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Proof of Lemma 1. Observe first that
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for any 1 ≤ k ≤ t. Then, we have that
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Proof of Lemma 12. Boundedness of U follows because Y ∞(ξ) is bounded.

Convexity follows from the strict concavity of ui.

To prove that U(ξ, μ) is closed, take any sequence {wn} such that wn ∈ U(ξ, μ)
for all n and wn → w ∈ R

I
+. Take the corresponding sequence {cn} ⊂ Y ∞(ξ). Since

Y ∞(ξ) is compact under the sup-norm, there exists a convergent subsequence {cnk}
such that cnk → c ∈ Y ∞(ξ). Thus, it follows by definition that UPi

i (cnk
i ) ≥ wnk

i for all
k and for all i. Since ui is continuous and C(s0) is compact, then UPi

i is continuous
under the sup-norm. Thus, it follows that UPi

i (ci) ≥ wi, for all i. Consequently,
w ∈ U(ξ, μ) by definition and U(ξ, μ) is closed.

Proof of Lemma 13. That v∗ is increasing in α and homogenous of degree
one is straightforward. v∗(ξ, α, μ) is bounded because the constraint set, Y ∞(ξ), is
uniformly bounded and β ∈ (0, 1). Let Y k(ξ) ≡ {c ∈ Y ∞(ξ) : ci(st) ≡ ci,t (s) = 0
for all t ≥ k} be the k−truncated set of feasible allocations. Note that Y k(ξ) ⊂
Y k+1(ξ) ⊂ Y ∞(ξ) and define

v∗k(ξ, α, μ) ≡ max
c ∈ Y k(ξ)

∑

i∈I
αi UPi

i (ci)

Suppose that
{

(μn
i )Ii=1

}

is a sequence of probability measures such that μn
i converges
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weakly to μi ∈ P(ΔK−1) for all i. Given k, note that

k
∑

t=0

βt

∫
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(

C(st)
)
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μn
i (dθ) →

k
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∫

ΔK−1

(

∑

st

P θ
(

C(st)
)

ui(ci(st))
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μi (dθ)

since P θ
(

C(st)
)

is continuous and bounded for all t and st. Thus, it follows from the
Maximum Theorem that v∗k(ξ, α, μ) is continuous in (μ, α) for all ξ.

Note that v∗k(ξ, α, μ) ≤ v∗k+1(ξ, α, μ) ≤ v∗(ξ, α, μ) for all (ξ, α, μ). Hence, v∗k(ξ, α, μ) →
v∗(ξ, α, μ) for each (ξ, α, μ) since there exists some c∗ ∈ Y ∞(ξ) attaining v∗(ξ, α, μ).
Now we show that this convergence is uniform.

Given any (ξ, α, μ), let c∗ ∈ Y ∞(ξ) attain v∗(ξ, α, μ) and define c∗
k

as its k−truncated
version. Then,

0 ≤ v∗(ξ, α, μ) − v∗k(ξ, α, μ) ≤
I
∑

i=1

αi(U
Pi
i (c∗i ) − UPi

i (c∗
k

i )) ≤ βk

1 − β
max

i
ui(y).

Since β ∈ (0, 1), this convergence is uniform (i.e., the RHS is independent of (ξ, α, μ))
and thus v∗(ξ, α, μ) is continuous.

Proof of Lemma 14. Observe that v∗(ξ, α, μ) ≥ αu for all α ∈ ΔI−1 holds if
and only if

min
eα∈ΔI−1

[

v∗(ξ, α̃, μ) −
I
∑

i=1

α̃i wi

]

≥ 0.

Therefore, it suffices to show that w ∈ U(ξ, μ) if and only if w ≥ 0 and v∗(ξ, α, μ) ≥
α w for all α ∈ ΔI−1.

For any w ∈ U(ξ, μ), (28) implies that v∗(ξ, α, μ) ≥ α w for all α ∈ ΔI−1.
To show the converse, suppose that w ≥ 0 and v∗(ξ, α, μ) ≥ α w for all α ∈ ΔI−1

but w /∈ U(ξ, μ). This implies that � w̃ ∈ U(ξ, μ) such that w̃ ≥ w. Since U(ξ, μ) is
convex, it follows by the separating hyperplane theorem that ∃ η ∈ R

I
+/{0} such that

ηw ≥ ηw̃ for all w̃ ∈ U(ξ, μ). Since U(ξ, μ) is closed, ηw > ηw̃ for all w̃ ∈ U(ξ, μ),
where η can be normalized such that η ∈ ΔI−1. But then v∗(ξ, η, μ) ≥ η w > η w̃ for
all w̃ ∈ U(ξ, μ). This contradicts (28).

