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0 Summary: the problem

The first task of this lecture is to present a well known
problem concerning probabilistic independence that arises
whenever elements with extreme probabilities (probabili-
ties of 0 and 1) are of serious interest, to criticize briefly
a solution published in 2017 by two leading writers in this
area, and to compare it with the solution offered by Karl
Popper in 1994 in appendix *XX of Logik der Forschung.

The question inevitably arises of what job the relation of
probabilistic independence should be asked to perform, in
particular how it is related to logical independence. Re-
levant here is an extensive 1997 discussion by Georg Dorn.
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0 Summary: a solution

It turns out that probabilistic independence, however de-
fined, and logical independence, as usually understood,
are not smoothly related. This may be of scant concern
to physical interpretations of probability, but it is an un-
welcome result for the logical interpretation, whose main
aim is to give a metrical generalization of logical relations.

The second task of the lecture is to resolve the problem by
understanding logical independence in a different (but not
scandalously different) way, and by replacing logical prob-
ability by a different measure, contraprobability (which in
Miller & Popper 1986 was called deductive dependence).
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1 The classical definition of independence

In the classical theory, codified in the axioms of Kol-
mogorov, in which absolute probability p(a) is primitive,
elements a, b within the domain of the function p are
defined in this way to be probabilistically independent:

U(a,b) <> p(ab) = p(a)p(b).

The relation £ is symmetric. An immediate and untoward
consequence is the probabilistic independence of every el-
ement a from every element b for which p(b) = 0; in
particular every element a is probabilistically independ-
ent of the contradictory (or zero) element s, even though
a, being deducible from s, is logically dependent on s.
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1 Elements with probability 1

It is rather less obvious that every element b with prob-
ability 1 stands in the relation I/ to every element a.
For if p(b) = 1, then p(a v b) < p(b), whence by
the addition and monotony laws p(a) < p(ab) < p(a),
from which it follows that p(ab) = p(a)p(b). As a con-
sequence, the tautological (or unit) element t is proba-
bilistically independent of every element a, even though
t, being deducible from a, is logically dependent on a.

In response to these oddities, the classical theory admits a
stronger (asymmetric) sense of independence in terms of
the relative (often called conditional) probability p(a,b).
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1 Alternative classical definition of independence

The relative (or conditional) probability p(a,b) is de-
fined, whenever p(b) # 0, by p(a,b) = p(ab)/p(b).

The stronger classical definition of independence is this:
V(a,b) < p(a,b) = p(a).

Since p(a,b)p(b) = p(ab) for any b, implies :
Moreover, V(a,b) holds, just as U4(a,b) does, when
p(b) = 1. It holds too when p(a) = 0 and p(b) # O.
But the conclusion that any element a is independent
of s is thwarted, since the term V(a,s) is ill formed.

Nonetheless, V(t,b) and V (s, b) both hold when b # s.
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1 Popper’s axiomatization of probability

In the theory presented in appendices xiv and xv of The
Logic of Scientific Discovery the term p(a, b) is well de-
fined for all a,b. Elements a,b have a conjunction ab,
and each a has a negation a’. The disjunction a Vv b,
which is defined via De Morgan’s laws, obeys the general
addition law p(a, c) + p(b,c) = p(ab,c) + p(a Vv b, c).

The self-contradictory and tautological elements s and t
are defined in the usual way. The value of p(a, s) is equal
to 1 for every a, and so the special addition law p(a, b)+
p(a’,b) = 1 holds if & only if b is distinct from s. The
absolute probability p(a) of a is identified with p(a,t).
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2 Popper’'s 1994 definition of independence

Made aware by Dorn of the problems, noted above, in
the classical definition of independence when applied to
s and t (and to other elements with extreme probabili-
ties), but also wanting some contingent statements with
probability 1, such as ‘There exists a white raven’ and
‘There exists a golden mountain’, to count as independ-
ent of each other, Popper defined two new relations of
weak independence W(a,b) and independence Z(a, b):

W(aab)Hp(aab) — p(a, b,)'
Z(a,b) <+
W(a,b) & W(d’,b) & W(b, a) & W', a).
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2 Simple properties of the relations W and Z

Popper showed several simple results about VYV and Z:
If WW(a,b), then p(a,b) = p(a); that is to say, V(a, b).
T is symmetric; that is, Z(a, b) is equivalent to Z(b, a).
Z(a,b) is equivalent to Z(a,b’); and also to Z(a’,b)
(and, he could have added, equivalent to Z(a’, b’) too).

