
Abstract

Tarski’s theorem advises us that no completely satisfactory definition of
the term true sentence can be expected. It is here shown that, nevertheless,
it is possible to formulate within a fragment T of Zermelo set theory Z a de-
finition of the truth of sentences that is materially adequate, formally correct,
explicit, universal, versatile, and modestly paraconsistent. The definition is
extended from sentences to deductive theories, and an investigation is begun
into why the antinomy of the liar fails to arise.
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1 Introduction

It is the purpose of this paper to offer an explicit and materially adequate definition
of truth for any denumerable language that contains, in addition to the standard
elementary theory of identity, enough of its own syntax to name all its expressions
and to distinguish among them effectively. The languages for which the definition
is appropriate include the language of Zermelo–Fraenkel set theory ZF, and any
applied language L+ constructed from it by adding items of extralogical vocabul-
ary. The background theory T of the investigation, which is fixed, is a fragment
of Zermelo set theory Z. A detailed discussion and defence of the definition are
offered in Miller (2009).

A structural-descriptive name pyq of the formula y is a name, such as a quot-
ation name or a numeral for the Gödel number of y, from which the syntactic
structure of y may be deduced. The most important demand imposed on any
structural-descriptive names pxq and pzq given to the formulas x, z, is that the
sentence pxq = pzq (that is, the sentence consisting of pxq, the identity sign, and
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Patrick Suppes, and Jan Woleński, for the interest that they have shown, and the criticism that
they have provided. Responsibility for errors and misjudgements is strictly reserved.

The two papers are dedicated to the memory of Karl Popper, whose devotion to truth never
wavered.



pzq, in that order) be demonstrable or refutable in the background theory T.
Tarski called a definition of the term ‘true sentence’ materially adequate for the

language L if within the background theory T it logically implies every instance
of the T-scheme

P is a true sentence if & only if p, (T)

where ‘p’ is replaced by a sentence y of L and ‘P ’ is replaced by a structural-
descriptive name pyq of y. Tarski observed that for a language L with only finitely
many distinct sentences x0, . . . , xj−1, the problem of the definition of truth, as he
conceived it, that is, the problem of providing a materially adequate definition of
the term ‘true sentence’, can be fully solved, provided that each sentence xi of L
is furnished with a structural-descriptive name pxiq (Tarski 1933a, p. 188). We
may define ‘y is a true sentence’, or Tr(y), by either of the equivalences

Tr(y) ⇔Df (y = P0 ∧ p0) ∨ . . . ∨ (y = Pj−1 ∧ pj−1), (1.0)

Tr(y) ⇔Df (y = P0 → p0) ∧ . . . ∧ (y = Pj−1 → pj−1), (1.1)

where, for each i < j, the sentence xi replaces ‘pi’, and the name pxiq replaces
‘Pi’. It is evident that, provided that the connectives ∨, ∧, and → are governed by
the usual (classical) rules, both (1.0) and (1.1) are materially adequate definitions
of truth. It is evident too that each of these definitions is longer than any sentence
of the language L, and has to be formulated outside L.

It is the burden of Tarski’s theorem that no language L whose deductive struc-
ture is of a complexity that allows forms of self-ascription can consistently include
within itself a definition of the term ‘true sentence’ that is materially adequate for
L. Languages to which Tarski’s theorem applies include in particular the languages
of elementary arithmetic and set theory.

Tarski’s principal achievement was to show how, for each elementary language
L0, it is possible to prepare, within a richer metalanguage L1, an explicit definition,
materially adequate for L0, of the term ‘true sentence’. The metalanguage L1 must
be richer than L0 in the sense that it must incorporate stronger set-theoretical
postulates than L0 does, not in the sense that it must boast a wider vocabulary.
To generate a definition of the term ‘true sentence’ that is materially adequate
for L1, a yet richer metametalanguage L2 must be presumed on. An unending
hierarchy of languages is in this way initiated, and the concept of ‘true sentence’
is never completely defined.

Tarski’s theorem will not be contested here. But the conclusion customarily
drawn from it, that there can be no fully satisfactory definition of the concept
of truth, for arithmetic or for set theory, will be constructively contested (if not
refuted). Truth, as it is to be defined in this paper, is not a property Tr of
sentences but a function θ, from terms (names, descriptions, variables) that stand
for sentences, to deductive theories. Described informally, θ(y), the truth of y, is
the theory that states the conditions under which the sentence named by the term
y is true. In particular, if x is any sentence of the extended language L+, and pxq
is a structural-descriptive name of x, then θ(pxq) turns out to be identical with
the theory Cn({x}) that consists of all the logical consequences of x; that is to say,
θ(pxq) and x are logically interderivable. The definition of truth to be presented
is materially adequate for the entire language L+ of applied set theory.
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For most of the paper, a somewhat different function, ϑ, will be investigated
alongside the function θ. Only in § 7 will a genuine preference be expressed between
them as definitions of truth. Everything said in the previous paragraph concerning
θ applies equally to the alternative definiens for truth, ϑ.

2 Deductive Theories

This section summarizes the principal results of Tarski’s general metamathematics
(or calculus of deductive systems) that are initially required for an understanding of
the definition of truth to be presented in § 3 below. These results, together with the
less ordinary results presented in § 4 below, can be found, in most cases without
proofs, in Tarski (1935–1936). In addition to the transposition (now common)
of Tarski’s original connotations of the terms ‘deductive theory’ and ‘deductive
system’, two variations deserve remark. The first is that we shall allow sets of
well-formed formulas, and not only sets of sentences (closed formulas), to count
as deductive theories. This change makes little difference until we come in § 7 to
define the truth of theories themselves. The second variation is that we shall invert
the ordering on theories (by set-theoretical inclusion) that Tarski uses throughout
his works, and use instead the ordering by logical derivability. Where Tarski
writes X ⊆ Z, we shall often write Z ` X; the operations of product (intersection)
and sum in Tarski’s treatment, both finite and infinite, become disjunction and
conjunction in the treatment here, with the awkward repercussion that a set-
theoretically expanding sequence of theories will here be called decreasing (see
Theorem 4 below). A more significant discrepancy is that whereas the complement
Ȳ that Tarski defines for the theory Y is a pseudocomplement, which obeys the law
of non-contradiction but not the law of excluded middle, the complement Y′ that
we shall define (in 4.3) is an authocomplement (that is, a dual pseudocomplement),
which obeys the law of excluded middle but not the law of non-contradiction. This
all needs to be said explicitly lest anyone should compare the present report with
Tarski (1935–1936) and conclude with a sigh that everything here is upside down.
It is intended that everything be upside down.

Let S be the set of formulas of a denumerable language L ⊆ L+. An oper-
ation Cn : ℘(S) 7→ ℘(S) is a consequence operation if it fulfils the conditions of
idempotence (2.0), and of finitariness (2.1):

X ⊆ S =⇒ X ⊆ Cn(X) = Cn(Cn(X)) ⊆ S (2.0)

X ⊆ S =⇒ Cn(X) =
⋃
{Cn(Y ) | Y ⊆ X and |Y | < ℵ0}. (2.1)

By (2.1), the operation Cn must also be monotone:

X ⊆ Z ⊆ S =⇒ Cn(X) ⊆ Cn(Z). (2.2)

The pair 〈S,Cn〉 may sometimes be called a deductive system or (to use an ex-
pression of Tarski 1930b, Introduction) a deductive discipline, or simply a logic.
Reference to the set S will usually be omitted. With each consequence operation
Cn is associated a derivability relation ` such that y ∈ Cn(Y ) if & only if Y ` y.
The derivability notation will often, for the sake only of flexibility, be read ‘Y
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implies y’. Note that the logic Cn need not be identical with the logic that reg-
ulates the background theory T. It may be stronger, it may be weaker. Explicit
assumptions about Cn that will made in the course of the paper include: (i) the
conjunction x ∧ z of two formulas is always defined; (ii) their disjunction x ∨ z
is also defined; (iii) both are defined, and the distributive law (2.7) and its dual
hold for all formulas; (iv) the conditional x → z is defined for some or all pairs
of formulas (if it is defined for all pairs, then the distributive law (2.7) holds);
(v) Cn includes at least the whole of classical sentential logic. When we come,
in § 3, to define truth, it will be mandatory that (vi) Cn includes, in addition to
the standard logic of identity, structural-descriptive names for all formulas in S
(and the capacity to prove pxq 6= pzq whenever x and z are distinct formulas), not
forgetting a rule of substitution for free variables, so that, for example, if y and
w are free then Cn(y 6= w) contains each identity of the form pxq 6= pzq. In §§ 5f.
we shall consider what happens when (vii) the logic Cn is, like elementary Peano
arithmetic and ZF, both ω-consistent and incompletable. It is easily proved in T
that if Cn is a logic, and X ⊆ S, then CnX(Y ) = Cn(X ∪ Y ) is also a logic.

