Supplementary Materials

Proof of Lemma 1. Observe first that

$$
p_{i}\left(s_{k} \mid s^{k-1}\right)=\int_{\Delta^{K-1}} \theta\left(s_{k}\right) \mu_{i, s^{k-1}}(d \theta)
$$

for any $1 \leq k \leq t$. Then, we have that

$$
\begin{aligned}
\int_{\Delta^{K-1}} P^{\theta}(B) \mu_{i, s^{t}}(d \theta) & =\int_{\Delta^{K-1}} P^{\theta}(B) \frac{\theta\left(s_{t}\right) \mu_{i, s^{t-1}}(d \theta)}{\int_{\Delta^{K-1}} \theta\left(s_{t}\right) \mu_{i, s^{t-1}}(d \theta)} \\
& =\frac{1}{p_{i}\left(s_{t} \mid s^{t-1}\right)} \cdots \frac{1}{\left.p_{i}\left(s_{1} \mid s_{0}\right)\right)} \int_{\Delta^{K-1}} P^{\theta}(B) \theta\left(s_{t}\right) \ldots \theta\left(s_{1}\right) \mu_{i, 0}(d \theta) \\
& =\frac{1}{P_{i}\left(C\left(s^{t}\right)\right)} \int_{\Delta^{K-1}} P^{\theta}\left(B_{s^{t}}\right) \mu_{i, 0}(d \theta) \\
& =\frac{P_{i}\left(B_{s^{t}}\right)}{P_{i}\left(C\left(s^{t}\right)\right)}=P_{i, s^{t}}(B) .
\end{aligned}
$$

Proof of Lemma 12. Boundedness of \mathcal{U} follows because $Y^{\infty}(\xi)$ is bounded. Convexity follows from the strict concavity of u_{i}.

To prove that $\mathcal{U}(\xi, \mu)$ is closed, take any sequence $\left\{w^{n}\right\}$ such that $w^{n} \in \mathcal{U}(\xi, \mu)$ for all n and $w^{n} \rightarrow \bar{w} \in \mathbb{R}_{+}^{I}$. Take the corresponding sequence $\left\{c^{n}\right\} \subset Y^{\infty}(\xi)$. Since $Y^{\infty}(\xi)$ is compact under the sup-norm, there exists a convergent subsequence $\left\{c^{n_{k}}\right\}$ such that $c^{n_{k}} \rightarrow \bar{c} \in Y^{\infty}(\xi)$. Thus, it follows by definition that $U_{i}^{P_{i}}\left(c_{i}^{n_{k}}\right) \geq w_{i}^{n_{k}}$ for all k and for all i. Since u_{i} is continuous and $\mathbb{C}\left(s_{0}\right)$ is compact, then $U_{i}^{P_{i}}$ is continuous under the sup-norm. Thus, it follows that $U_{i}^{P_{i}}\left(\bar{c}_{i}\right) \geq \bar{w}_{i}$, for all i. Consequently, $\bar{w} \in \mathcal{U}(\xi, \mu)$ by definition and $\mathcal{U}(\xi, \mu)$ is closed.

Proof of Lemma 13. That v^{*} is increasing in α and homogenous of degree one is straightforward. $v^{*}(\xi, \alpha, \mu)$ is bounded because the constraint set, $Y^{\infty}(\xi)$, is uniformly bounded and $\beta \in(0,1)$. Let $Y^{k}(\xi) \equiv\left\{c \in Y^{\infty}(\xi): c_{i}\left(s^{t}\right) \equiv c_{i, t}(s)=0\right.$ for all $t \geq k\}$ be the k-truncated set of feasible allocations. Note that $Y^{k}(\xi) \subset$ $Y^{k+1}(\xi) \subset Y^{\infty}(\xi)$ and define

$$
v_{k}^{*}(\xi, \alpha, \mu) \equiv \max _{c \in Y^{k}(\xi)} \sum_{i \in \mathcal{I}} \alpha_{i} U_{i}^{P_{i}}\left(c_{i}\right)
$$