Near the end of appendix *XX, he showed directly that
Z(a,b) implies U(a,b), so that probabilistic independ-
ence, newly defined, ‘implies classical independence’. In-
deed, U4, V, VW, and I are increasingly strict relations.
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2 The contribution of Fitelson & Hdjek

A recent paper by Fitelson & Hajek, published in 2017,
but on line since 2014, which adopts the practice of tak-
ing relative probability as primitive, also dismisses for
implying that ‘anything with extreme probability has the
peculiar property of being probabilistically independent of
itself’; this is a state of affairs that, they judge, may per-
haps be acceptable for contingent events with probability
1 (§6), but is intolerable for those with probability 0 (5 8).

They accordingly propose, as successors to , two defin-
itions of probabilistic independence: one is released
from the restriction that p(b) # 0, the other is

(© D.W. Miller 2018 Please do not cite without permission. 2-2



2 The symmetry of the relation Z

It is to be regretted that Fitelson & Hajek have paid no
attention to *XX of Logik der Forschung. As we shall
see, the definition is in several ways better than either

or . No element a is counted by as independ-
ent of itself or of its negation: —Z(a, a) and =Z(a, a’).

Like U, the relation Z is symmetric. The two independ-
ence relations V and )V that Fitelson & Hajek favour (but
do not choose between) are asymmetric. They seem to
regard it as a discovery that ‘on a Popperian account of
independence’, as they audaciously refer to their propos-
als, ‘we must specify a direction of independence’ (§8).
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2 Popper'’s

The main theorem (Haupttheorem) of Popper’s appendix
*XX states that neither s nor t bears the relation Z to
any element (itself included). The proof reduces to this:
by , W(a,t) is equivalent to p(a) = 1; whence, by
the addition law, at least one of W(a,t) and W(d’,t)
is false. But each follows from Z(a,t), so Z(a,t) is
false. Since Z(a,b) and Z(a, b’) are equivalent, Z(a, s)
is also false. By symmetry, Z(t, a) and Z(s, a) are false.

Popper did not assert it (let alone prove it), but he would
undoubtedly have been pleased that, according to D/, no
element a is independent of itself, or of its negation a’.
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2 No element is independent of itself or its negation

The falsity of Z(a, a) is trivial when 0 < p(a) < 1,
since Z(a,b) implies U4(a,b), but it may be proved for
all elements a. Let me offer a proof in Popper’s memory.

First of all, Z(a, a) reduces to the conjunction of WW(a, a)
and W(d/, a); that is, to the conjunction of p(a,a) =
p(a,a’) and p(a’, a) = p(a’, a’). Since p(b,b) =1 for
any b, these equations imply that p(a, a’) and p(a’, a)
both equal 1, so that the multiplication law, used twice,
yields p(a) = p(a’) = p(aa’) = 0. The addition law
precludes this, and so Z(a, a) is false. Since Z(a,b) and
Z(a,b’) are equivalent for all b, Z(a, a’) too is false.
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2 Independence of elements with unit probability

Another result that Popper envisaged, but did not prove,
is the possibility that two elements with unit probability,
such as two logically independent existential statements,
can be probabilistically independent. To show this, let t
be the closed interval [0, 1], and a and b be the half-open
intervals (0,1] and [0,1). Under the uniform measure:

aa bbb
a/l 011 p(a,b) =1 = p(a,b’)  W(a,b)
a’//l0 1 0 0 | p(a/,b) =0 = p(ad,b’) W(d,b)
b1 110 p(b,a) = 1 = p(b, a’) W(b, a)
b /0 0 01 | p(b/ya) =0 = p(b/,ad") W(b,a)
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2 Logical independence of the conjuncts in Z(a b)

The definition offered by Popper of the weak inde-
pendence YW(a,b) of elements a and b is given by the
equation p(a,b) = p(a,b’), while his definition of
(strong) independence consists of the conjunction of the
four formulas W(a, b), W(a’, b), W(b, a), W(b’, a).