If Y = Cn(Y), the set Y ⊆ S is a (deductive) theory. It is a (finitely) axiom-
atizable theory if Y = Cn(Y ) for some finite Y ⊆ S, in which case we may write
y in place of Y. In classical logic, where the operation ∧ of conjunction exists
and, moreover, Cn(∅) = Cn(>) for any theorem >, finite axiomatizability is the
same as axiomatizability by a single formula: Cn(Y) = Cn({y}). It is custom-
ary (and does no harm) to identify formulas x, z for which Cn({x}) = Cn({z}),
and to identify the formula y with the axiomatizable theory Cn({y}), which is
more commonly written Cn(y). Such an identification is innocuous in regard to
(finite) axiomatizability: Cn(Y) = Cn(Y ) for a finite set Y of formulas if & only
if Cn(Y) = Cn(

⋃Y), where Y is a finite set, for example {Cn(y) | y ∈ Y }, of
finitely axiomatizable theories. Tarski’s calculus of deductive theories is of inde-
pendent interest only when the deductive discipline 〈S,Cn〉 is non-trivial in the
sense that, for each formula x ∈ S, there are infinitely many formulas z for which
Cn(x) 6= Cn(z).

As earlier noted, Z ` X is defined to mean X ⊆ Z. It must be borne in mind
that this extended derivability relation ` is not finitary; for evidently, X ` X does
not imply that there is a finite subset Y ⊆ X for which Y ` X. A theory Y is
consistent provided that Y 6= S, and is maximal (or complete) if it is consistent
and has no consistent proper extension. Lindenbaum’s theorem (Tarski 1935–1936,
p. 366), whose proof requires of the logic Cn only that Cn(S) be axiomatizable,
states that if Y is a consistent theory then it has at least one maximal extension Ω.

The disjunction X ∨ Z and conjunction X ∧ Z of the theories X and Z are
defined like this:

X ∨ Z = X ∩ Z, (2.3)
X ∧ Z = Cn(X ∪ Z). (2.4)

Proving that X ∨ Z is a theory requires little work; proving that X ∧ Z is a theory
requires none. The join

∨K and the meet
∧K of a family K of theories are defined

in a similar way:
∨
K =

⋂
K, (2.5)
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∧
K = Cn(

⋃
K). (2.6)

If T is the class of all deductive theories in L, then the meet
∧ T is identical with

the set S of all formulas and is itself a theory. To emphasize this, we sometimes
write S instead of S. Under the derivability relation ` associated with Cn, the
absurd theory S is the logically strongest of all, while the weakest of all is (by
(2.2)) the trivial theory L, which is identical with

∨ T or Cn(∅). L is always
axiomatizable. Note that the disjunction X ∨ Z and conjunction X ∧ Z of two
theories are well defined even if there exist no operations of disjunction x ∨ z and
conjunction x ∧ z on formulas, and the theories S and L are well defined even if
the consequence operation Cn recognizes no minimal and maximal formulas ⊥ and
>. Even when the consequence operation Cn does not support ∨ and ∧, we shall
freely mix in a single expression terms for formulas and terms for theories; x ∨ X,
for example, is to be regarded as shorthand for Cn(x) ∨ X.

It is a routine task to verify that if the logic Cn includes the standard elimina-
tion and introduction rules for disjunction ∨ and conjunction ∧, and in addition
the distributive law

y ∨ (x ∧ z) = (y ∨ x) ∧ (y ∨ z) (2.7)

(or its dual, which is equivalent) holds for all formulas x, y, z, then the class T of
all theories forms a complete distributive lattice with join ∨ and meet ∧ defined
as in (2.3) and (2.4). We have in particular the absorption laws (2.8) and the
distributive law (2.9) for theories:

X ∨ (X ∧ Z) = X = (X ∨ Z) ∧ X, (2.8)
Y ∨ (X ∧ Z) = (Y ∨ X) ∧ (Y ∨ Z). (2.9)

Only a handful of the many possible distributive laws are valid for infinite joins
and meets, even if Cn is a classical consequence operation. If the distributive law
(2.7) holds for Cn, then

∧
{X ∨ Z | Z ∈ K} = X ∨

∧
K, (2.10)

∨
{X ∧ Z | Z ∈ K} ` X ∧

∨
K, (2.11)

with equality in (2.11) if the family K is finite. If in addition, the consequence
operation Cn admits a conditional x → z for each two formulas x, z (in which case
(2.9) holds too) then:

∨
{x ∧ Z | Z ∈ K} = x ∧

∨
K. (2.12)

It deserves to be noted that although the meet
∧K behaves very much as we

expect an infinite conjunction to behave, the join
∨K is somewhat anomalous

in that it can hold (‘be true’ intuitively) even if no element of K holds. This
oddity may be illustrated by the language of classical elementary logic with identity
and no other predicates or individual names. In this language we may, for every
j > 0, formulate a sentence ωj that states that the universe contains exactly
j elements. Each theory ωj = Cn(ωj) is consistent and categorical, and hence
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maximal. The theory Ω =
∧{Cn(¬ωj) | j > 0}, which states that the universe

is infinite, is consistent (by (2.1)) and maximal (by Vaught’s test). If ωj ` y for
every j > 0, then ¬y ` ¬ωj for every j, and so ¬y ` Ω. Since Ω is maximal, and
not axiomatizable (as shown in Corollary 6 below), ¬y is inconsistent. In other
words, y is a theorem, and the join

∨{ωj | j > 0} is the trivially true theory L,
despite its not exhausting all the possibilities.

More advanced aspects of Tarski’s calculus of deductive theories are expounded
in § 4 below.

3 The Definition of Truth

We henceforth identify expressions of the language L+ with their Gödel numbers,
or other set-theoretical codes, with the result that all expressions are sets, and all
variables are variables for sets; that is, they may be replaced by names of sets. For
ease of exposition we shall often use the locution ‘name of’ rather loosely in place
of the perhaps more correct words ‘expression, constant or variable, standing for’,
so that a variable (such as y below) that may be replaced by a name (such as
p0 = 1q) of a formula may also be called a name of a formula. We may reasonably
suppose that the set N of all names of sets is definable in the background theory T.

As announced earlier, it will be assumed that the logic embodied in the oper-
ation Cn includes the standard elementary logic of identity. We shall use = and
6= as names of the equality and the inequality signs (and later ∈ to name the
membership sign). Structural-descriptive names for all elements of S must also be
available, and pxq 6= pzq must be demonstrable (that is, pxq 6= pzq ∈ L) whenever
x and z are distinct formulas in S, and refutable whenever x = z. The extent to
which the logic Cn needs to include also some sentential or quantificational logic
is left open. The background theory T, which is a fragment of the theory Z, is
assumed to contain as much elementary logic as it needs.

In the remainder of the paper we shall, for the sake of clarity, adopt ‘x’, ‘y’, ‘z’,
. . . as variables for names of formulas, open to substitution, and revert to ‘u’, ‘v’,
‘w’, ‘x’, ‘y’, ‘z’, . . . as variables for formulas. As is usual in formal work, we shall
rarely, outside this paragraph, display any of the symbols of which we speak, but
only their names. If α and γ are strings of symbols, then we shall use ‘αγ’ as a
name for the concatenation α

_
γ (in that order) of α and γ.

We now proceed rigorously to generalize the right-hand sides of the two equi-
valent finite definitions (1.0) and (1.1), by replacing the finite disjunction in (1.0),
for example, by a generalized join. We may define a function ϑ : N 7→ T from
expressions for formulas to deductive theories

ϑ(y) =Df

∨
{Cn(y = pyq ∧ y) | y ∈ S}. (3.0)

In the same way we may generalize the alternative definition (1.1) of ‘Tr(y)’ in the
finite case:

θ(y) =Df

∧
{Cn(y = pyq → y) | y ∈ S}. (3.1)

It will be helpful later, especially in § 5, to have the definition of the function:

δ(y) =Df

∨
{Cn(y = pyq) | y ∈ S}. (3.2)
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The aim of this paper is to give a definition of truth that requires as little
deviation from classical logic as possible. We have implicitly eschewed recourse to
infinitary logic, and now we eschew recourse to intensional logic. It is evident that
if the definiendum of the functions ϑ and θ (more exactly, of the functors ‘ϑ’ and
‘θ’) are to be names of deductive systems, then the substituends for y in (3.0) and
(3.1) must be not formulas but expressions standing for formulas.

Provided that due caution is exercised, however, both ‘ϑ(y)’ and ‘θ(y)’ may be
read intensionally as ‘the semantical value of the formula (named by) y’; and when
y is the name of a sentence, both ‘ϑ(y)’ and ‘θ(y)’ may be read also as ‘the truth
of the sentence (named by) y’. In at least two places it will be rewarding to have
the functions ϑ and θ defined for all formulas: in § 7, where we shall discuss the
truth of theories, and in Miller (2009), where the compositionality of the semantic
values will be investigated. Speaking very roughly, we should like it to be the
case that the semantic value of a quantified sentence is in some way related to
the semantic value of the open formula within the scope of the quantifier. These
matters will be made properly precise in the appropriate places.