Suppose that $\left\{\left(\mu_{i}^{n}\right)_{i=1}^{I}\right\}$ is a sequence of probability measures such that μ_{i}^{n} converges
weakly to $\bar{\mu}_{i} \in \mathcal{P}\left(\Delta^{K-1}\right)$ for all i. Given k, note that
$\sum_{t=0}^{k} \beta^{t} \int_{\Delta^{K-1}}\left(\sum_{s^{t}} P^{\theta}\left(C\left(s^{t}\right)\right) u_{i}\left(c_{i}\left(s^{t}\right)\right)\right) \mu_{i}^{n}(d \theta) \rightarrow \sum_{t=0}^{k} \beta^{t} \int_{\Delta^{K-1}}\left(\sum_{s^{t}} P^{\theta}\left(C\left(s^{t}\right)\right) u_{i}\left(c_{i}\left(s^{t}\right)\right)\right) \bar{\mu}_{i}(d \theta)$
since $P^{\theta}\left(C\left(s^{t}\right)\right)$ is continuous and bounded for all t and s^{t}. Thus, it follows from the Maximum Theorem that $v_{k}^{*}(\xi, \alpha, \mu)$ is continuous in (μ, α) for all ξ.

Note that $v_{k}^{*}(\xi, \alpha, \mu) \leq v_{k+1}^{*}(\xi, \alpha, \mu) \leq v^{*}(\xi, \alpha, \mu)$ for all (ξ, α, μ). Hence, $v_{k}^{*}(\xi, \alpha, \mu) \rightarrow$ $v^{*}(\xi, \alpha, \mu)$ for each (ξ, α, μ) since there exists some $c^{*} \in Y^{\infty}(\xi)$ attaining $v^{*}(\xi, \alpha, \mu)$. Now we show that this convergence is uniform.

Given any (ξ, α, μ), let $c^{*} \in Y^{\infty}(\xi)$ attain $v^{*}(\xi, \alpha, \mu)$ and define $c^{*^{k}}$ as its k-truncated version. Then,

$$
0 \leq v^{*}(\xi, \alpha, \mu)-v_{k}^{*}(\xi, \alpha, \mu) \leq \sum_{i=1}^{I} \alpha_{i}\left(U_{i}^{P_{i}}\left(c_{i}^{*}\right)-U_{i}^{P_{i}}\left(c_{i}^{* k}\right)\right) \leq \frac{\beta^{k}}{1-\beta} \max _{i} u_{i}(\bar{y})
$$

Since $\beta \in(0,1)$, this convergence is uniform (i.e., the RHS is independent of (ξ, α, μ)) and thus $v^{*}(\xi, \alpha, \mu)$ is continuous.

Proof of Lemma 14. Observe that $v^{*}(\xi, \alpha, \mu) \geq \alpha u$ for all $\alpha \in \Delta^{I-1}$ holds if and only if

$$
\min _{\widetilde{\alpha} \in \Delta^{I-1}}\left[v^{*}(\xi, \widetilde{\alpha}, \mu)-\sum_{i=1}^{I} \widetilde{\alpha}_{i} w_{i}\right] \geq 0 .
$$

Therefore, it suffices to show that $w \in \mathcal{U}(\xi, \mu)$ if and only if $w \geq 0$ and $v^{*}(\xi, \alpha, \mu) \geq$ αw for all $\alpha \in \Delta^{I-1}$.