Since , the less pedestrian of Fitelson & Hajek’s pre-
ferred definitions of independence, is limited to the first
of these formulas, it is natural to ask what work the other
three conjuncts do in the definiens of Z(a,b). Are they
all needed? Is each of them logically independent of the
others? Are there any logical connections among them?
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2 Complete logical independence

Complete independence was introduced, and exploited,
by E. H. Moore (1910). It is well known to philosophers
as the kind of independence enjoyed by atomic proposi-
tions in Wittgenstein’s Tractatus; that is, a set of state-
ments is completely independent if all the members of
any subset can be true while all the remainder are false.
A completely independent set is consistent — its mem-
bers can all be true together — and (simply) independent
— one member can be false while all the others are true.

It turns out that the set of conjuncts in Z(a, b) is consist-
ent and independent, but not completely independent.
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2 What is easily shown, and what can be shown

We know that if neither p(a) nor p(b) equals either 0 or
1, then W(a,b), W(d’,b), W(b,a), and W(b’, a) are
logically equivalent ways of stating the probabilistic inde-
pendence of a and b (according to ). This means that
they are all true when a and b are, like reports of throws
of dice, independent, and all false when they are not.

It will be shown that exactly one of W(a,b), W(d’,b),
W(b, a), and W(b’, a) can be false, and that exactly
two of them can be false. But it is not possible for exactly
three of them to be false. By symmetry it will be enough
to investigate just one singleton, one pair, and one triple.
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2 When two out of three conjuncts in Z(a b) are false

Suppose that VW(a,b), the first conjunct of Z(a,b), is
true and that W(a’,b), its second conjunct, is false.
This supposition is equivalent, by , to the conjunc-
tion p(a,b) = p(a,b’) & p(a’,b) # p(a’,b’), which
complies with the addition law if & only if b is identical
with one or other of s and t. In either case p(a) equals 1.

Now suppose that YW (b, a), the third conjunct of Z(a, b)
is false. Then by , p(b,a) # p(b, a’), which is im-
possible if b = t. It follows that b = s and therefore
that b’ = t. But then W(b’, a), the fourth conjunct
of Z(a,b), which says that p(b’, a) = p(b’, a’), is true.
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2 Exactly two conjuncts in Z(a b) may be false

Given this analysis, it is straightforward to find elements
a and b, and values for the function p such that, of the
four conjuncts that make up Z(a, b), (i) only W(d’,b)
and WW(b, a), the second and third conjuncts, are false,
and (ii) only W(a’,b), the second conjunct, is false.

We obtain an example where (i) two of the conjuncts
in Z(a,b) are true, and two are false, by identifying b
with s and a with t. W(a,b) and W(b’, a) then re-
duce (slightly differently) to p(t,s) = p(t,t); that is, to
the truth 1 = 1, while W(a’,b) and W(b, a) both re-
duce to p(s,t) = p(s,s); that is, to the falsehood 0 = 1.
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2 Exactly one conjunct in Z(a b) may be false

An example of (ii) is obtained by identifying b with t, and
a with a distinct (that is, contingent) element with unit
probability. Then p(a,b) =1 = p(a,b’) and p(b’,a) =
0 = p(b/,ad’); but p(a’,b) =0 # 1 = p(d/,b’) and
p(b’,a) = 0 = p(b’,d’). Inshort, W(a’,b) is false, but
the other three conjuncts in Z(a, b) are all true. This ex-

ample shows also that Popper’s Haupttheorem does not
follow from W(a,b), W(b, a), and W(b’, a) together.