Theorem 1 Both (3.0) and (3.1) are materially adequate definitions of truth;
that is,

ϑ(pxq) = Cn(x) = θ(pxq) (3.3)

whenever pxq is the structural-descriptive name of a formula x ∈ S.

Proof If y is replaced by a structural-descriptive name pxq, then y = pyq is either
demonstrable or refutable in the logic Cn, and hence the term Cn(y = pyq ∧ y) is
either Cn(x) or S, and Cn(y = pyq → y) is either Cn(x) or L. We conclude that
ϑ(pxq) = Cn(x) = θ(pxq).

For a defence of the assumption here that material adequacy is rendered as well in
terms of interderivability (or equivalence) as in terms of the usual biconditionals,
see Miller (2009).

Theorem 2 If the formula named by x is implied in Cn by the formulas with
names {zi | i < k}, then ϑ(x) ⊆ ∧{ϑ(zi) | i < k}.
Proof Immediate using (2.6).

This theorem may be taken to say (in a slightly odd way) that in a valid
inference the truth of the premises is transferred to the truth of the conclusion. A
similar result holds for θ.

We now show that ϑ and θ may not be the same function, even if S is finite.
This difference becomes evident if for y is substituted a term v that demonstrably
names no formula y ∈ S, for then ϑ(v) is, by (3.0), the join of theories all identical
with S, while θ(v) is, by (3.1), the meet of theories all identical with L. In short,
ϑ(v) = S 6= L = θ(v). The theory δ(v), which expresses something like the
idea that v demonstrably names some formula of S, is also identical with S. The
divergence between ϑ and θ is, however, sometimes more dramatic than this. We
begin with a lemma that is a kind of generalization of the rules for the conditional.
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Theorem 3 If the logic Cn constrains enough conditional sentences into obeying
both the rule of modus ponens and the rule of conditional proof, then

ϑ(y) = θ(y) ∧ δ(y); (3.4)

that is to say,
∨
{Cn(y = pyq ∧ y) | y ∈ S} (3.5)

=
∧
{Cn(y = pyq → y) | y ∈ S} ∧

∨
{Cn(y = pyq) | y ∈ S}.

Proof Let z be any formula in S. Then each formula of the form y = pyq ∧ y
implies the formula y 6= pzq if z 6= y and the formula z otherwise; in short, each
formula of the form y = pyq ∧ y implies each formula of the form y = pzq → z.
This means that

∨{Cn(y = pyq∧ y) | y ∈ S} implies
∧{Cn(y = pyq → y) | y ∈ S}.

That it implies also
∨{Cn(y = pyq) | y ∈ S} is trivial, and hence the theory named

on the left of (3.5) implies the theory named on the right. For the converse, sup-
pose that for each formula y, the formula y = pyq ∧ y implies the formula w.
Then by modus ponens, (y = pyq → y) ∧ (y = pyq) implies w for each y. By con-
ditional proof, y = pyq implies (y = pyq → y) → w for each y. It follows that∨{Cn(y = pyq) | y ∈ S} implies (y = pyq → y) → w for each y, and hence that∧{Cn(y = pyq → y) | y ∈ S} ∧ ∨{Cn(y = pyq) | y ∈ S} implies w. The theory
named on the right of (3.5) is proved to imply the theory named on the left.

If y is a structural-descriptive name of a formula y, then one of the elements in the
final join δ(y) =

∨{Cn(y = pyq) | y ∈ S} in (3.4) and (3.5) is L, and so the entire
join disappears: δ(y) = L and ϑ(y) = θ(y). But when y demonstrably names no
formula, the final term

∨{Cn(y = pyq)} = S.
More interesting than these limiting cases are names of formulas that may

loosely be called contingent or factual (though they exist also in incomplete math-
ematical theories, such as Zermelo set theory Z). An example that is given in
Miller (2009) is p = ‘the first sentence of Pride & Prejudice’. Although p ∈ N
may, for the purposes of this discussion, be assumed to be demonstrable in T, it
does not follow that there is any structural-descriptive name pyq for which the
formula p = pyq belongs to L. As observed in (2009), it is because Tarski’s scheme
(T) does not permit the elimination of the word ‘true’ from such sentences as ‘the
first sentence of Pride & Prejudice is true’ that it is not a complete definition
of the term ‘true sentence’. Such blind ascriptions of truth, however, present no
difficulty for the genuine definitions (3.0) and (3.1).

Let us abbreviate the sentence ‘It is a truth universally acknowledged, that a
single man in possession of a good fortune, must be in want of a wife’ by ‘p’. It
is evident that ϑ(p) 6= ϑ(ppq) = Cn(p) = θ(ppq) 6= θ(p), since only a few of the
disjuncts in the join

∨{Cn(p = pyq ∧ y) | y ∈ S} imply the sentence p (one of the
successful disjuncts is Cn(p = ppq ∧ p)), and equally, only a few of the conjuncts
in the meet

∧{Cn(p = pyq → y) | y ∈ S} are implied by p. It will be shown in
§ 5 that in most cases in which y is, in the sense explained, a contingent name of
a sentence, each of ϑ(y), θ(y), and δ(y) is an unaxiomatizable theory. In order to
prepare for this work, we shall return in the next section to the study of Tarski’s
general metamathematics.

8



At this point it is an open question which of the definitions (3.0) and (3.1)
is a better definition of truth. As far as material adequacy is concerned, they
are on a par (Theorem 1). In favour of the function θ is the advisability of not
making a definition any stronger than necessary. It must be admitted also that
infinite meets are easier to work with, and more intuitive, than are infinite joins
(as illustrated in the penultimate paragraph of § 2). On the other side, since =
(the name of identity sign), for example, is demonstrably the name of no formula,
it is satisfactory that ϑ(=) is the logically false theory S, less satisfactory that
θ(=) is the logically true theory L.

From the point of view of general metamathematics or abstract logic, the de-
finition (3.0) has, however, the decided advantage over (3.1) that it requires, in
addition to the elementary logic of identity, the existence among formulas only of
the operation ∧ of conjunction, and not the conditional operation →. It is easily
seen, indeed, that even this requirement can be suspended. For the conjunction
x∧ z of two formulas, where it exists, has the same logical force as the meet x ∧ z
of the axiomatizable systems x = Cn(x) and z = Cn(z) that x and z axiomatize.
The definition (3.0) may therefore be generalized to

ϑ(y) =
∨
{Cn(y = pyq) ∧ Cn(y) | y ∈ S}. (3.6)

This definition is widely applicable, for example to many higher-order logics, in-
tensional logics, and paraconsistent logics.

Definition (3.1) is evidently well formed if enough conditionals exist. There
is an old result of Skolem’s that if the logic Cn includes the standard rules for
the conditional, and disjunction ∨ and conjunction ∧ are also present, then the
distributive law (2.7) holds. But in the absence of the conditional operation →
among elements of S, it is not easy, without some concessions to distributivity,
to simulate it, or even negation, at the level of deductive theories; it is not easy,
that is, to define the conditional of two theories, or the complement of a theory.
When Cn(x) is identical with either S or L, the theory Cn(x → z) can be readily
represented as Cn(x)′ ∨ Cn(z), where Y′ is the authocomplement of the theory Y
(which is defined in (4.3) below), and the identities (4.5) and (4.6) are provable
without any assumption of distributivity. The definition

τ (y) =Df

∧
{(Cn(y = pyq))′ ∨ Cn(y) | y ∈ S}, (3.7)

is applicable where (3.1) is not, and is still materially adequate: τ (pxq) = Cn(x)
for all formulas x. But in non-distributive logics its import for contingent names
such as p is less transparent.

Two features of the definitions (3.0) and (3.1) merit special remark. The first
is the scantiness of the resources of Zermelo set theory Z that are needed in the
background theory T for the formulation of (3.0) and (3.1), whatever may be the
logical strength of the system for which truth is being defined. The denumerably
many formulas of S, and their structural-descriptive names, can be represented by
natural numbers or hereditarily finite sets. S therefore belongs to Vω+1. Deductive
theories are (in general) denumerable sets of formulas, and they too belong to Vω+1.
An ordered pair of elements of Vν belongs to Vν+2, and therefore the operation
Cn : ℘(S) 7→ ℘(S), which is a set of ordered pairs of subsets of S, belongs to Vω+4.
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A deductive system 〈S,Cn〉 is an ordered pair of an element of Vω+1 and an element
of Vω+4, and this belongs to Vω+6. The entire construction fits comfortably into
a short extension of the hereditarily finite sets Vω.

The other most significant feature of the definitions (3.0) and (3.1) is that they
are universal. According to many philosophers, one of the chief shortcomings of
Tarski’s approach is that, although his method of definition can be universalized,
there is no universal definition of truth. Each deductive system requires its own
work. This disadvantage is plainly overcome here, since both (3.0) and (3.1) con-
tain explicit references to the two components of the variable deductive system
〈S,Cn〉. Note also that although the system 〈S,Cn〉 for which truth is defined
may be distinguished from the system (the background theory T) in which the de-
finition is conducted, there is no need for any hierarchy of distinct metalanguages,
syntactical or semantical.

