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Universidade de São Paulo
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0 Summary

The purpose of this paper is to give a purely logical proof of a result of
Mostowski [1937] concerning the complete theories of a calculus based on
classical propositional logic; and then modestly to generalize it. Mostow-
ski’s result is announced by Tarski on p. 370 of Logic, Semantics, Meta-
mathematics [1956]. (All references to Tarski’s work here are to this book.)
Tarski himself provides only a fragment of a proof, and the proof published
by Mostowski makes extensive use of topological methods and results. The a

proof offered here is undoubtedly longer than Mostowski’s and not by any
means independent of it. But it should not be beyond the powers of any-
one who has followed assiduously a couple of courses in propositional logic
and knows a little set theory. The axiom of choice is assumed, but not the
continuum hypothesis.

A calculus is what Tarski called a deductive system (originally a deduc- b

tive theory): the set of sentences of a language plus an operation Cn of
logical consequence based on that of classical propositional logic. A theory
is a set of sentences closed under Cn. An axiomatizable theory is Cn(X)
for some finite set X of sentences. A complete theory is a theory that has c

no consistent proper extension. The characteristic pair of a calculus is the
ordered pair consisting of the number of its axiomatizable complete the-
ories and the number of its unaxiomatizable complete theories. If we add
the pair 〈0, 0〉, which is unaccountably | omitted both by Mostowski and | 2
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by Tarski, and correct an obvious slip in the statement of his Theorem 8,
Mostowski’s result is the following.

Theorem 0 : The characteristic pair of a finite or denumerable calculus
must take one of the following values (m is a natural number, and n is a
positive natural number):

〈m, 0〉, 〈m, 2ℵ0〉, 〈ℵ0, n〉, 〈ℵ0,ℵ0〉, 〈ℵ0, 2
ℵ0〉.

We shall prove this Theorem, and also show how to construct examples of
calculi of all the different characteristic pairs.

1 Examples of Finite Calculi

We start with a presentation of examples. For the sake of uniformity, they
are all of calculi based on propositional languages, even though in some
cases there exist more intuitive illustrations amongst predicate languages.
Elementary logic with identity ≡ and no other predicates, for example, has
characteristic pair 〈ℵ0, 1〉 (Tarski, p. 378); whilst augmenting this language
with a single monadic predicate P produces a calculus with characteristic
pair 〈ℵ0,ℵ0〉. The symbols ∧,∨,¬,⊥,→ will be used for conjunction, dis-
junction, negation, the absurdity, and the conditional respectively.

The presentation in this section and the next will be informal. We shall,
for example, say that the theory X assigns a truth value to a letter p, or
asserts the truth or falsehood of p, or simply asserts p or ¬p, meaning
only that either X implies p or that it implies ¬p. It is understood that a
complete theory is one that assigns one and only one truth value to each
propositional letter in the language.

The easiest cases are the characteristic pairs 〈2j, 0〉. Here it suffices
to take a propositional language with j distinct letters p0, . . . , pj−1, and
adopt for Cn the consequence operation of classical propositional logic.
Each assignment of truth values to the j letters yields a complete theory,
and there accordingly exist 2j axiomatizable complete theories. Since all
theories in the calculus are axiomatizable, there are no other complete
theories.

For the case of the characteristic pair 〈m, 0〉, where 2j−1 < m < |2j, we| 3
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take the same language, but enrich the consequence operation Cn by adding
as extra logical postulates the negations of any 2j − m of the complete
theories. This leaves m complete theories. For instance, if m = 3 we could
start with a language whose letters are p and q, and then assert p → q as
a logical truth. The three complete theories of the calculus are axiomatized
by the sentences p ∧ q, ¬p ∧ q, and ¬p ∧ ¬q. d

At the finite level, there remains only the case of 〈0, 0〉. In the light
of Lindenbaum’s theorem (which states that every consistent theory has a
complete extension), this characteristic pair may seem not to be possible.
But, of course, it is not excluded if there can exist a calculus in which no
theory is consistent. There are, in fact, two ways to manage this. One is
to add to the laws of logic a rule that allows the absurdity ⊥ to be derived
from the empty set. In this calculus all theories are logically equivalent to
⊥. The other possibility (not available if logic is formulated in terms of
⊥ or some other constant) is to take a language with no sentences at all.
(Tarski admits this possibility on pp. 31, 63; but on p. 344, at the start of
his definitive exposition of the calculus of deductive theories, he rules it
out.)

2 Examples of Infinite Calculi

The next easiest cases are the characteristic pairs 〈m, 2ℵ0〉. For m = 0 we
require a propositional language with a denumerable set of letters p0,p1, . . ..
When Cn is the ordinary classical consequence operation we have a calculus
whose characteristic pair is 〈0, 2ℵ0〉, as is obvious. Each complete theory
must, for every natural number i, assign a truth value to pi, that is, it
must asserts either pi or ¬pi. No such infinite conjunction of independent
conjuncts can be axiomatizable.

For the remaining pairs of the form 〈m, 2ℵ0〉 we strengthen the operation
Cn with various sets of logical postulates. For example, let I be the set of
all propositions of the form p0 → pk for k > 0; and let Cn be fortified by
the addition of I as a set of axioms. Then p0 — or, if you like, Cn(p0) — is
a complete theory, and is axiomatizable. All other complete theories assert
¬p0, and otherwise, as before, have denumerably many things to say, and
so are nor axiomatizable. The characteristic pair is therefore 〈1, 2ℵ0〉. To
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obtain the characteristic pair 〈2, 2ℵ0〉 we | further strengthen Cn with the| 4

postulates {p1 → pk | k > 1}. In this calculus p0 and ¬p0 ∧ p1 axiom-
atize complete theories; while all other complete theories assert ¬p1 and
denumerably many other things, and are not axiomatizable. The general
case of a characteristic pair 〈m, 2ℵ0〉 is similar. For each i, let Ii be the set
{pi → pk | k > i}, and let Cn be enriched with the set I0 ∪ · · · ∪ Im−1.
Then p0 and ¬p0 ∧ p1 and . . . and ¬p0 ∧ ¬p1 ∧ · · · ∧ pm−1 all axiom-
atize complete theories. But there are remain continuum many complete
theories — all those that assert ¬pm−1 — that are unaxiomatizable.