Proof of Step 3, Theorem 3. We show that there exists some α0 = α(s0, μ0)
such that Ai(s0, α0, μ0) = 0 for all i, given (s0, μ0).

Note first that if αi = 0, then ci(ξ, α) = 0 and consequently Ai(ξ, α, μ) < 0 for all
(ξ, μ). Define the vector-valued function g on ΔI−1 as follows:

gi(α) =
max[αi − Ai(s0, α, μ0), 0]

∑I
i=1 max[αi − Ai(s0, α, μ0), 0]

, (1)
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for each i. Note that H(α) =
∑I

i=1 max[αi − Ai(s0, α, μ0), 0] is positive for all α ∈
ΔI−1. Also, gi(α) ∈ [0, 1] and

∑I
i=1 gi(α) = 1 for all α. Thus, g is a continuous

function mapping ΔI−1 into itself. The Brower’s fixed point theorem implies that
there exists some α0 = α(s0, μ0) such that α0 = g(α0).

Suppose now that αi,0 = 0 for some i. For such α0, (39) implies that −Ai(s0, α0, μ0) ≤
0. But we have already argued that −Ai(s0, α0, μ0) > 0 if αi,0 = gi(α0) = 0. This
would lead to a contradiction and, hence, αi,0 > 0 for all i. This implies that
αi,0 − Ai(s0, α0, μ0) > 0 for all i. Therefore,

H(α0)αi,0 = H(α0)gi (α0) = max[αi,0 − Ai(s0, α0, μ0), 0] = αi,0 − Ai(s0, α0, μ0).

This implies that H(α0) = H(α0)
∑I

i=1 αi,0 =
∑I

i=1 αi,0 −
∑I

i=1 Ai(s0, α0, μ0) = 1.
Therefore, αi,0 = αi,0 −Ai(s0, α0, μ0) for all i and thus Ai(s0, α0, μ0) = 0 for all i.

Proof of Lemma 20. Notice that for t > N ,

s ∈ Ωt−N∩ΩN−1
1,t−1 ⇒ EP θ∗

[

1Ωt−N∩ΩN
1,t

∣

∣

∣Ft−1

]

(s) = P θ∗
[

st = 1
∣

∣

∣

∣

Ft−1

]

(s) = θ∗ (1) > 0,

(2)
where we use the convention that Ω0

1,t = Ω to handle the case where N = 1.
For s ∈ {Ωt i.o.} arbitrarily chosen, there exists a sequence {tk}∞k=1 such that

s ∈ Ωtk for every k = 1, 2, · · · . Since Ω0
1,t = Ω, s ∈ Ω(tk+1)−1 ∩Ω1−1

1,(tk+1)−1. Therefore,
(40) implies that

∞
∑

t=1

EP θ∗
[

1Ωt−1∩Ω1
1,t

∣

∣

∣Ft−1

]

(s) ≥
∞
∑

k=1

EP θ∗
[

1Ω(tk+1)−1∩Ω1
1,tk+1

∣

∣

∣Ftk

]

(s)

≥
∞
∑

k=1

P θ∗
[

stk+1
= 1

∣

∣

∣

∣

Ftk

]

(s) = +∞,

and it follows by Lemma 20 that
∑∞

t=1 1Ωt−1∩Ω1
1,t

(s) = +∞ P θ∗ − a.s. on {Ωt i.o.}.
Suppose that the result holds for N − 1. So, P θ∗-a.s. on {Ωt i.o.}, there exists

{tk}∞k=1 such that s ∈ Ωtk−(N−1) ∩ ΩN−1
1,tk

= Ω(tk+1)−N ∩ ΩN−1
1,(tk+1)−1 so that

∞
∑

t=N

EP θ∗
[

1Ωt−N∩ΩN
1,t

∣

∣

∣Ft−1

]

(s) ≥
∞
∑

k=1

EP θ∗
[

1Ω(tk+1)−N∩ΩN
1,tk+1

∣

∣

∣Ftk

]

(s)

≥
∞
∑

k=1

P θ∗
[

stk+1
= 1

∣

∣

∣

∣

Ftk

]

(s) = +∞,

and it follows by Lemma 20 that
∑∞

t=N 1Ωt−N∩ΩN
1,t

(s) = +∞ P θ∗ − a.s. on{Ωt i.o.}.
That completes the induction argument and the proof.
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