4 Unaxiomatizable Theories

This section is devoted to several characterizations of unaxiomatizable deductive
theories. The first characterization (Theorem 4 and its corollaries) is well known,
and is effective for every consequence operation Cn. On the way to the final char-
acterization (Theorem 18), which requires that Cn include the whole of classical
logic, is a result (Theorem 10) for distributive consequence operations that relates
the axiomatizability of some theories with that of others.

4.1 Sequences of Theories

An infinite sequence {yj | j ∈ N} of axiomatizable theories is (for reasons outlined
in § 2 above) called decreasing if yi ⊆ yk whenever i < k, and strictly decreasing if
in addition yk 6⊆ yi whenever i < k. An infinite sequence {yj | j ∈ N} of formulas
is likewise called decreasing if yk ` yi whenever i < k, and strictly decreasing if
also yi 6` yk whenever i < k.

Theorem 4 The theory Y is unaxiomatizable if & only if Y = Cn(
⋃{yj | j ∈ N})

for some strictly decreasing sequence {yj | j ∈ N} of axiomatizable theories.

Proof Suppose that Y = Cn(
⋃{yj | j ∈ N}) is axiomatized by the finite set

{y0, . . . , yk−1}. Then by (2.1) there is for each l < k some finite il for which
Cn(yil

) ` yl. If i is the maximum of these il then, since the sequence {yj | j ∈ N}
is strictly decreasing, yi ` yl for each l < k, and so Y ⊆ yi. But yi+1 ⊆ Y, and
hence yi+1 ⊆ yi, contrary to assumption. To represent as Cn(

⋃{yj | j ∈ N})
any given unaxiomatizable theory Y, enumerate its consequences {yi | i ∈ N},
and then define y0 as Cn({y0}) and yj+1 as Cn({y0, . . . , yk}) where k is the least
number for which Cn({y0, . . . , yk}) 6⊆ yj . It is clear that the theories yj form a
strictly decreasing sequence.

Corollary 5 (A. Robinson) If the logic Cn includes conjunction, the theory Y
is unaxiomatizable if & only if Y = Cn({yj | j ∈ N}) for some strictly decreasing
sequence {yj | j ∈ N}.
Proof The proof is essentially the same as the proof of the theorem.
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Corollary 6 In elementary logic with identity, let ωj say that the universe has
cardinality j. The maximal theory

∧{Cn(¬ωj) | j > 0} identified at the end of § 2
is unaxiomatizable.

Proof Define the sentence yj as the conjunction ¬ω1∧· · ·∧¬ωj , so that y0 = >.
The import of yj is that the universe has cardinality greater than j. The sequence
{yj | j ∈ N} is obviously strictly decreasing.

Corollary 7 Let {yj | j ∈ N} be any enumeration of a set Y of formulas,
Xi = {yj | j < i}, and xi = Cn(Xi) for each i ∈ N . Then Cn(Y ) is axiomatizable
if & only if the decreasing sequence {xi | i ∈ N} of axiomatizable theories is
eventually constant.

Proof Cn(Y ) is axiomatizable if & only if Cn(Y ) = xi for some i ∈ N . Since the
sequence {xi | i ∈ N} is decreasing, and each xk ⊆ Cn(Y ), this holds if & only if
xi = xk for all k ≥ i.

4.2 A Consequence of Modularity

The least intuitive of the results that concern disjunctions and conjunctions only,
holding whenever the logic Cn includes the distributive (in fact, the modular) law,
is Theorem 18 of Tarski (1935–1936). It leads to an alternative criterion of unax-
iomatizability in classical logic, in terms of failure of the law of non-contradiction.
Since there appear not to exist published proofs of most of these results, we shall
prove them here. Three preparatory lemmas are required. Corollary 9 and Lemma
10 are included in Lemmas 1 and 2 on pp. 113f. of Birkhoff (1973).

Lemma 8 Suppose that x ∧ z is always defined. If X ∨ Z is axiomatizable, there
are axiomatizable theories x ⊆ X and z ⊆ Z such that X ∨ Z = x ∨ z.

Proof If X ∨ Z = ∅ then we may identify both x and z with ∅. If X ∨ Z 6=
∅, the existence of conjunctions implies that X ∨ Z = Cn(y) for some formula
y ∈ X ∨ Z, from which it follows that X ∨ Z = y ∨ y, where y = Cn(y) is an
axiomatizable subtheory of both X and Z.

Corollary 9 (Birkhoff) Suppose that x ∨ z is always defined. Then

X ∨ Z = {x ∨ z | X ` x and Z ` z}, (4.0)

Proof If X ` x and Z ` z then both X and Z imply x∨ z, and so X ∨ Z ` x∨ z.
Since y is equivalent to y ∨ y, every formula in X ∨ Z is a disjunction of formulas
from X and from Z.

Lemma 10 (Tarski) If X ∧ Z is axiomatizable, then there are axiomatizable the-
ories x ⊆ X and z ⊆ Z such that X ∧ Z = x ∧ z.

Proof If X ∧ Z = Cn({u0, . . . uj−1}), then by (2.1) there are axiomatizable the-
ories y0, . . . yj−1, subsets of X, and axiomatizable theories w0, . . .wj−1, subsets of
Z, such that ul ∈ Cn(yl ∪ wl) = yl ∧ wl for each l < j. Let y = y0 ∧ . . . ∧ yj−1

and w = w0 ∧ . . . ∧ wj−1. It is immediate that y ⊆ X and w ⊆ Z are axiomat-
izable, and that Cn({u0, . . . uj−1}) ⊆ y ∧ w ⊆ X ∧ Z = Cn({u0, . . . uj−1}). We
may conclude that X ∧ Z = y ∧ w.
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Lemma 11 Suppose that x ∧ z is always defined. If X ∨ Z and X ∧ Z are ax-
iomatizable, then there are axiomatizable theories x ⊆ X and z ⊆ Z such that
X ∨ Z = x ∨ z and X ∧ Z = x ∧ z.

Proof By Lemmas 8 and 10, there are axiomatizable theories u, y ⊆ X and
axiomatizable theories v,w ⊆ Z for which X ∨ Z = u ∨ v and X ∧ Z = y ∧ w.
Set x = u ∧ y and z = v ∧ w. Since u and y are subsets of X, so is x, and likewise
z ⊆ Z. This implies that x ∨ z ⊆ X ∨ Z. It is clear too that u ⊆ x and v ⊆ z, so
that X ∨ Z = u ∨ v ⊆ x ∨ z. We may conclude that X ∨ Z = x ∨ z. In the same
way, x ∧ z ⊆ X ∧ Z = y ∧ w ⊆ (u ∧ y) ∧ (v ∧ w) = x ∧ z. We may conclude
that X ∧ Z = x ∧ z.

Theorem 12 (Tarski) Suppose that the distributive law (2.7) holds in the logic
Cn. Then if X ∨ Z and X ∧ Z are both axiomatizable, X and Z are both axiom-
atizable.

Proof By Lemma 11 there are axiomatizable theories x ⊆ X and z ⊆ Z for which
X ∨ Z = x ∨ z and X ∧ Z = x ∧ z. It is plain that x ∨ Z ⊆ X ∨ Z; and moreover,
if X ∨ Z ` y, then x ∨ z ` y, and so x ∨ Z ` y. It follows that X ∨ Z = x ∨ Z.
In the same way, X ∧ Z = x ∧ Z. Using (2.9), which is a consequence of (2.7),
and the absorption laws (2.8), we continue

X = X ∨ (X ∧ Z) = X ∨ (x ∧ Z) (4.1)
= [X ∨ x] ∧ [X ∨ Z]
= x ∧ (x ∨ Z)
= x.

Z = z is proved likewise. It should be noted that, since x ⊆ X, at line (4.1) the
modular law

Y ` X ⇔ Y ∨ (X ∧ Z) = (Y ∨ X) ∧ (Y ∨ Z) (4.2)

(for deductive theories) suffices in place of the full distributive law (2.9).

Corollary 13 If the modular law (4.2) holds for the logic Cn, then X ∨ Z and
X ∧ Z are both axiomatizable if & only if X and Z are both axiomatizable.

Proof The modular law is not needed for the converse of Theorem 12. Suppose
that X and Z are axiomatizable. It is evident that no conditions on Cn are needed
to guarantee that X ∧ Z is axiomatizable. The existence of both disjunction and
conjunction is plainly sufficient (but not necessary) for X ∨ Z to be axiomatizable.
In the absence of conjunction, however, there may be no axiomatization of X ∨ Z
when X = Cn{x0, x1} and Z = Cn(z); and in the absence of disjunction, there
may be no axiomatization of X ∨ Z even if X = Cn(x) and Z = Cn(z).