We may construct a calculus with characteristic pair 〈ℵ0, 1〉 by taking
the elements of all the Ii as new postulates. For any theory whose truth
value assignments ever change from true to false — that is, that asserts both
pi and ¬pk for k later than i — is inconsistent. Thus the only complete
theories are those whose assignments are truth preserving with increasing
index: for each k, there is an axiomatizable one that asserts ¬pi for all i < k,
and also asserts pk; and in addition to these, there is an unaxiomatizable
one, which asserts ¬pi for all i.

A slight variation yields the characteristic pair 〈ℵ0, 2〉. We take not all
the Ii as new sets of postulates, but only those where i > 0. The same ar-
gument applies, except that both p0 and ¬p0 are consistent with all other
truth value assignments; in particular, they are both consistent with the
theory that asserts ¬pi for every positive i. This produces two unaxiom-
atizable complete theories. To generate a calculus with characteristic pair
〈ℵ0, n〉 for any other positive n is now quite straightforward. First find j
such that 2j < n < 2j+1, and take as new postulates all the elements of all
the Ii for i > j. This produces (in the same way as above) 2j+1 unaxioma-
tizable complete theories. By adding further postulates we may disqualify
2j+1 − n of them as logically false, without reducing to finitude the set of
axiomatizable complete theories. (This follows from Theorem 0. If there
were only finitely many complete theories left, they would all have to be
axiomatizable.)

To obtain a calculus with characteristic pair 〈ℵ0, 2
ℵ0〉 we must strengthen

Cn neither with a finite family nor with a co-finite family of Ii as new post-
ulates, but with a family that is both infinite and co-infinite; for example,
all the elements of all the I2i. This | certainly yields a denumerable set of| 5

axiomatizable complete theories; p0, for example, is complete; so too are
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both ¬p0 ∧ p1 ∧ p2 and ¬p0 ∧¬p1 ∧ p2; so is ¬p0 ∧ p1 ∧¬p2 ∧ p3 ∧ p4, and
so on. But there are also continuum many unaxiomatizable complete the-
ories. If X is the theory that asserts p2i for every i, then every assignment
of truth values to all the odd-numbered letters p2i+1 is consistent with X,
and conjoined with it yields a complete theory.

This leaves only the characteristic pair 〈ℵ0,ℵ0〉 — for which, as noted in
section 1, there is a simple example in predicate logic. For an example in
propositional logic, we add more postulates to the calculus described in the
previous paragraph. Let K2i+1 be defined in somewhat the same way as Ii,
but with a restriction to odd-numbered letters: that is, K2i+1 is defined to
be the set {p2i+1 → p2k+1 | k > i}. Then the logical postulates added to
the present calculus are the elements of all the I2i and the elements of all the
K2i+1. The only consistent assignments of truth values to the odd-numbered
p2i+1 will, in the same way as before, be those that are truth preserving with
advancing i. Not all the axiomatizable complete theories will be retained,
since (for instance) ¬p0 ∧ p1 ∧ p2 ∧ ¬p3 is no longer consistent; but p0

survives, as do ¬p0 ∧ p1 ∧ ¬p2 and ¬p0 ∧ p1 ∧ p2 ∧ p3 ∧ p4, and all others
with no negated odd-numbered letters. That is, the axiomatizable complete
theories are still denumerable in number. As for the unaxiomatizable ones,
it is clear that each of these asserts ¬p2i for every i, and in addition either
p1 or ¬p1 ∧p3, or ¬p1 ∧¬p3 ∧p5, or . . . , or, finally, ¬p2i+1 for every i. All
these latter theories are unaxiomatizable, and they are clearly denumerably
many.

3 Basics

Let S, the set of all sentences of a language, be either finite or denumerably
infinite. An operation Cn : ℘(S) 7→ ℘(S) is a consequence operation if the
following three conditions hold (Tarski, pp. 31, 63f.).

if X ⊆ S then X ⊆ Cn(X) ⊆ S(1)

if X ⊆ S then Cn(Cn(X)) = Cn(X)(2)

if X ⊆ S then Cn(X) =
⋃
{Cn(Y ) | Y ⊆ X and |Y | < ℵ0}. |(3)

Condition (3) is often called compactness, though as formulated here it

| 6

eis a rather stronger constraint. If sentences A, B in S are such that
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A ∈ Cn({B}) and B ∈ Cn({A}), we call them logically equivalent un-
der Cn. Henceforth, logically equivalent sentences will, for convenience,
be identified, and will be referred to as propositions. (Nothing important
hangs on this identification.) We shall write S for the set of all proposi-
tions, and in future use Cn for the corresponding consequence operation on
subsets of S. Like S, S is at most denumerable. The pair 〈S,Cn〉 will be
called a [deductive] calculus. It will be assumed that the operation Cn is
based on the consequence operation of classical propositional logic; that is,
not simply that if X implies x classically then x is an element of Cn(X);
but also that all the standard classical theorems, including the deduction
theorem, are satisfied by Cn.