For any $w \in \mathcal{U}(\xi, \mu)$, (28) implies that $v^{*}(\xi, \alpha, \mu) \geq \alpha w$ for all $\alpha \in \Delta^{I-1}$.
To show the converse, suppose that $w \geq 0$ and $v^{*}(\xi, \alpha, \mu) \geq \alpha w$ for all $\alpha \in \Delta^{I-1}$ but $w \notin \mathcal{U}(\xi, \mu)$. This implies that $\nexists \widetilde{w} \in \mathcal{U}(\xi, \mu)$ such that $\widetilde{w} \geq w$. Since $\mathcal{U}(\xi, \mu)$ is convex, it follows by the separating hyperplane theorem that $\exists \eta \in \mathbb{R}_{+}^{I} /\{0\}$ such that $\eta w \geq \eta \widetilde{w}$ for all $\widetilde{w} \in \mathcal{U}(\xi, \mu)$. Since $\mathcal{U}(\xi, \mu)$ is closed, $\eta w>\eta \widetilde{w}$ for all $\widetilde{w} \in \mathcal{U}(\xi, \mu)$, where η can be normalized such that $\eta \in \Delta^{I-1}$. But then $v^{*}(\xi, \eta, \mu) \geq \eta w>\eta \widetilde{w}$ for all $\widetilde{w} \in \mathcal{U}(\xi, \mu)$. This contradicts (28).

Proof of Step 3, Theorem 3. We show that there exists some $\alpha_{0}=\alpha\left(s_{0}, \mu_{0}\right)$ such that $A_{i}\left(s_{0}, \alpha_{0}, \mu_{0}\right)=0$ for all i, given $\left(s_{0}, \mu_{0}\right)$.

Note first that if $\alpha_{i}=0$, then $c_{i}(\xi, \alpha)=0$ and consequently $A_{i}(\xi, \alpha, \mu)<0$ for all (ξ, μ). Define the vector-valued function g on Δ^{I-1} as follows:

$$
\begin{equation*}
g_{i}(\alpha)=\frac{\max \left[\alpha_{i}-A_{i}\left(s_{0}, \alpha, \mu_{0}\right), 0\right]}{\sum_{i=1}^{I} \max \left[\alpha_{i}-A_{i}\left(s_{0}, \alpha, \mu_{0}\right), 0\right]}, \tag{1}
\end{equation*}
$$

for each i. Note that $H(\alpha)=\sum_{i=1}^{I} \max \left[\alpha_{i}-A_{i}\left(s_{0}, \alpha, \mu_{0}\right), 0\right]$ is positive for all $\alpha \in$ Δ^{I-1}. Also, $g_{i}(\alpha) \in[0,1]$ and $\sum_{i=1}^{I} g_{i}(\alpha)=1$ for all α. Thus, g is a continuous function mapping Δ^{I-1} into itself. The Brower's fixed point theorem implies that there exists some $\alpha_{0}=\alpha\left(s_{0}, \mu_{0}\right)$ such that $\alpha_{0}=g\left(\alpha_{0}\right)$.

Suppose now that $\alpha_{i, 0}=0$ for some i. For such α_{0}, (39) implies that $-A_{i}\left(s_{0}, \alpha_{0}, \mu_{0}\right) \leq$ 0 . But we have already argued that $-A_{i}\left(s_{0}, \alpha_{0}, \mu_{0}\right)>0$ if $\alpha_{i, 0}=g_{i}\left(\alpha_{0}\right)=0$. This would lead to a contradiction and, hence, $\alpha_{i, 0}>0$ for all i. This implies that $\alpha_{i, 0}-A_{i}\left(s_{0}, \alpha_{0}, \mu_{0}\right)>0$ for all i. Therefore,

$$
H\left(\alpha_{0}\right) \alpha_{i, 0}=H\left(\alpha_{0}\right) g_{i}\left(\alpha_{0}\right)=\max \left[\alpha_{i, 0}-A_{i}\left(s_{0}, \alpha_{0}, \mu_{0}\right), 0\right]=\alpha_{i, 0}-A_{i}\left(s_{0}, \alpha_{0}, \mu_{0}\right)
$$

This implies that $H\left(\alpha_{0}\right)=H\left(\alpha_{0}\right) \sum_{i=1}^{I} \alpha_{i, 0}=\sum_{i=1}^{I} \alpha_{i, 0}-\sum_{i=1}^{I} A_{i}\left(s_{0}, \alpha_{0}, \mu_{0}\right)=1$. Therefore, $\alpha_{i, 0}=\alpha_{i, 0}-A^{i}\left(s_{0}, \alpha_{0}, \mu_{0}\right)$ for all i and thus $A^{i}\left(s_{0}, \alpha_{0}, \mu_{0}\right)=0$ for all i.