4.3 Authocomplementation

When we come to define the complement Y′ of an unaxiomatizable theory Y we
inevitably enter non-classical territory. For by Theorem 12, if Y is unaxiomatizable
then at least one of Y ∨ Y′ and Y ∧ Y′ is unaxiomatizable, no matter which theory
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we decide to identify Y′ with. Since both L and S are axiomatizable in classical
logic, it follows that either the law of excluded middle Y ∨ Y′ = L or the law of
non-contradiction Y ∧ Y′ = S must fail for each unaxiomatizable theory Y. In
fact, it is always the latter, classically and elsewhere. Following Tarski (1935–
1936), Theorem 12(a), we therefore define what we shall call the authocomplement

Y′ =
∧
{Z | ` Y ∨ Z} (4.3)

of the theory Y. If we assume the infinite distributive law (2.10), or the more
basic law (2.7), we may derive from (4.3) some simple consequences (including the
law of excluded middle (4.4), one law of contraposition (4.8), one De Morgan law
(4.9), and the law of triple negation (4.11)).

Theorem 14 If the consequence operation Cn obeys the distributive law (2.7),
then the following identities, implications, and equivalences hold for all theories
X, Y, Z, and families K.

Y ∨ Y′ = L (4.4)
S′ = L (4.5)
L′ = S (4.6)

X′ ` Z ⇔ ` X ∨ Z (4.7)
X′ ` Z ⇔ Z′ ` X (4.8)

(
∧
K)′ =

∨
{Y′ | Y ∈ K} (4.9)

Y′′ ` Y (4.10)
Y′′′ = Y′. (4.11)

Proof These results are all straightforward consequences of (4.3) and (2.7). The
proof of (4.4) is much facilitated by resort to (2.10).

Corollary 15 Suppose that the logic Cn includes the distributive law (2.7), and
that S is axiomatizable. If Y ∧ Y′ = S, then Y is axiomatizable.

Proof Since L = Cn(∅) is always axiomatizable, it follows from (4.4) and Theo-
rem 12 that both Y and Y′ are axiomatizable. Since it is an immediate consequence
of (4.5) that S ∧ S′ = S, the condition that S be axiomatizable is essential if the
corollary is to hold.

Corollary 16 Suppose that the logic Cn obeys the distributive law (2.7), and
that S is axiomatizable. If Ω is a theory that is both maximal and unaxiomatizable,
then Ω′ = L.

Proof By the previous corollary, Ω ∧ Ω′ 6= S. By the definition of maximality,
Ω ` Ω′. This means that Ω′ = Ω ∨ Ω′, which is L by (4.4).

As in the case of disjunction noted in the proof of Corollary 13, the absence
of the corresponding connective in the system 〈S,Cn〉 may render compounds
of axiomatizable theories unaxiomatizable. If S is infinite then it may not be
axiomatizable (for example, if Cn(Y ) = Y for every Y ⊆ S), even though by
(4.5) it is the complement of an axiomatizable theory L; and if the logic Cn does
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not support a properly behaved negation ¬y of each formula y, then Y′ may be
unaxiomatizable even if Y = Cn(y). As might have been expected, if ¬ is classical,
all is well.

Lemma 17 If the logic Cn includes the classical negation operation ¬, then Cn(y)′ =
Cn(¬y).

Proof Classical logic guarantees that y ∧ ¬y ` Z for any y and any Z. Now if
` Cn(y) ∨ Z then ` y ∨ Z, and hence also ¬y ` Z, and hence Cn(¬y) ` Z. It
follows that Cn(¬y) implies the meet

∧{Z | ` Cn(y) ∨ Z} = Cn(y)′. Classical
logic guarantees too that ` y ∨ ¬y for any y. That is, ` Cn(y) ∨ Cn(¬y), from
which we may conclude by (4.7) that Cn(y)′ ` Cn(¬y).

Theorem 18 If Cn is classical, then Y is an axiomatizable theory if & only if
Y ∧ Y′ = S.

Proof To establish the converse to Corollary 15, it is necessary to note only
that if Y = Cn(y) then Y′ = Cn(¬y), and hence Y ∧ Y′ = Cn(y) ∧ Cn(¬y) =
Cn(y ∧ ¬y) = S.

To sum up: whereas in intuitionistic logic the negation ¬y of a formula y contra-
dicts y, but does not always complement it (the law of excluded middle sometimes
fails), in the calculus of theories based on distributive consequence operations the
theory Y′ is an authentic complement of Y, but does not always contradict it (the
equation Y ∧ Y′ = S sometimes fails). Since the algebraic counterpart of intuit-
ionistic negation is usually called pseudocomplementation, it is appropriate to call
the operation ′ on theories based on a distributive consequence operation Cn an
operation of authocomplementation. The conditional (relative pseudocomplement)
x → z of intuitionistic logic likewise does not survive unscathed between theories,
though it is always possible to define a conditional X ³ Z if the antecedent theory
X is finitely axiomatizable.

Lemma 19 If Cn is classical and X = Cn(x), then the theory Y = Cn(¬x) ∨ Z
complies with both the laws of modus ponens: X ∧ Y ` Z, and conditional proof :
if X ∧ W ` Z then W ` Y.

Proof For modus ponens use Lemma 17 and Theorem 18. For conditional proof,
note that if x ∧ W implies each z ∈ Z, then W implies each x → z, that is, each
¬x ∨ z. But the formulas of the form ¬x ∨ z (where z ∈ Z) are exactly the conse-
quences of Cn(¬x) ∨ Z, which is Y.

Other conditionals sometimes exist. The theory δ(y) defined in (3.2), for ex-
ample, is the conditional θ(y) ³ ϑ(y) (and symmetrically, θ(y) = δ(y) ³ ϑ(y)).
But if Ω is an unaxiomatizable maximal theory that does not imply z, then there
is no conditional Ω ³ z. For Ω ` x → z if & only if Ω ` ¬x, and (since Ω is
unaxiomatizable) there is no logically weakest such x.

The remainder or relative authocomplement Z−X may be defined for any two
theories by a generalization of (4.3): X−Y =Df

∧{Z | X ` Y ∨ Z}. But it will
not be needed in this paper.
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5 The Unaxiomatizability of Truth

The present section establishes that if y is replaced by a variable name of a form-
ula, the theories ϑ(y) and θ(y) are unaxiomatizable when Cn is classical logic; and
that, provided that Cn is recursively presented and rich enough to include Peano
arithmetic, δ(y) is unaxiomatizable. It must be remembered that we are silently
assuming that the logic Cn includes the whole of the standard elementary logic of
identity, and also enough apparatus to allow construction of, and effective mani-
pulations with, structural-descriptive names. The three proofs to be given differ,
and only the results concerning δ(y) require that, in addition, Cn be stronger than
elementary classical logic.

∧{Cn(y = pyq → y) | y ∈ S} ∨∨{Cn(y = pyq) |y ∈ S} = L

(axiomatizable)
¡

¡
¡

¡¡u∧{Cn(y = pyq → y) |y ∈ S} = θ(y)

(unaxiomatizable)
@

@
@

@@u
∧{Cn(y = pyq → y) | y ∈ S} ∧∨{Cn(y = pyq) |y ∈ S} = ϑ(y)

(unaxiomatizable) ¡
¡

¡
¡¡

u ∨{Cn(y = pyq) |y ∈ S} = δ(y)

(unaxiomatizable)

@
@

@
@@

Figure 0: The theories ϑ(y), θ(y), δ(y), and L

We show first that if the logic Cn contains enough of classical logic, then
θ(y) ∨ δ(y) = L (Theorem 20). In these circumstances δ(y) = θ(y) ³ ϑ(y),
and the four theories ϑ(y), θ(y), δ(y), and L form a lattice quadrilateral, as shown
in Figure 0. We then use Theorem 4 to prove that if Cn is non-trivial and classical
and contains the rule of existential introduction, the theory θ(y) is unaxiomati-
zable (Theorem 24). An application of Theorem 3 and Theorem 12 then shows
that, provided Cn is distributive, the theory ϑ(y) is also unaxiomatizable (The-
orem 25). These are the main results. More work, and more assumptions, are
needed for the results, admittedly less central, concerning the unaxiomatizability
of the theory δ(y) (Lemma 28, Theorem 30).

Theorem 20 In every distributive logic Cn in which (x → z) ∨ x is a theorem,
θ(y) ∨ δ(y) = L.
Proof The join θ(y) ∨ δ(y) ` w if & only if both θ(y) ` w and δ(y) ` w.
Thanks to finitariness (2.1), the former implies that there exists some finite set
of formulas {yi | i < k} ⊆ S such that (y = py0q → y0) ∧ · · · ∧ (y = pyk−1q →
yk−1) ` w, and so

∧{y = pyiq → yi | i < k} ∨ δ(y) ` w. It follows by (2.10)
that

∧{(y = pyiq → yi) ∨ δ(y) | i < k} ` w, and hence that the set of formulas
{(y = pyiq → yi) ∨ (y = pyiq) | i < k} ` w. The assumption that (x → z) ∨ x is a
theorem of the logic Cn now allows us to conclude that w ∈ L, and in consequence
that θ(y) ∨ δ(y) = L.
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Corollary 21 In every distributive logic Cn, τ (y) ∨ δ(y) = L.