By an appeal to the invariance of Z(a,b) if a and b
are interchanged, or if either is replaced by its negation,
we may extend these results to any choice of conjuncts.
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2 The unnatural weakness of the definition DW

That the conjuncts of Z(a,b) are not completely inde-
pendent is an unexpected result, but does it have much
significance? In advising us that whenever YWW(a,b) is
true at least one of the other conjuncts in Z(a, b) is true,
it suggests that even if the definition commended by
Fitelson & Hajek is not relinquished in favour of Popper’s

, it ought to be enriched with at least one further con-
junct. This can be accomplished in seven different ways.

At several places the prospect of a range of relations of
probabilistic independence (as there exists for logical in-
dependence) is equably entertained by Fitelson & Hajek.
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3 Probabilistic dependence and confirmation

Not before time we must face the question of what prob-
lems a definition of probabilistic independence is designed
to illuminate. | am thinking here not of physical interpre-
tations of probability (frequency, propensity), where hy-
potheses of independence play a crucial role, but of what
is called logical or epistemic or judgemental probability.

In various places Fitelson & Hajek adduce a link between
probabilistic dependence and evidential or confirmational
relevance. They ask, for example, apropos the depend-
ence of any proposition on itself (§6): ‘What better sup-
port, or evidence, for X could there be than X itself?’
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3 Logical and probabilistic independence

A different idea, however, is visible when they write a
few lines later that ‘[w]e may well want inductive logic,
understood as probability theory, to be continuous with
deductive logic’. This is the suggestion that probabilistic
dependence and independence may be generalizations of
logical dependence and independence. The viability of
this suggestion is the topic of the rest of this lecture.

The matter is not entirely simple or entirely satisfactory.
But, setting aside some subtleties for the moment, we
may say that complete logical independence does not
imply, and is not implied by, probabilistic independence.
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3 Dorn’s strong harmony requirement

Let us begin with the proposal that the logical depend-
ence of a and b should ensure that they are also prob-
abilistically dependent; in other words, if any one of the
four relations a - b, a - b/, a’ - b, and b - a, holds,
then there is no probability measure p under which a and
b turn out to be probabilistically independent, Z(a,b).

This is a simplified form of the strong harmony require-
ment of Dorn (1997), §11.6.1. If we exclude those prob-
ability measures under which some contingent elements
have extreme probabilities, it is a truism. Nonetheless it
is infringed, as Dorn was aware, by Popper’s definition
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3 A counterexample

Here is a simple example. Let t be the closed interval
[0, 1], a the half-open interval (0, 1], and b the singleton
{1}. The uniform measure yields the relative probabilities
given in the table below, from which the probabilistic
independence Z(a,b) of a and b follows. Yet b implies
a. Likewise Z(a’,b), yet b contradicts a’. And so on.

aa bbb
a/l 011 p(a,b) =1 = p(a,b’)  W(a,b)
a’//l0 1 0 0 | p(a/,b) =0 = p(ad,b’) W(d,b)
b0oO010 p(b,a) = 0 = p(b, a’) W(b, a)
b/ /1101 | p(blya) =1 = p(v/,ad) Wb/ a)
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3 A simple-minded response

Dorn wrote (loc.cit.): ‘in the light of the strong version
of the harmony requirement, the semantics of probabili-
stic relations of dependence and independence is still in a
mess’. | shall soon suggest a drastic way out of the mess,
but first a straightforward expedient should be recorded.

This is to define a and b are probabilistically independ-
ent (with respect to p) as the conjunction of Z(a, b) and
logical independence; and then to say that a and b are
probabilistically independent simpliciter if they are so with
respect to every function p. It follows at once that logic-
ally dependent elements are probabilistically dependent.
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3 Is Dorn’s requirement the right way round?

This proposal may seem to be rather contrived, but it
does point to something odd about Dorn’s strong har-
mony requirement. For in the normal run of things, it is
not logical dependence that is regarded as a symptom of
probabilistic dependence, but logical independence that
is regarded as a symptom of probabilistic independence.
(Often, it should be said, logical independence is re-
quired to be relative to a substantial background theory.)