A subset X ⊆ S is called a [deductive] theory if X = Cn(X). If X =
Cn(X) for some finite set X ⊆ S, we call X [finitely] axiomatizable. Note
that, because Cn incorporates the standard rules for conjunction, and
Cn(∅) = Cn({t}) for any tautological t, any finite set of propositionsf

is equivalent to a single proposition. We usually abbreviate Cn({x}) by
Cn(x), or simply by x. The connectives ∨ and ∧ may be straightforwardly
extended from propositions to theories.

X ∨ Z = X ∩ Z(4)

X ∧ Z = Cn(X ∪ Z).(5)

It is easily checked that ∨ and ∧ so defined are extensions of their proposi-
tional ancestors. Expressions such as x∧X will be used in the obvious way.g

We define analogously the disjunction and conjunction of arbitrary classes
of theories.

∨
K =

⋂
K(6)

∧
K = Cn(

⋃
K).(7)

Many distributive laws fail for infinite disjunctions and conjunctions. One
that holds, x∧∨

K =
∨{x∧X | X ∈ K}, is left as an exercise. It will usedh

below in Lemma 22 and Theorem 25.

Taken as a set of propositions, the largest theory is S, the | self-contra-| 7

dictory theory, whilst the smallest is T = Cn(∅), the tautological theory.
Each is axiomatizable; S by the absurdity ⊥, and T by the empty set ∅.
Any theory distinct from S is consistent. If X ⊆ Z we say that Z is an
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extension of X, or that Z implies X, and write Z ` X. If Z is an extension
of X and distinct from X, then it is a proper extension of X.

A theory is called complete if its only proper extension is S. We shall use
Ω and Ψ for complete theories, and ω and ψ when they are axiomatizable.
The class of complete theories of a calculus is denoted by S. Suppose that
Ω is complete and does not imply x. Then Ω∧¬x cannot be S, and so (by
the definition of completeness) it is Ω; hence Ω ` ¬x. This is the property
of negation completeness. Lindenbaum’s theorem (mentioned above) is
another central result concerning complete theories, but its proof is so well
known that we do not pause to repeat it here. (The proof of Lemma 6
is variation on it.) We shall however prove the following refinement of
Lindenbaum’s theorem, due to Tarski.

Theorem 1 : For any theory X in a calculus that is based on classical
propositional logic,

X =
∨
{Ω | Ω ` X}.

Proof: Let K be the class of complete theories that imply X. It is clear
that

∨
K implies X. If X = S or if

∨
K is empty (as it will be only if S

is) then X implies
∨

K and there is nothing more to be proved. Otherwise,
suppose that z is a consequence of

∨
K that is not also a consequence of

X. Then X ∪ {¬z} is consistent, so may be extended to a complete Ω.
Obviously Ω implies ¬z. But since z is implied by

∨
K, it is implied by

every complete theory that extends X, and hence Ω ` z. This makes Ω
inconsistent, which is impossible.

By the range R[X] of a theory X is meant the class of all complete
theories that extend X. Tarski’s theorem tells us that X =

∨R[X]. If I is
a class of complete theories then I ⊆ R[

∨
I], but the converse is not true

in general. Let Ω be unaxiomatizable, for instance, and let I = S \ {Ω}.
Then if

∨
I ` z, we have

∨
S =

∨
I ∨ Ω ` z ∨ Ω. By Theorem 1,∨

S = T. Hence ¬z ` Ω, which means that z is in T. Hence
∨

I = T,
and R[

∨
I] is not included in I. | | 8

Theorem 2 : Let I and K be the classes respectively of the axiomatizable
and unaxiomatizable complete theories of a calculus. Then

∨
K =

∧{¬ω | i

ω ∈ I} and R[
∨

K] = K.
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Proof: If Ω ∈ K and ω ∈ I, then Ω cannot imply ω, and so it implies
¬ω. Thus Ω ` ∧{¬ω | ω ∈ I}, which we call X. If X had a complete
extension not in K, that extension would be axiomatizable; that is, some
ω would imply X, and thus imply ¬ω. This is impossible. In other words,
R[X] = K, so by Theorem 1, X =

∨
K.

4 Simple Results

The number of axiomatizable complete theories in a calculus will be de-
noted by α, the number of unaxiomatizable complete theories by β. As has
already been noted, the axiom of choice is assumed throughout, but the
continuum hypothesis is not assumed. (For a result related to the present
inquiry that can be proved without the axiom of choice, see Tarski, pp. 82f.)
In this section we prove some of the simpler constraints on the pair 〈α, β〉.

Theorem 3 : For every calculus that is based on classical propositional
logic,

0 ≤ α ≤ ℵ0,(8)

0 ≤ β ≤ 2ℵ0 .(9)

Proof: There are at most denumerably many distinct propositions,
so at most denumerably many distinct axiomatizable theories. On the
other hand, every theory is a subset of S, so there are at most 2ℵ0 distinct
theories.

Theorem 4 : For every calculus that is based on classical propositional
logic,

if α + β < ℵ0, then β = 0.(10)

Proof: By Theorem 1, every theory is the disjunction of all the complete
theories that extend it. Since finitely many theories can be disjoined in only
finitely many ways, there are only finitely many theories; and therefore,
since each proposition x generates its own axiomatizable theory Cn(x),
only finitely many propositions. But then no theory can fail to be finitely
axiomatizable, and β = 0. || 9
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Theorem 5 : For every calculus that is based on classical propositional
logic,

if β = 0, then α < ℵ0.(11) j

Proof: Let I be the class of all the axiomatizable complete theories, and
ψ, ω be distinct elements of I. Since ω has no consistent proper extension,
ψ does not imply ω; hence ψ, being negation complete, implies ¬ω.