Proof According to its definition (3.7), τ (y) =
∧{(Cn(y = pyq))′ ∨ Cn(y) | y ∈

S}, where ′ is the authocomplementation operation on theories defined in (4.3); and
so by (2.10) and (3.2), τ (y) ∨ δ(y) =

∧{(Cn(y = pyq))′ ∨ Cn(y) ∨ δ(y) | y ∈ S}.
This implies that if τ (y) ∨ δ(y) ` w then

∧
{(Cn(y = pyq))′ ∨ Cn(y) ∨ Cn(y = pyq) | y ∈ S} ` w.

But by (4.4), (Cn(y = pyq))′ ∨ Cn(y = pyq) = L, and so w ∈ L, and in consequence
τ (y) ∨ δ(y) = L.

Lemma 22 Suppose that Cn contains the classical rules for the conditional →
and for existential introduction. If y does not contain x free then x = pyq → y is
a theorem (that is, belongs to L) if & only if y is a theorem.

Proof If the formula x = pyq → y ∈ L, then x = pyq ` y, and accordingly
∃x(x = pyq) ` y. That is to say, if x = pyq → y is a theorem then so is y. The
converse is immediate.

Lemma 23 If Cn contains the classical rules for the conditional →, and the rule
of ex falso quodlibet (from z and ¬z every formula may be derived), and Y is a
subset of {y = pyq → y) | y ∈ S} that contains no theorems, then no proper subset
of Y implies any other element of Y .

Proof Thanks to (2.1) we need consider only a finite subset X = {y = pyiq →
yi | i < k} ⊆ Y , and an element y = pykq → yk ∈ Y \ X. If

∧{y = pyiq →
yi | i < k} ` y = pykq → yk, then

∧{y 6= pyiq | i < k} ` y = pykq → yk. But
y = pykq ` y 6= pyiq for each i < k (since the structural-descriptive names name
distinct formulas), and hence y = pykq ` y = pykq → yk, and hence ` y = pykq →
yk. This is an impossible conclusion if Y contains no theorems.

Theorem 24 If Cn is non-trivial and distributive, and contains the rules assumed
in Lemma 22 and Lemma 23, then the theory θ(y) =

∧{Cn(y = pyq → y) | y ∈ S}
is unaxiomatizable.

Proof Since Cn is non-trivial, there are infinitely many formulas y that are
not theorems. By Lemma 22 there are infinitely many y such that the formula
x = pyq → y is not a theorem, and hence the subset Y of {y = pyq → y) | y ∈ S}
that contains no theorems is infinite; and since these two sets differ only in the
theorems they contain, Cn(Y ) = θ(y). Since S is countable, the elements of Y can
be listed as {yi | i < k}, which is equivalent to the sequence {zi | i < k} defined
by z0 = y0 and zk+1 = zk ∧ yk+1 for every k ∈ N . By Lemma 23, this sequence is
strictly decreasing. By Theorem 4, θ(y) = Cn(Y ) is unaxiomatizable.

Theorem 25 If Cn is non-trivial and distributive, and contains the rules assumed
in Lemma 22 and Lemma 23, then the theory ϑ(y) is unaxiomatizable.

Proof Since L = θ(y) ∨ δ(y) is axiomatizable in all logics and, by Theorem 24,
θ(y) is unaxiomatizable in all sufficiently strong non-trivial logics, we may apply
Theorem 12 to conclude that ϑ(y) = θ(y) ∧ δ(y) is unaxiomatizable in all these
subsystems of classical logic.
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At this stage nothing has been proved about the theory δ(y). For the remainder
of this section it will be assumed that Cn contains the whole of classical logic. We
shall show in Corollary 27 that in an ω-complete logic Cn (that is to say, one
in which the set L is ω-complete), δ(y) = L, and accordingly ϑ(y) = θ(y). But
in some richer logics, including those that are ω-consistent as well as essentially
incomplete, δ(y) is unaxiomatizable. The properties of ω-completeness and ω-
consistency are discussed by Tarski (1933b), and also in many modern textbooks.

A formula z(y) in S will be called y-universal if each instance z(pyq) obtained
by substituting for y a structural-descriptive name pyq of a formula y in S is a
theorem in Cn. If the variable y is not free in z, then z is y-universal if & only if
it is a theorem in Cn, an element of L.

Lemma 26 The theory δ(y) is identical with the meet of all the y-universal form-
ulas of S:

∨{Cn(y = pyq) | y ∈ S} =
∧{z(y) | z(y) ∈ S & z is y-universal}.

Proof Let z(y) be a y-universal formula. It is plain that y = pyq ` z(y) for
any y ∈ S, and hence that δ(y) =

∨{Cn(y = pyq) | y ∈ S} ` z(y). For the
converse, suppose that z(y) is derivable from each formula of the form y = pyq. It
is immediate that each z(pyq) is derivable from pyq = pyq, and accordingly is a
theorem. That is to say, z is a y-universal formula.

Corollary 27 If the logic Cn is ω-complete, then δ(y) =
∨{Cn(y = pyq) | y ∈

S} = L.

Proof This is immediate, using Lemma 26. If z(y) is y-universal in an ω-complete
logic, then ∀yz(y) is a theorem. It follows that

∨{Cn(y = pyq) | y ∈ S} = L.

Theorem 28 If the logic Cn is ω-incomplete, then δ(y) =
∨{Cn(y = pyq) | y ∈

S} 6= L.

Proof This is also practically immediate, using Lemma 26. If
∧{z(y) | z(y) ∈

S & z is y-universal} = L, then every y-universal formula z(y) is a theorem, which
implies that Cn is ω-complete.

For an example, let g be an effective 1−1 association in ZF of sentences with
proofs, and let u be an undecidable sentence in ZF that is interderivable with the
sentence puq is not a theorem of ZF. Then for each y ∈ S, the formula g(pyq) is
not a proof of puq is a theorem of ZF. This implies that g(y) is not a proof of puq
follows from y= pyq for each y ∈ S; and hence from

∨{Cn(y= pyq) | y ∈ S}. But if
g(y) is not a proof of puq were a theorem, so would be its universal generalization
puq is not a theorem of ZF, and so also would be the sentence u.

Theorem 28 can be considerably improved if we choose for Cn a logic based on
an ω-consistent and incompletable theory such as elementary Peano arithmetic.
In such logics the set L of theorems is (we hope) ω-consistent, but incompletable
in the sense that there exists no finitely (or even recursively) axiomatizable theory
that is maximal. We begin with a simplifying lemma.

Lemma 29 Suppose that Cn is ω-consistent. If δ(y) ` w(y), then ∀yw(y) is
consistent.
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Proof By (2.1), w(y) is implied by some finite conjunction z0(y) ∧ · · · ∧ zk−1(y)
of y-universal formulas, and hence ∀yz0(y) ∧ · · · ∧ ∀yzk−1(y) ` ∀yw(y). In an ω-
consistent theory, the universal quantification of a y-universal formula is consistent;
ergo, ∀yw(y) is consistent (in Cn).

Theorem 30 If Cn is ω-consistent and incompletable then the theory δ(y) is
unaxiomatizable.

Proof Suppose that there is some formula w(y) for which δ(y) = Cn(w(y)). By
Lemma 29, the sentence u = ∀yw(y) is consistent in Cn. It will be shown that
Cn(u) is a maximal theory.

The quantifier-free sentences of the language of Peano arithmetic are all decid-
able (either such a sentence x is a theorem, or its negation ¬x is a theorem). If the
extended language L+ contains quantifier-free sentences that are not decidable,
then one of each pair {x,¬x} may be added in a constructive manner to the stock
of theorems. In other words, we may safely assume that if x(y) is a formula of one
free variable, then u decides each quantifier-free sentence x(pyq).

Now let x(y) be a formula that contains free at least the variable y. If u ` x(pyq)
for some y, then u ` ∃yx(y). The alternative is that u ` ¬x(pyq) for every y, and
so u → ¬x(pyq) ∈ L for every y, and hence u → ¬x(y) is y-universal. It follows
that w(y) ` u → ¬x(y). But u ` w(y), and hence u ` ¬x(y). Since u is a sentence,
u ` ∀y¬x(y), so u ` ¬∃yx(y).

For all formulas x containing y free, that is to say, u decides ∃yx(y) if it decides
each instance x(pyq), and so u decides also ∃y¬x(y), and hence also ∀yx(y). This
means that a universal formula ∀yx(y) is decided by u if all its instances x(pyq)
are. The base of the induction was settled two paragraphs ago, and we may there-
fore conclude that every universal formula is decided by u. In short, Cn(u) is a
maximal theory. This is impossible if Cn is incompletable.

Theorems 24, 25, and 30 establish the unaxiomatizability, under appropriate
conditions, of the theories ϑ(y), θ(y), δ(y), where y is a variable for names of
formulas. With care they can be extended to other terms, including most names
for formulas that are not structural-descriptive names. By Lemma 23, Theorem
24, and Theorem 25, for example, the theories θ(p) and ϑ(p), where p = ‘the first
sentence of Pride & Prejudice’, are unaxiomatizable in classical logic, provided
that there are infinitely many non-theorems in the set {p = pyq → y) | y ∈ S}.