Recall Popper’s hope that ‘There exists a white raven’
should turn out to be probabilistically independent of the
logically independent ‘There exists a golden mountain’.
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3 Admissible probability measures

Even in non-extreme cases, it is a decision, not a tru-
ism, to regard logically independent elements as proba-
bilistically independent, and it incorporates no suggestion
that the latter must hold for every probability measure p.
The decision is a characterization of admissible probabi-
lity measures, not a description of all possibilities. There
are always measures under which the results of unrelated
coin tosses, for example, are probabilistically dependent.

Unfortunately this way of connecting logical and probabi-
listic independence leads nowhere. It is firmly blocked if
there exist more than two logically independent elements.
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3 Complete logical independence leads to extremism

It was proved by Popper & Miller (1987) that if there
exist three completely independent elements, and com-
pletely independent elements are asked to be probabilist-
ically independent in the sense of (or DV, , or D),
then some of them have probability O or probability 1.

Proof. It is easily shown that if {a,b,c} is a com-
pletely independent triple, then {ac,b} and {ab, cb} are
completely independent pairs. It is implied by probabi-
listic independence that p(a)p(b)p(c) = p(ac)p(b) =
p(abe) = p(ab)p(cb) = p(a)p(b)?p(c), and therefore
at least one of p(a), p(b), and p(c) is 0, or p(b) = 1.
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4 Maximal logical independence

There is another familiar generalization of simple logical
independence. The pair {a, b} is said to be maximally
independent if neither a nor b is a consequence of the
other (simple independence) and, additionally, no (non-
tautological) consequence of a or of b is a consequence
of the other. Their common consequences are exactly the
tautologies (which are consequences of all elements). In
traditional terms a and b are independent subcontraries.

This definition can be generalized to all sets of elements.
Tarski proved in 1930 that every set of elements is equi-
valent to a maximally independent set (it may be empty).
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4 Contrasting complete and maximal independence

In short, if a and b are completely independent then
neither provides any information about the truth value
of the other, while if they maximally independent neither
provides any information about the content of the other.

In §5 of ‘Carnap’s Inductive Logic’ (1967) Salmon as-
serted that statements a and b that are ‘entirely about
the past’ and ‘entirely about the future’ respectively are
independent in some sense, but not maximally independ-
ent. But then a Vv b is entirely about both the past and
the future, which implies that it is about neither, and is
a tautology. This can hardly be what Salmon intended.
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4 Conflict with probabilistic independence

Theorem 1 of Popper & Miller (1987), mostly anticipated
in their (1983) paper, states that, if a and b are max-
imally independent, then p(a,b) < p(a), except when
p(a,b) = 1 or p(b) = 1. That is, except in extreme
cases, maximally independent elements are not proba-
bilistically independent in any of the senses considered.

What is causing this impasse is not, | suggest, the un-
availability of an appropriate sense of logical independ-
ence. What is missing is a way of measuring degrees
of deducibility that is distinct from orthodox probability
measures and in harmony with maximal independence.
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4 Contraprobability

The function q(a, b), here to be called the contraproba-
bility of a given b, is defined as equal in value to p(b’, /).
By the law of contraposition, a’ logically implies b’ if &
only if b logically implies a, and in this case both p(a,b)
and q(a, b) take the value 1. But whereas p(a,b) =0
whenever a and b are contraries, q(a, b) = 0 whenever a
and b are subcontraries; in particular, q(a, b) = 0 when-
ever the elements a and b are maximally independent.

In contrast to q(a,b), p(a,b) — p(a) = 0 whenever a
and b are probabilistically independent (by DV, , DI),
but not, alas, whenever they are logically independent.
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4 Harmony at last

Observe that the result just stated holds for all under-
lying probability measures p, so that something akin to
Dorn’s harmony requirement, albeit in the opposite direc-
tion, has been rehabilitated. Dorn hoped that logical de-
pendence might imply probabilistic dependence for every
probability measure, while what is demonstrable is that
maximal independence implies contraprobabilistic inde-
pendence [that is, ¢ = 0] for every probability measure.

Yet there are measures under which q(a,b) = 0 when
a and b are not maximally independent. For p(a’b’) =
0 # p(b’) is quite possible when a Vb is not a tautology.
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