Assume that I is infinite. We shall show that there is a complete theory
Ω outside I.

Put I? = {¬ω | ω ∈ I}, the set of the negations of elements of I. Let Y
be any finite subset of I?, and ψ an element of I whose negation ¬ψ is not
in Y . Since ψ implies all the elements of Y , Y is consistent. This holds for
any finite Y ⊆ I?, so by compactness I? is consistent. By Lindenbaum’s
theorem there is a complete theory Ω that implies every element of I?. It
is clear that Ω cannot be an axiomatizable theory ω, for then ¬ω would
be in I?; this would mean that Ω implied both ω and ¬ω, and was not
consistent.

5 Incomplete Finite Completability

Theorem 4 assures us that if α and β are both finite then β = 0. In
response to the question of what is possible if α is finite and β is infinite
we shall show in Theorem 7 that β can only be 2ℵ0. Remember that the
continuum hypothesis is not being assumed, so that more needs to shown
than simply that β exceeds ℵ0. To start thinking along the right lines
for the proof, consider an informal proof, based on Gödel’s incompleteness
theorem, that Peano arithmetic P (which is assumed to be consistent) can
be completed in continuum many ways. Gödel’s theorem shows that for any
effectively presented extension X of P (including of course P itself) there
is an effectively specifiable sentence G (the gödelsentence of X) such that
both X ∧ G and X ∧ ¬G are consistent. Let G1 be the gödelsentence for
P, and G0 its negation. Likewise, let G11 be the gödelsentence for P ∧G1,
and G10 its negation; and G01 be the gödelsentence for P∧G0, and G00 its
negation; and so on. Continuing to eternity, we obtain as many consistent
extensions of P as there are denumerable sequences of 0s and 1s; that is,
there exist (at least) 2ℵ0 extensions of the theory|P. Since by Lindenbaum’s | 10
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theorem, each has a complete extension, P has at least (in fact, exactly)
2ℵ0 complete extensions.

This proof is hardly watertight — to take the most glaring gap, there
is no explicit argument to the effect that each two extensions are different
— or even that G01 is different from G10 —, but it is not irremediable. We
redeem it below it Lemma 6.

We call a theory Z a finite extension of the theory X if there is some pro-
position x for which Z = x∧X. More specifically, X is finitely completable if
there is some complete theory that finitely extends it. Finite completability
has little to do with logical strength — what we might think of informally
as distance from a complete theory. T is finitely completable whenever
α > 0, but many of its extensions may not be. In general, if X has a
finitely axiomatizable complete extension ω, then it is finitely completable:
ω = ω ∧ X. But the converse is often false; for, since Ω = x ∧ Ω for any
consequence x of Ω, any complete theory, axiomatizable or not, is finitely
completable.

For our present purposes the crucial distinction is between those calculi
in which all consistent theories are finitely completable, and those in which
there is at least one consistent theory that is not. In calculi of the former
kind, β is at most ℵ0, as we shall show in the next section; in those of the
latter kind, β = 2ℵ0 , as will be shown here.

Lemma 6 : If X is consistent and not finitely completable, then it has 2ℵ0

complete extensions.

Proof: Let z0 = ⊥, and let {zi | i > 0} be an enumeration withoutk

repetition of the consistent propositions of the calculus. For each deductive
theory Z define

Z1 = Z ∧ zk

Z0 = Z ∧ ¬zk

where k = k[Z] is determined in the following manner:

(A) if Z is consistent but not complete, then k[Z] is the least i for
which neither zi nor ¬zi is implied by Z; || 11

(B) if Z is [consistent and] complete, then k[Z] = 0;
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(C) if Z is inconsistent, then k[Z] = 0;

For any ω-sequence (progression) σ of 0s and 1s we define Zσ as
∧{Zτ |

τ is an initial segment of σ}.
We shall show that (i) if σ and τ are distinct sequences of 0s and 1s,

Zσ and Zτ are distinct provided that they are not both S; and (ii) if σ
is infinite and Zσ is consistent, then Zσ is complete. It is clear that if
X is not finitely completable then for every sequence σ the theory Xσ is
consistent. It follows that X has as many complete extensions as there are
progressions of 0s and 1s: that is, it has 2ℵ0 extensions.

Let σ and τ be sequences of 0s and 1s. It follows from the definitions
that if τ is an initial segment of σ, then Xσ implies Xτ . We can therefore
visualize the theories Xσ as branches of a tree rooted at X, where at each
level the branch Z that has developed to date either bifurcates, sends out
a single twig to the next level, which then dries up, or dries up at once.
Bifurcation necessarily occurs if k[Z] is determined by (A); for then both
Z1 and Z0 are strictly stronger than Z is. In case (B), Z1 is inconsistent,
and so stronger than Z is, while Z0 = Z; hence there is a single final
extension of the branch. In case (C), Z = Z1 = Z0, and the branch dies.
It is apparent that every infinite branch bifurcates at every level. Whether
or not the branch it represents is infinite, Xσ is defined for every infinite
sequence σ of 0s and 1s.

(i) Let σ and τ be distinct infinite sequences of 0s and 1s. If one of
Xσ and Xτ is consistent, and the other is not, the certainly they are not
identical. So we may suppose that both are consistent, which means that
X is consistent and not complete, and (A) applies. Let π be the longest
initial segment — which is finite, and perhaps empty — that σ and τ have in
common (that is, they differ for the first time immediately after the segment
π). Then each of Xσ and Xτ implies Xπ; and indeed, one of them implies
Xπ1 and the other implies Xπ0. But Xπ1 and Xπ0 are incompatible; and
so, since neither Xσ nor Xτ is S, they cannot be identical.