6 Falsehood and Untruth

In this section we assume that the consequence operation Cn is non-trivial and
includes the whole of classical logic. Our task is to establish that, undeterred by
their classical origins, the function ϑ exhibits truth-value gaps and the functions ϑ
and θ both exhibit truth-value gluts. In parallel with the use of the two lower-case
forms of the Greek letter theta, ϑ and θ, for the two functions defining truth, we
shall henceforth use the two lower-case forms of phi, ϕ and φ, for the corresponding
functions defining falsity, and the two lower-case forms of pi, $ and π, for the
corresponding functions defining untruth.

The falsity of a formula, anyway in classical logic, should be little more than
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the truth of its negation. One way to express this identity is to employ, (or, if
necessary, introduce), for any named formula, a name for the formula that would
be obtained by some canonical insertion of a negation sign. But rather than take
such a route, which will be taken in Miller (2009), when we deal systematically
with questions about compositionality, we shall proceed as follows. We define

ϕ(y) =
∨
{Cn(y = pyq ∧ ¬y) | y ∈ S}, (6.0)

φ(y) =
∧
{Cn(y = pyq → ¬y) | y ∈ S}, (6.1)

as the falsity operations that correspond to ϑ and θ, and alongside them define
also two untruth (or perjury) operations $(y) and π(y) by means of theory com-
plementation (4.3):

$(y) =Df ϑ(y)′, (6.2)
π(y) =Df θ(y)′. (6.3)

Theorem 31 For classical Cn, (6.0) and (6.2), and (6.1) and (6.3), are materially
adequate:

ϕ(pxq) = Cn(¬x) = $(pxq), (6.4)
φ(pxq) = Cn(¬x) = π(pxq), (6.5)

whenever pxq is the structural-descriptive name of a formula x ∈ S.

Proof The proof is immediate, using the assumed properties of structural-de-
scriptive names.

Lemma 32 If Cn includes classical logic, and Y′ stands for the complement of the
theory Y,

$(y) = ϕ(y) ∨ δ(y)′, (6.6)
π(y) = ϕ(y) = φ(y) ∧ δ(y). (6.7)

Proof By (3.4), ϑ(y) = θ(y) ∧ δ(y), and so by (3.0), (4.9), Lemma 17, (6.2),
and (6.0),

$(y) = ϑ(y)′ = (
∧{Cn(y = pyq → y) | y ∈ S} ∧ δ(y))′

=
∨{(Cn(y = pyq → y))′ | y ∈ S} ∨ δ(y)′

=
∨{Cn(¬(y = pyq → y)) | y ∈ S} ∨ δ(y)′

=
∨{Cn(y = pyq ∧ ¬y) | y ∈ S} ∨ δ(y)′

= ϕ(y) ∨ δ(y)′.

The identity of π(y) and ϕ(y) is a simple consequence of (6.2), (3.1), (4.9), and
(6.0). To prove that ϕ(y) = φ(y) ∧ δ(y), it should suffice to repeat the proof of
Theorem 3.4.

According to (6.6) and (6.7), ϕ(y) implies $(y), and π(y) implies φ(y). For
structural-descriptive names, falsity and untruth coincide, but in general the im-
plications are not reversible.
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Theorem 33 If the logic Cn is ω-incomplete (that is, according to Theorem 28,
δ(y) 6= L), then $(y) does not imply ϕ(y), and φ(y) does not imply π(y).

Proof If $(y) implies ϕ(y), then by (6.6), δ(y)′ implies ϕ(y). It is evident from
their definitions (3.2) and (6.0) that δ(y), which is identical with

∨{Cn(y = pyq) |
y ∈ S}, is implied by ϕ(y), which is identical with

∨{Cn(y = pyq ∧ ¬y) | y ∈ S},
and hence that δ(y) ∨ ϕ(y) = δ(y). It follows that δ(y) ∨ δ(y)′ implies δ(y), and
so, by (4.4), δ(y) = L.

If φ(y) implies π(y), then by (6.7) and Lemma 26, φ(y) implies every y-
universal formula z(y). By (2.1), there is, for each z(y), some finite set {yi | i < k}
of formulas such that the conjunction (y = py0q → ¬y0) ∧ · · · ∧ (y = pyk−1q →
¬yk−1) implies z(y). It follows that the conjunction y 6= py0q ∧ · · · ∧ y 6= pyk−1q
implies z(y). But since z(y) is y-universal, the finite disjunction y = py0q ∨ · · · ∨
y = pyk−1q also implies z(y). In short, every y-universal formula z(y) is demon-
strable. This cannot be the case if δ(y) 6= L, as has been assumed.

Lemma 34 If the logic Cn is ω-incomplete (more generally, if δ(y) 6= L), then
ϑ(y) ∨ ϕ(y) 6= L.

Proof If both ϑ(y) and ϕ(y) imply the formula x, then each formula of the form
y = pyq ∧ y implies x and each formula of the form y = pyq ∧ ¬y implies x. It
follows that each formula y = pyq implies x, and hence that δ(y) implies x. If
δ(y) 6= L then ϑ(y) ∨ ϕ(y) 6= L.

Lemma 35 If the logic Cn is ω-consistent and incompletable (more generally, if
δ(y) is unaxiomatizable), then ϑ(y) ∧ ϕ(y) 6= S.

Proof By (3.0), (6.0), and Theorem 3 we have for any x ∈ S

ϑ(y) ∧ ϕ(y) =
∨
{Cn(y = pyq ∧ y) | y ∈ S} ∧ (6.8)

∧
∨
{Cn(y = pyq ∧ ¬y) | y ∈ S}

=
∧
{Cn(y = pyq → y) | y ∈ S} ∧ δ(y) ∧
∧

∧
{Cn(y = pyq → ¬y) | y ∈ S} ∧ δ(y).

Now (y = pyq → y) ∧ (y = pyq → ¬y) is logically equivalent to y 6= pyq. It
follows that ϑ(y) ∧ ϕ(y) =

∧{y 6= pyq | y ∈ S} ∧ δ(y) =
∧{y 6= pyq | y ∈

S} ∧ ∨{y = pyq | y ∈ S}, which by (4.9), is identical with
∧{y 6= pyq | y ∈

S} ∧ (
∧{y 6= pyq | y ∈ S})′. By Theorem 18, ϑ(y) ∧ ϕ(y) = S if & only if∧{y 6= pyq | y ∈ S} is axiomatizable. In classical logic, the complement Y′ of an

axiomatizable theory Y is also axiomatizable. It follows that if ϑ(y) ∧ ϕ(y) = S
then δ(y) = (

∧{y 6= pyq | y ∈ S})′ is axiomatizable. The result follows by contra-
position.

Theorem 36 In general, ϑ(y) ∨ $(y) = θ(y) ∨ π(y) = θ(y) ∨ φ(y) = L, but
ϑ(y) ∨ ϕ(y) 6= L.

Proof The law of excluded middle (4.4) holds for all deductive theories, and
hence ϑ(y) ∨ $(y) and θ(y) ∨ π(y) are both L. By (6.7), θ(y) ∨ φ(y) = L. By
Lemma 34, ϑ(y) ∨ ϕ(y) 6= L.
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Theorem 37 In general, none of the four theories ϑ(y) ∧ $(y), θ(y) ∧ π(y),
θ(y) ∧ φ(y), ϑ(y) ∧ ϕ(y) is identical with S.

Proof By Theorems 18, 24, and 25, ϑ(y) ∧ $(y) 6= S and θ(y) ∧ π(y) 6= S. It
then follows from (6.7) that θ(y) ∧ φ(y) 6= S, and Lemma 35 says that ϑ(y) ∧ ϕ(y)
may differ from S.

Loosely stated: only ϑ admits truth-value gaps, but both ϑ and θ admit truth-
value gluts.

7 The Truth of Theories

A deductive theory Y = Cn(Y) is true if & only if every sentence y in Y is true.
That is what we are tempted to say. But on the present account, truth is not
a predicate, and we cannot say what we are tempted to say. Yet the truth of a
sentence is a theory, and the truth of that theory is presumably no more than the
truth of the sentence. If Y is an expression (variable or name) that stands for
a theory, or more generally any set of formulas of L+, our aim is to extend the
definitions of ϑ(y) and θ(y) in such a way that if Y = Cn(y) is demonstrable in the
background theory T then ϑ(Y) = ϑ(y) and θ(Y) = θ(y) are also demonstrable.
Like ϑ(y) and θ(y), the sets ϑ(Y) and θ(Y) are to be deductive theories.