Proof of Lemma 20. Notice that for $t>N$,

$$
\begin{equation*}
s \in \Omega_{t-N} \cap \Omega_{1, t-1}^{N-1} \quad \Rightarrow \quad E^{P^{\theta^{*}}}\left[1_{\Omega_{t-N} \cap \Omega_{1, t}^{N}} \mid \mathcal{F}_{t-1}\right](s)=P^{\theta^{*}}\left[s_{t}=1 \mid \mathcal{F}_{t-1}\right](s)=\theta^{*}(1)>0 \tag{2}
\end{equation*}
$$

where we use the convention that $\Omega_{1, t}^{0}=\Omega$ to handle the case where $N=1$.
For $s \in\left\{\Omega_{t}\right.$ i.o. $\}$ arbitrarily chosen, there exists a sequence $\left\{t_{k}\right\}_{k=1}^{\infty}$ such that $s \in \Omega_{t_{k}}$ for every $k=1,2, \cdots$. Since $\Omega_{1, t}^{0}=\Omega, s \in \Omega_{\left(t_{k}+1\right)-1} \cap \Omega_{1,\left(t_{k}+1\right)-1}^{1-1}$. Therefore, (40) implies that

$$
\begin{aligned}
\sum_{t=1}^{\infty} E^{P^{\theta^{*}}}\left[1_{\Omega_{t-1} \cap \Omega_{1, t}^{1}} \mid \mathcal{F}_{t-1}\right](s) & \geq \sum_{k=1}^{\infty} E^{P^{\theta^{*}}}\left[1_{\Omega_{\left(t_{k}+1\right)-1} \cap \Omega_{1, t_{k}+1}^{1}} \mid \mathcal{F}_{t_{k}}\right](s) \\
& \geq \sum_{k=1}^{\infty} P^{\theta^{*}}\left[s_{t_{k+1}}=1 \mid \mathcal{F}_{t_{k}}\right](s)=+\infty
\end{aligned}
$$

and it follows by Lemma 20 that $\sum_{t=1}^{\infty} 1_{\Omega_{t-1} \cap \Omega_{1, t}^{1}}(s)=+\infty \quad P^{\theta^{*}}-$ a.s. on $\left\{\Omega_{t}\right.$ i.o. $\}$.
Suppose that the result holds for $N-1$. So, $P^{\theta^{*}}$-a.s. on $\left\{\Omega_{t}\right.$ i.o. $\}$, there exists $\left\{t_{k}\right\}_{k=1}^{\infty}$ such that $s \in \Omega_{t_{k}-(N-1)} \cap \Omega_{1, t_{k}}^{N-1}=\Omega_{\left(t_{k}+1\right)-N} \cap \Omega_{1,\left(t_{k}+1\right)-1}^{N-1}$ so that

$$
\begin{aligned}
\sum_{t=N}^{\infty} E^{P^{\theta^{*}}}\left[1_{\Omega_{t-N} \cap \Omega_{1, t}^{N}} \mid \mathcal{F}_{t-1}\right](s) & \geq \sum_{k=1}^{\infty} E^{P^{\theta^{*}}}\left[1_{\Omega_{\left(t_{k}+1\right)-N} \cap \Omega_{1, t_{k}+1}^{N}} \mid \mathcal{F}_{t_{k}}\right](s) \\
& \geq \sum_{k=1}^{\infty} P^{\theta^{*}}\left[s_{t_{k+1}}=1 \mid \mathcal{F}_{t_{k}}\right](s)=+\infty
\end{aligned}
$$

and it follows by Lemma 20 that $\sum_{t=N}^{\infty} 1_{\Omega_{t-N} \cap \Omega_{1, t}^{N}}(s)=+\infty \quad P^{\theta^{*}}-$ a.s. on $\left\{\Omega_{t}\right.$ i.o. $\}$. That completes the induction argument and the proof.

