there exists some $\alpha_0 = \alpha(s_0, \mu_0)$ such that $A_i(s_0, \alpha_0, \mu_0) = 0$ for all *i*, given (s_0, μ_0) .

Note first that if $\alpha_i = 0$, then $c_i(\xi, \alpha) = 0$ and consequently $A_i(\xi, \alpha, \mu) < 0$ for all (ξ, μ) . Define the vector-valued function g on Δ^{I-1} as follows:

$$g_i(\alpha) = \frac{\max[\alpha_i - A_i(s_0, \alpha, \mu_0), 0]}{\sum_{i=1}^{I} \max[\alpha_i - A_i(s_0, \alpha, \mu_0), 0]},$$
(1)

for each *i*. Note that $H(\alpha) = \sum_{i=1}^{I} \max[\alpha_i - A_i(s_0, \alpha, \mu_0), 0]$ is positive for all $\alpha \in \Delta^{I-1}$. Also, $g_i(\alpha) \in [0, 1]$ and $\sum_{i=1}^{I} g_i(\alpha) = 1$ for all α . Thus, g is a continuous function mapping Δ^{I-1} into itself. The Brower's fixed point theorem implies that there exists some $\alpha_0 = \alpha(s_0, \mu_0)$ such that $\alpha_0 = g(\alpha_0)$.

Suppose now that $\alpha_{i,0} = 0$ for some *i*. For such α_0 , (39) implies that $-A_i(s_0, \alpha_0, \mu_0) \leq 0$. But we have already argued that $-A_i(s_0, \alpha_0, \mu_0) > 0$ if $\alpha_{i,0} = g_i(\alpha_0) = 0$. This would lead to a contradiction and, hence, $\alpha_{i,0} > 0$ for all *i*. This implies that $\alpha_{i,0} - A_i(s_0, \alpha_0, \mu_0) > 0$ for all *i*. Therefore,

$$H(\alpha_0)\alpha_{i,0} = H(\alpha_0)g_i(\alpha_0) = \max[\alpha_{i,0} - A_i(s_0, \alpha_0, \mu_0), 0] = \alpha_{i,0} - A_i(s_0, \alpha_0, \mu_0)$$

This implies that $H(\alpha_0) = H(\alpha_0) \sum_{i=1}^{I} \alpha_{i,0} = \sum_{i=1}^{I} \alpha_{i,0} - \sum_{i=1}^{I} A_i(s_0, \alpha_0, \mu_0) = 1.$ Therefore, $\alpha_{i,0} = \alpha_{i,0} - A^i(s_0, \alpha_0, \mu_0)$ for all *i* and thus $A^i(s_0, \alpha_0, \mu_0) = 0$ for all *i*.

Proof of Lemma 20. Notice that for t > N,

$$s \in \Omega_{t-N} \cap \Omega_{1,t-1}^{N-1} \quad \Rightarrow \quad E^{P^{\theta^*}} \left[\mathbb{1}_{\Omega_{t-N} \cap \Omega_{1,t}^N} \middle| \mathcal{F}_{t-1} \right](s) = P^{\theta^*} \left[s_t = 1 \middle| \mathcal{F}_{t-1} \right](s) = \theta^*(1) > 0,$$

$$(2)$$

where we use the convention that $\Omega_{1,t}^0 = \Omega$ to handle the case where N = 1.

For $s \in {\Omega_t \text{ i.o.}}$ arbitrarily chosen, there exists a sequence ${t_k}_{k=1}^{\infty}$ such that $s \in \Omega_{t_k}$ for every $k = 1, 2, \cdots$. Since $\Omega_{1,t}^0 = \Omega$, $s \in \Omega_{(t_k+1)-1} \cap \Omega_{1,(t_k+1)-1}^{1-1}$. Therefore, (40) implies that

$$\sum_{t=1}^{\infty} E^{P^{\theta^*}} \left[\mathbbm{1}_{\Omega_{t-1} \cap \Omega_{1,t}^1} \middle| \mathcal{F}_{t-1} \right] (s) \geq \sum_{k=1}^{\infty} E^{P^{\theta^*}} \left[\mathbbm{1}_{\Omega_{(t_k+1)-1} \cap \Omega_{1,t_k+1}^1} \middle| \mathcal{F}_{t_k} \right] (s)$$
$$\geq \sum_{k=1}^{\infty} P^{\theta^*} \left[s_{t_{k+1}} = \mathbbm{1} \middle| \mathcal{F}_{t_k} \right] (s) = +\infty,$$

and it follows by Lemma 20 that $\sum_{t=1}^{\infty} 1_{\Omega_{t-1} \cap \Omega_{1,t}^1}(s) = +\infty$ P^{θ^*} – a.s. on $\{\Omega_t \text{ i.o.}\}$.

Suppose that the result holds for N-1. So, P^{θ^*} -a.s. on $\{\Omega_t \text{ i.o.}\}$, there exists $\{t_k\}_{k=1}^{\infty}$ such that $s \in \Omega_{t_k-(N-1)} \cap \Omega_{1,t_k}^{N-1} = \Omega_{(t_k+1)-N} \cap \Omega_{1,(t_k+1)-1}^{N-1}$ so that

$$\sum_{t=N}^{\infty} E^{P^{\theta^*}} \left[\mathbb{1}_{\Omega_{t-N} \cap \Omega_{1,t}^N} \Big| \mathcal{F}_{t-1} \right] (s) \geq \sum_{k=1}^{\infty} E^{P^{\theta^*}} \left[\mathbb{1}_{\Omega_{(t_k+1)-N} \cap \Omega_{1,t_k+1}^N} \Big| \mathcal{F}_{t_k} \right] (s)$$
$$\geq \sum_{k=1}^{\infty} P^{\theta^*} \left[s_{t_{k+1}} = 1 \Big| \mathcal{F}_{t_k} \right] (s) = +\infty,$$

and it follows by Lemma 20 that $\sum_{t=N}^{\infty} 1_{\Omega_{t-N} \cap \Omega_{1,t}^N}(s) = +\infty$ P^{θ^*} – a.s. on { Ω_t i.o.}. That completes the induction argument and the proof.