(ii) Suppose that Xσ is consistent, but not complete. Let i be |the least | 12

number for which neither zi nor ¬zi is implied by Xσ, and let τ be the
sequence consisting of the first i + 1 elements of Xσ. The Xτ must have
been obtained from X by i + 1 applications of (A), and so X must have
been enriched with i+1 new propositions. By the stage of Xτ , that is, the
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proposition zi must have been taken account of, and so Xσ (which implies
Xτ ) implies either zi or ¬zi, contrary to the specification of i. Hence there
is no such i, and Xσ is complete.

Theorem 7 : For every calculus that is based on classical propositional
logic,

if α < ℵ0 ≤ β, then β = 2ℵ0 .(12)

Proof: Let K be the class of unaxiomatizable complete theories. Since
α is finite, we may deduce from Theorem 2 that

∨
K is axiomatizable and

that its range is K. Thus it is consistent. But it is not finitely completable,
for an unaxiomatizable theory cannot finitely extend an axiomatizable the-
ory. We apply the Lemma with X =

∨
K.l

If α is infinite, the disjunction of the unaxiomatizable complete theories
is unaxiomatizable (a simple exercise), and the conclusion of Lemma 6 doesm

not follow unconditionally. The best that we can prove is this.

Theorem 8 : For every calculus that is based on classical propositional
logic and contains at least one consistent theory that is not finitely com-
pletable

if α = ℵ0 then β = 2ℵ0 .(13)

Proof: Immediate.

6 Complete Finite Completabilityn

We shall show in this section that if every consistent theory of a calculus is
only a proposition away from completeness, then the complete theories can
be listed, in disjoint non-empty blocks Aν that are at most denumerable, in
this way: start with the complete theories that are finite completions of T
(that is, those that are axiomatizable); continue with the finite completions
of the disjunction of those that remain; and so on, until all complete theories
are accounted for. It will be established that no proposition y | can be| 13

involved in more than one of these acts of completion; and thus that there
is not more than a denumerable number of complete theories.
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To be more exact: (14) defines for any calculus whatever two sequences
Sν and Aν of classes of complete theories. The definition is by simultaneous
recursion. The S-sequence, we shall show in (16), is contracting, while the
elements of the A-sequence are pairwise disjoint (this is (18)). With the
help of the axiom of choice we may show that from some ordinal o onwards
every element of the A-sequence is empty.

(a) S0 = S

(b) for all ν, Aν = {Ω | Ω finitely extends
∨

Sν}
(c) Sν+1 = Sν \Aν

(d) for limit λ, Sν =
⋂{Sν | ν < λ}.

(14)

It is a trivial consequence of Theorem 1 that
∨

S = T. Thus A0 is the
class of all the axiomatizable complete theories. Accordingly, S1 is the
class of unaxiomatizable complete theories. The characteristic pair 〈α, β〉
of a calculus is the pair of cardinals 〈|A0|, |S1|〉.

Lemma 9 : For every calculus that is based on classical propositional
logic,

Aν is at most denumerable;(15)

if µ < ν then Sν ⊆ Sµ;(16)

Aν ⊆ Sν ;(17)

if µ 6= ν then Aµ ∩Aν = ∅.(18)

Proof: The proof of (15) is an immediate consequence of (14b); the
theory

∨
Sν can be finitely extended in at most a denumerable number of

ways. (16) follows at once from (14c) and (14d).

As for (17), suppose that Ψ belongs to Aν . Then Ψ = y ∧ ∨
Sν for

some proposition y. Clearly
∨

Sν , which is consistent, cannot imply ¬y,
and so some Ω in Sν must imply y. Any such Ω consequently implies Ψ,
which is the conjunction of y and

∨
Sν . Since no complete theory can

imply any other complete theory, Ω = Ψ. Hence Ψ belongs to Sν .

To prove (18), suppose that µ < ν and that Ω belongs to Aµ. By | (17) | 14

Ω belongs to Sµ, and so by (14c) Ω does not belong to Sµ+1. But then,
by (16), Ω is not in Sν . So by (17) again, Ω is not in Aν .
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Lemma 10 : For every ordinal ν o

R[
∨

Sν ] = Sν .(19)

Proof: We need prove only that R[
∨

Sν ] ⊆ Sν , since the converse is
obvious. For ν = 0, the result is trivial, since S0 = S. Suppose that (19)
holds for ν, and that Ψ ` ∨

Sν+1. By (16), Ψ ` ∨
Sν , and so by the

induction hypothesis Ψ ∈ Sν . By (14c), either Ψ ∈ Sν+1 or Ψ ∈ Aν . We
show that the latter is not possible.

If Ψ ∈ Aν , then Ψ = y∧∨
Sν for some y, and so y∧∨

Sν `
∨

Sν+1 `∨
Sν . Thus Ψ = y ∧∨

Sν = y ∧∨
Sν+1. It follows that Ψ is in both Aν

and Aν+1, in contradiction to (18).p

Lemma 11 : For every limit ordinal λ

∨
Sλ =

∧
{Sν | ν < λ}(20)

Proof: By (19), Ω ` ∨
Sλ if and only if Ω ∈ Sλ; that is, by (14d), if

and only if Ω ∈ Sν for every ν < λ. By (19) again, together with (7), this
holds if and only if Ω ` ∧{∨ Sν | ν < λ}. But by Theorem 1, distinct
theories cannot have the same range.