The least that we must hope for in addition is that the extended definition
of truth be materially adequate. Theorem 38 of Tarski (1935–1936) states that
in a non-trivial classical deductive system there are continuum many deductive
theories, which implies that only a handful of them, in addition to the axiomat-
izable theories, can be endowed with structural-descriptive names. It is perhaps
reasonable to hope that a structural-descriptive name pYq can be given to each
recursively axiomatizable theory Y. But if we insist that the primary demands
on structural-descriptive names, that pXq = pZq be demonstrable if X = Z and
refutable if X 6= Z, and that pxq ∈ pZq be demonstrable if x ∈ Z and refutable
if x /∈ Z, be achieved within the logic Cn, then the investigation will have to be
restricted to logics sufficiently powerful to allow this.

The line of approach to be adopted here has recourse to a simple extension of
Tarski’s calculus of deductive theories. It is disappointing that, although it works
well for θ, it fails badly for ϑ.

We have seen in (2.3)–(2.6) how Tarski proposed to define finite and infinite
analogues of Boolean operations on theories. To my knowledge he never explic-
itly considered defining analogues of quantification, though he explored in detail
elsewhere the closely related operation of cylindrification (for a brief survey of his
work on cylindric algebras see Monk 1986, pp. 902–905).

Let Y be a theory (or any other set of formulas drawn from S) in which y is
a variable that is sometimes free. We shall define ∃yY and ∀yY as theories, and
then extend the definition of truth θ from formulas to theories so as to deliver the
wanted analogue of material adequacy. But it does not appear to be possible to
obtain a corresponding result for the function ϑ.

Every theory Y contains formulas (for example, y = y) in which the variable
y occurs free. We are interested at present in those theories in which y has no
essential occurrence. Y will accordingly be called y-less (rather than y-free, which
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might be too confusing) if Y = Cn(Y ) for some set Y none of whose elements
contains y free. We proceed to define, rather obviously,

∃yY =Df

∧
{X | X is y-less and Y ` X}, (7.0)

∀yY =Df

∨
{X | X is y-less and X ` Y}. (7.1)

Taking for granted that these definitions license the usual quantifier inferences, we
may define:

ϑ(Y) =Df ∀y[Cn(y ∈ Y) ³ ϑ(y)], (7.2)
θ(Y) =Df ∀y[Cn(y ∈ Y) ³ θ(y)]. (7.3)

It will be recalled from Lemma 19 that in classical logic the conditional X ³ Z
exists whenever X is axiomatizable, and is identical with X′ ∨ Z; if X = Cn(x)
then X ³ Z = ¬x ∨ Z. Similar extensions to deductive theories may be given for
the functions ϕ, φ, $, and π.

There exist direct generalizations of Theorem 2 for θ and ϑ, and of Theorem
3.3 for θ.

Theorem 38 If the theory named by X is implied in Cn by the theory named by
Z, then θ(X) is implied by θ(Z).

Proof Immediate using (2.6).

Theorem 39 If pYq is a structural-descriptive name for the y-less theory Y, then

θ(pYq) = Y. (7.4)

Proof If y ∈ Y, then the formula pyq ∈ pYq is demonstrable in Cn, and
hence the theory Cn(pyq ∈ pYq) ³ θ(pyq), which is identical with the theory
Cn(pyq /∈ pYq) ∨ θ(pyq), is demonstrably identical with θ(pyq). Since, by (7.3),
θ(pYq) implies the theory Cn(pyq ∈ pYq) ³ θ(pyq) for every y ∈ S, it implies
θ(pYq) for every y ∈ Y. By Theorem 1, θ(pyq) = Cn(y). In short, θ(pYq) implies
Y. (If y /∈ Y then pyq ∈ pYq is refutable, and Cn(pyq ∈ pYq) ³ θ(pyq) = L.)

For the converse implication, note that if y ∈ Y then Y implies y, while if
y /∈ Y then Cn(pyq ∈ pYq) = S. In other words, for each y ∈ S, the the-
ory Y ∧ Cn(pyq ∈ pYq) implies y, and therefore, for each y ∈ S, the theory
Y ∧ Cn(y ∈ pYq) ∧ Cn(y = pyq) implies y. By Lemma 19, Y ∧ Cn(y ∈ pYq) im-
plies every (axiomatizable) theory Cn(y = pyq) ³ y, where y ∈ S, and therefore
implies their meet

∧{Cn(y = pyq → y) | y ∈ S}, which is θ(y). By Lemma
19 again, Y implies the theory Cn(y ∈ pYq) ³ θ(y). Since Y is y-less, we may
conclude that Y implies θ(pYq).

Theorem 40 If pYq is a structural-descriptive name for the y-less theory Y, then

ϑ(pYq) ` Y. (7.5)

Proof By the definition (7.2), ϑ(pYq) implies Cn(pyq ∈ pYq) ³ ϑ(pyq) for
each y; and, on the assumption (made use of throughout the previous theorem)
that formulas such as pyq ∈ pYq are correctly decidable in Cn, it follows that
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ϑ(pYq) implies ϑ(pyq) for each y ∈ Y. By (3.3), ϑ(pYq) implies Cn(y) for each
y ∈ Y; that is, ϑ(pYq) ` Y.

Let us inquire a little further why the converse of Theorem 40 is unattainable.
If ∀y[Cn(y ∈ pYq) ³ ϑ(y)] were implied by Y, then ϑ(y) would be implied by
Y ∧ Cn(y ∈ pYq). But then by (3.4), θ(y) ∧ δ(y) would be so implied. The
first conjunct is unproblematic. But write p for y, and let Y be Cn(p). Then
Cn(p ∈ pYq) = L, and hence Cn(p) implies δ(p); which means, by (26), that the
sentence ‘It is a truth universally acknowledged, that a single man in possession of
a good fortune, must be in want of a wife’, which we called ‘p’, implies z(p) where
z is any y-universal formula of S. It is one thing for ϑ(p) to imply z(p), but quite
another thing for p to do so. If the implication were to hold, indeed, the definition
(7.2) would be a creative one.

These results (Theorem 39, and the absence of a corresponding identity for
ϑ) seem to settle decisively the question of which theory, ϑ(y) or θ(y), is to be
preferred for the task of defining the truth of the formula named by y. As was
made clear in § 3, the function ϑ is much more generally applicable amongst weak
deductive disciplines. But in disciplines such as arithmetic and set theory, where
unaxiomatizable theories abound, the function θ, unlike ϑ, provides a definition
of truth that meets the minimum standard of material adequacy. To avoid minor
irregularities, noted just before (3.0) above, the domain of the function θ must be
restricted to names of formulas (and theories). Within that domain it succeeds in
doing a satisfactory job.

8 The Antinomy of the Liar

Having introduced no truth predicate, the present discussion is immune from the
liar antinomy in its customary forms. Although we have presented two materially
adequate definitions of truth, ϑ and θ, that assign to each name of a formula
a theory that encapsulates its truth, it is plain that there can exist at best an
axiomatizable theory, but never a sentence or formula, that asserts its own untruth.
The liar antinomy beloved of philosophers is unceremoniously blocked.

The antinomy seems to be reborn, however, if a theory Y can be constructed
for which Y = π(pYq) = θ(pYq)′. For according to Theorem 39, Y = θ(pYq), and
according to (4.4), θ(pYq) ∨ θ(pYq)′ = L. It follows that both θ(pYq) and its
complement θ(pYq)′ are identical with L, and therefore that L = S. The antinomy
of the liar is not expunged merely by the adoption of a paraconsistent logic in which
truth and falsity (and truth and untruth) are not always incompatible (Theorem
37). The version of the liar just sketched presumes to exhibit a theory that is not
just both true and false but both logically true and logically false.

This cannot, of course, be right, since the definition (7.3) of θ(Y), and its
ancestors, are all explicit definitions within the background theory T (which is
surely consistent). It is simple enough to pinpoint the invalid step: it must lie in
the supposed construction of the theory Y = π(pYq). For although it is perfectly
possible, by parodying its definition, to provide a theory such as π(Y) with a name,
〈π(Y)〉 say, that in some sense reveals its structure, and then apply the diagonal
construction, such names are not of a kind that permits proof of an analogue of
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(7.4), that Y = θ(〈Y 〉). To take a simple example, consider π(y), which is defined
in (6.3) as θ(y)′, or equivalently (by (4.9) and (3.1)) as

∨{y = pyq ∧ ¬y | y ∈ S}.
The structure of this theory — let us call it Z — is not well enough known for a
name 〈Z〉 to provide information about which formulas Z does and does not imply.
We cannot expect, that is, to prove pyq ∈ 〈Z〉 when Z implies y, or (especially)
to prove pyq /∈ 〈Z〉 when Z does not imply y. But it is exactly these features of
names of formulas that are needed for material adequacy (7.4) to be established.

The above three paragraphs give only a hint of why and how the antinomy of
the liar is bypassed in this theory of truth. A more elaborate treatment is planned
for Miller (2009).
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freiheit und der ω-Vollständigkeit’. Monatshefte für Mathematik und Physik 40,
pp. 97–112. References are to the English translation. ‘Some Observations on
the Concepts of ω-Consistency and ω-Completeness’, Chapter IX, pp. 279–295, of
Tarski (1956).
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