Supplementary Materials

Proof of Lemma 1. Observe first that
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for any 1 < k < t. Then, we have that
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Proof of Lemma 12. Boundedness of U follows because Y*°(¢) is bounded.
Convexity follows from the strict concavity of ;.

To prove that U(&, p) is closed, take any sequence {w™} such that w™ € U(E, u)
for all n and w™ — W € R.. Take the corresponding sequence {c"} C Y*°(£). Since
Y (&) is compact under the sup-norm, there exists a convergent subsequence {c¢"*}
such that ¢ — ¢ € Y°(¢). Thus, it follows by definition that U (¢[*) > w[™ for all
k and for all 4. Since w; is continuous and C(sg) is compact, then Uipi is continuous
under the sup-norm. Thus, it follows that Ui}‘D ‘(¢;) > w;, for all i. Consequently,
w € U(E, 1) by definition and U(&, ) is closed. m

Proof of Lemma 13. That v* is increasing in « and homogenous of degree
one is straightforward. v*(&, «, p) is bounded because the constraint set, Y°°(&), is
uniformly bounded and 8 € (0,1). Let Y*(¢) = {c € Y™(¢) : ¢;(s!) = cis(s) = 0
for all t > k} be the k—truncated set of feasible allocations. Note that Y*(¢) C
YE+HL(€) € YO(€) and define

V(& u) = max a; U ()
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Suppose that {(“?){:1} is a sequence of probability measures such that p converges



weakly to fi; € P(AK 1) for all i. Given k, note that
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since P? (C’ (St)) is continuous and bounded for all ¢ and s'. Thus, it follows from the
Maximum Theorem that v} (&, o, i) is continuous in (u, «) for all &.
Note that v (£, a, ) < vp (&, p) < v*(§, a, ) for all (€, «, p). Hence, vy (€, o, p) —
v*(&, a, p) for each (€, a, p) since there exists some ¢* € Y°°(¢) attaining v* (€, a, ).
Now we show that this convergence is uniform.
Given any (£, a, ), let ¢* € Y°°(£) attain v*(&, «, ) and define ¢ as its k—truncated

version. Then,
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Since 3 € (0, 1), this convergence is uniform (i.e., the RHS is independent of (£, a, 1))
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and thus v* (&, a, p) is continuous. =

Proof of Lemma 14. Observe that v*(&,a, i) > au for all a € AT~! holds if
and only if

i >
_min v"(€,p) - Zazwz 0.

Therefore, it suffices to show that w € U(¢, ,u) 1f and only if w > 0 and v*(§, o, ) >
aw for all « € AT,

For any w € U(&, 1), (28) implies that v* (€, o, 1) > aw for all a € AT

To show the converse, suppose that w > 0 and v* (£, o, ) > aw for all « € AT~1
but w ¢ U(&, ). This implies that 3 @ € U(&, ) such that w > w. Since U(&, ) is
convex, it follows by the separating hyperplane theorem that 3 n € R /{0} such that
nw > nw for all w € U(E, u). Since U(&, ) is closed, nw > nw for all w € U(E, p),
where 1 can be normalized such that n € A=, But then v*(&,n, 1) > nw > n @ for
all w € U(&, ). This contradicts (28). =

Proof of Step 3, Theorem 3. We show that there exists some oy = a(so, 1)
such that A;(so, ag, g) = 0 for all i, given (s, f1g).

Note first that if a; = 0, then ¢; (£, «) = 0 and consequently A;(&, «, p) < 0 for all
(&, 1). Define the vector-valued function g on A/~! as follows:
: (1)

max|o; — Ai (S0, , 1), 0]
Zi[:l max[a; — A;(so, @, #o)a 0]

gi(a) =
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for each i. Note that H(a) = 22.121 max|a; — A;i(s0, @, p1g), 0] is positive for all a €
A1 Also, gi(a) € [0,1] and Y.L gi(a) = 1 for all a. Thus, g is a continuous
function mapping A’~! into itself. The Brower’s fixed point theorem implies that
there exists some oy = (s, ) such that ag = g(a).

Suppose now that «; o = 0 for some ¢. For such oy, (39) implies that —A;(so, o, f1) <
0. But we have already argued that —A;(so, ao, pg) > 0 if ;0 = gi(ap) = 0. This
would lead to a contradiction and, hence, a;¢ > 0 for all ¢. This implies that

a;0 — Ai(s0, a, pig) > 0 for all i. Therefore,
H(ao)au,0 = H(a)gi (o) = max|og o — Ai(So0, 20, o), 0] = a0 — Ai(s0, o, fg)-

This implies that H(ag) = H(ag) YL o = S a0 — oL, Ai(s0, s o) = 1.
Therefore, a; o = a0 — A%(s0, 0, 1) for all i and thus A*(sg, a, p1y) = 0 for all i. m

Proof of Lemma 20. Notice that for ¢ > N,
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where we use the convention that Q(l),t = (1 to handle the case where N = 1.

For s € {Q i.0.} arbitrarily chosen, there exists a sequence {t;}p—; such that

s €y, for every k =1,2,---. Since Q(l]’t =Q, 5 € Q411 ﬂQi_(tlkH)il. Therefore,
(40) implies that
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and it follows by Lemma 20 that 2, lg, ,nat,(8) =+o0 P% —as. on {Qio0.}.
Suppose that the result holds for N — 1. So, P’ -a.s. on {Q;i.0.}, there exists

{tk} ey such that s € Qy, _(n_1)N ijt_kl = Qu+1)-N N Qi\f(;;+1)_l so that
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and it follows by Lemma 20 that Y .~ \ 1Qt7NmQ{\{t(s) = +oo P” —as. on{Qio.}.

That completes the induction argument and the proof. m