Lemma 12 : Let Ψ ∈ Aµ and Ω ∈ Aν be distinct complete theories. Then
there is no proposition y for which both Ψ = y∧∨

Sµ and Ω = y∧∨
Sν .

Proof: Suppose for convenience that µ ≤ ν. Then Sν ⊆ Sµ by (16),
and so

∨
Sν ` ∨

Sµ. It follows that Ω = y ∧ ∨
Sν ` y ∧ ∨

Sµ =
Ψ. Being complete theories, Ω and Ψ are therefore identical, contrary to
hypothesis.

Lemma 13 : There exists an ordinal o for which Ao = ∅.

Proof: By the axiom of choice, there is a least ordinal λ with cardinality
greater than 2ℵ0 . Since there are just 2ℵ0 complete theories, the elements of
S cannot be well ordered in a sequence of length λ. But by (14c) whenever
Aν is not empty Sν+1 is a proper subset of Sν . It|follows that A0 becomes| 15

empty for some o < λ.
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Theorem 14 : For every calculus that is based on classical propositional
logic and contains no consistent theory that is not finitely completable

β ≤ ℵ0.(21)

Proof: Let o be the least ordinal for which Ao is empty. Since every
consistent theory is finitely completable, it follows from (14b) that

∨
So =

S, and therefore that o is the least ordinal for which So is empty. Thus
by (16) and (18), every element of S belongs to exactly one Aν for ν < o.
Now each element of each Aν is obtained by conjoining some proposition
y to the appropriate

∨
Sν , and by Lemma 12 no proposition y is in this

way associated with more than one complete theory. It follows that S is
at most denumerable, and thus that there are at most ℵ0 unaxiomatizable
complete theories.

Theorem 15 : For every calculus that is based on classical propositional
logic,

if α = ℵ0 ≤ β < 2ℵ0 then β = ℵ0.(22)

Proof: By Theorems 8 and 14.

7 Further Results

Theorem 0, stated in section 0, may be obtained by consolidating formulas
(8)–(12) and (22). As already noted, Theorem 0 was proved by Mostowski
by topological methods, exploiting a topology first defined by Stone on the
class S. The crucial connection (which will not be proved here) is stated
in Theorem 16.

Theorem 16 : Let K be a class of complete theories in a calculus that
is based on classical propositional logic, and Ω be any complete theory.
Then Ω is an accumulation point of K in the Stone topology if and only if
Ω ` ∨

K but is not a finite extension of
∨

K.

Proof: Omitted.

In topological terms, Sν+1 is the derived set of Sν , the set of its accu-
mulation points. In logical terms, Aν is the set of complete | theories that | 16
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may be finitely axiomatized given that each element of each earlier Aµ is
rejected.

In section 3 of [1937] Mostowski laid the foundations for a more detailed
investigation of the structure of S, in which calculi are characterized not
by 〈α, β〉, the pair of cardinalities of A0 and S1, but by the values assumed
by the cardinality |Aν | for all ν, together with the cardinality of the set
of complete theories not in any Aν . (Alternatively, as Theorem 20 shows,
we may use |S|.) We have seen in (15) that each Aν is at most denum-
erable. In the rest of this section, which does not go appreciably beyond
Mostowski’s work, we shall prove that the sequence of cardinalities |Aν | is
non-increasing, and contains at most one finite non-zero element between
the denumerable elements (if any) and the zero ones. We first strengthen
Lemma 13.

Lemma 17 : There exists a denumerable ordinal o for which Ao = ∅.

Proof: Let o be the least ordinal for which Ao is empty. By (14b), this
is also the least ordinal for which

∨
So is not finitely completable. The

elements of each Aν for ν < o are thus all finite extensions of Sν ; and, as in
the proof of Theorem 14, there cannot be more than denumerable number
of them. Hence o is denumerable.

Lemma 18 : For every calculus that is based on classical propositional
logic and contains no consistent theory that is not finitely completable, the
least ordinal o such that Ao = ∅ is a successor ordinal.

Proof: This is a simple compactness argument. By (16) the Sν form a
contracting sequence, so the theories

∨
Sν become stronger with increasing

ν. Let λ be some limit ordinal. Then the conjunction
∧{∨ Sν | ν < λ} =

S only if
∨

Sν = S for some ν < λ. But by (20), this conjunction is
identical with

∨
Sλ. Thus λ cannot be the least o for which So is empty.

Lemma 19 : For every calculus that is based on classical propositional
logic, || 17

if |Aµ| = ℵ0 then |Aµ+1| > 0.(23)

Proof: This is proved in the same way as Theorem 5.
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Theorem 20 : For every calculus that is based on classical propositional
logic,

if |S| ≤ ℵ0, then |S \A| = 0;(24)

if |S| = 2ℵ0 , then |S \A| = 2ℵ0 ,(25)

where o is the least ordinal for which Ao is empty, and A =
⋃{Aν | ν < o}.

Proof: We have seen already in Theorems 8 and 14 that |S| = 2ℵ0

if there is a consistent theory that is not finitely completable, and that
|S| ≤ ℵ0 otherwise. The proof of Lemma 13 makes plain that in the latter
case all complete theories belong to some Aν for ν < o. The proofs of
Lemmas 6 and 17 make plain that in the former case

∨
So has 2ℵ0 unax-

iomatizable complete extensions, none of which belongs either to Ao or to
any earlier Aν .

Mostowski op. cit., section 3, p. 13, called the characteristic of a calculus
in which |S| = ℵ0 the pair 〈ν, n〉, where ν is the greatest ordinal for which
Sν is not empty, and |Sν | = n. Theorem 14 and Lemma 18 ensure that
there always is such an ordinal ν; as there is when S is finite but not empty.
It suits our purposes to transform this definition into one concerning the
elements of the A-sequence.

Lemma 21 : For every calculus that is based on classical propositional
logic,

if |Sµ| < ℵ0, then for all ν ≥ µ, Aν = Sν and Sν+1 = ∅.(26)

Proof: Suppose that Sµ = {Ωi | i < k}. It is easy to show that there q

must exist a set Y = {yi | i < k} of pairwise incompatible propositions such
that for each i < k, Ωi ` yi. It follows that, for each i < k, yi ∧

∨
Sµ =∨{yi ∧Ωj | j < k} = Ωi. Thus each element Ωi of Sµ is a finite completion

of
∨

Sµ. Hence Sµ ⊆ Aµ. By (17), Aµ = Sµ. By (14c), Sµ+1 = ∅. Thus
Aµ+1 = ∅ by (14b) or (17). The extension to ν > µ + 1 is immediate. | | 18

Lemma 22 : For every calculus that is based on classical propositional
logic,

if |Aµ| < ℵ0, then for all ν > µ, Aν = Sµ+1 and Aν = ∅.(27)
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Proof: Suppose that Aµ = {Ωi | i < k} = {yi ∧
∨

Sµ | i < k}. Let
u = y0 ∨ · · · ∨ yk−1. If Ψ ∈ Sµ and Ψ ` u, then Ψ ` u ∧∨

Sµ; that is,
Ψ ` ∨{Ωi | i < k}. So Ψ ∈ Aµ. The converse is immediate.r

Otherwise, if Ψ is not in Aµ, then Ψ ` ¬u, and so ¬u ∧Ψ = Ψ. Hence
¬u ∧ ∨

Sµ, which by the infinite distributive law recorded in section 3,
is the same as

∨{¬u ∧ Ψ | Ψ ∈ Sµ}, is identical also with
∨{Ψ | Ψ ∈

Sµ \Aµ}; that is, with
∨

Sµ+1.

Thus
∨

Sµ+1 is a finite extension of
∨

Sµ. Hence any finite completion
of

∨
Sµ+1 is a finite completion of

∨
Sµ. That is, Aµ+1 ⊆ Aµ. By (18)

these two sets are disjoint, so it follows that Aµ+1 = ∅. Thus by (14c),
Sµ+2 = Sµ+1. The extension to ν > µ + 1 is immediate.

Theorem 23 : Let 〈ν, n〉 be the characteristic of a calculus based on clas-
sical propositional logic in which 0 < |S| ≤ ℵ0. Then ν is the least ordinal
for which Aν is finite and n = |Aν |.
Proof: Immediate.

The advantage of this formulation is that the characteristic may be de-
fined in the same way for a calculus with 2ℵ0 complete theories (and also
for one with no complete theories). The only difference is that now n may
be 0, though it may not be. We may call the characteristic triple of a calc-
ulus the triple 〈ν, n, θ〉 where ν is the least ordinal for which Aν is finite,
n = |Aν |, and θ = |S|.

Theorem 24 : The characteristic triple of a finite or denumerable calc-
ulus must take one of the following values (m is a natural number, n is a
natural number greater than 0, µ is a finite or denumerable ordinal and ν
is a finite or denumerable ordinal greater than 0):

〈0,m, n〉, 〈ν, n,ℵ0〉, 〈µ,m, 2ℵ0〉.
Proof: By Theorems 0 and 14, and Lemmas 17 and 19. || 19

8 Further Examples

It is not difficult to exhibit examples, similar to those given in sections 1
and 2, for all the possibilities not excluded by Theorem 24. Indeed, the
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examples can be generated in a uniform manner, depending only on which
type of characteristic triple is involved. For the triple 〈0,m, m〉, which is
possessed only by calculi that are essentially finite, nothing more need be
said: we may proceed exactly as in section 1.

For the other cases, we must base our calculi on a propositional language
with denumerably many letters, and the trick is to arrange these letters in
an appropriate transfinite sequence. For the triple 〈ν, n,ℵ0〉, the letters are
arranged in a sequence of length ων · n; and for the triple 〈µ,m, 2ℵ0〉, they
are arranged in a sequence of length ωµ ·(m+1)+ω. When µ = 0 this boils
down to a sequence of length ω, and the construction given below reduces
to that described in section 2.

Although there is not a great deal of difference between the two types
of triple, 〈ν, n,ℵ0〉 and 〈µ,m, 2ℵ0〉, it is easiest to take them one at a time.
Let ν and n be respectively a fixed positive denumerable ordinal and fixed
positive natural number; and {pκ | 0 < κ < ων · n} be an ordering of
the letters of some denumerable propositional language. The consequence
operation will be that of classical propositional logic enriched with the
logical postulates {pι → pκ | 0 < ι < κ < ων · n}. For each ξ satisfying
0 < ξ ≤ ων · n, we write

Ωξ =
∧
{¬pκ | 0 < κ < ξ} ∧

∧
{pκ | ξ ≤ κ < ων · n};(28)

from which we derive as easy consequences

(a) if ξ < ων · n then Ωξ ` pξ,

(b) Ωων ·n =
∧
{¬pκ | 0 < κ < ων · n}.

(29)

It is clear that the Ωξ are all complete, and clear also that they are all the
complete theories of the calculus. Conversely, this information, along with
the fact that the underlying logic is classical, suffices to identify the logical
postulates of the calculus; for if 0 < ι < κ < ων · n then every Ωξ that
implies pι also implies pκ; which by Theorem 1 amounts to asserting that
pι implies pκ. (Note that Ωξ is a function of|ν and n as well as of ξ; and in | 20

the same way, Sη and Aη below are functions of ν and n, as well as of η.
But since these arguments are here fixed, we gain notational perspicuity,
and lose nothing important, by suppressing reference to them.)
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The intuitive idea is that Aη is the set of all those Ωξ for which ξ is a
multiple of ωη but not of ωη+1. Hence A0 consists of all Ωξ for which ξ is
not a limit ordinal (since there is no Ω0, this is the same as saying that ξ is
a successor). S1 therefore contains all Ωξ for which ξ is a positive power of
ω; and A1 contains all of these that are not powers of ω2. In general, Sη+1

selects every ωth element from the set Sη; in brief, its limit points (see the
remark immediately following Theorem 16 above). Theorem 25 does little
more than spell this idea out in detail. When ν ≥ η we use the expression
ν − η for the unique ordinal ζ for which ν = η + ζ.s

Theorem 25 : In a classical calculus whose complete theories are given
in (28) above, for every η ≤ ν,

Sη = {Ωωη ·ξ | 0 < ξ ≤ ων−η · n},(30)

Aη = {Ωωη ·(ξ+1) | 0 ≤ ξ < ων−η · n}.(31)

Proof: The proof is really a proof of (30) by induction on η, in the
course of which it is shown also that if (30) hold for η then so does (31).
The proof is conveniently split into five stages.

(i) the base case: (30) holds when η = 0;

(ii) if (30) holds for η ≤ ν, and 0 ≤ ξ < ων−η · n, then
Ωωη ·(ξ+1) finitely extends

∨
Sη;

(iii) if (30) holds for η < ν, and 0 ≤ ξ < ων−η−1 · n,
then Ωωη+1·ξ does not finitely extend

∨
Sη;

(iv) [from (ii) and (iii)] if (30) holds for η ≤ ν, then
(31) holds for η; and if η < ν then (30) holds for
η + 1;

(v) if λ is a limit ordinal ≤ ν, and (30) holds for every
ν < λ, then it holds also for ν = λ.

(i) The case of η = 0 is entirely trivial, since S0 = S = {Ωξ | 0 < ξ ≤
ων · n}. || 21

(ii) Suppose next that (30) holds for some η ≤ ν. By the distributive
law cited in section 3 above,t

pωη ∧
∨

Sη =
∨
{pωη ∧Ωωη ·ξ | 0 < ξ ≤ ων−η · n}

= (pωη ∧Ωωη) ∨
∨
{pωη ∧Ωωη ·ξ | 1 < ξ ≤ ων−η · n},



The Disposition of Complete Theories 21

which by (28), (29a), and (29b) is simply Ωωη . Hence Ωωη is a finite
extension of

∨
Sη. In other words,

if ξ = 0, then Ωωη ·(ξ+1) ∈ Aη.(32)

If η = ν and n = 1 then nothing remains to be proved under (ii).
Otherwise it is possible to choose some ξ in the range 0 < ξ < ων−η · n.
Since ξ + 1 ≤ ων−η · n, Ωωη ·(ξ+1) belongs to Sη; and by (28), Ωωη ·(ξ+1) `
¬pωη ·ξ ∧ pωη ·(ξ+1). Thus Ωωη ·(ξ+1) ` (¬pωη ·ξ ∧ pωη ·(ξ+1)) ∧

∨
Sη. The

converse implication also holds. For by (29a) and (28), we have both

u

if 0 < κ < ξ + 1, then Ωωη ·κ ` pωη ·ξ,(33)

if ξ + 1 ≤ κ ≤ ων−η · n, then Ωωη ·κ ` ¬pωη ·(ξ+1).(34)

Hence almost vacuously,

if 0 < κ ≤ ων−η · n, then (¬pωη ·ξ ∧ pωη ·(ξ+1)) ∧Ωωη ·κ ` Ωωη ·(ξ+1);(35)

whence by (30) and distributivity once more, (¬pωη ·ξ ∧ pωη ·(ξ+1))∧
∨

Sη `
Ωωη ·(ξ+1).

We may conclude that Ωωη ·(ξ+1) and (¬pωη ·ξ ∧ pωη ·(ξ+1)) ∧
∨

Sη are
identical; that is, that Ωωη ·(ξ+1) is an element of Aη. This result holds for
any ξ greater than 0 and less that ων−η ·n, and may be combined with (32)
to yield

if 0 ≤ ξ < ων−η · n, then Ωωη ·(ξ+1) ∈ Aη.(36)

This establishes what was required under (ii): the set named on the right
of (31) is included in that named on the left.

(iii) We continue to suppose that (30) holds. Suppose η < ν. Let ξ
satisfy the inequality 0 < ξ < ων−η−1 · n. Then 0 < ω · ξ ≤ ων−η · n, and
so by (30) Ωωη+1·ξ ∈ Sη. Using again the definition (28) we may therefore
conclude that Ωωη+1·ξ ` pωη+1·ξ ∧

∧{¬pωη ·κ | 0 < κ < ω · ξ} ∧∨
Sη. The

converse implication also holds, since
∨

Sη `
∧{¬pι | ι < ωη}. This

ensures that, in the presence of the logical postulates of the calculus, | | 22

the conjunction
∧{¬pωη ·κ | 0 < κ < ω · ξ} ∧ ∨

Sη negates all letters
pι for ι < ωη+1 · ξ, and pωη+1·ξ affirms all the others. Thus Ωωη+1·ξ =
pωη+1·ξ ∧

∧{¬pωη ·κ | 0 < κ < ω · ξ} ∧∨
Sη.
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Since ξ is not 0, it is plain that Ωωη+1·ξ is the conjunction of a sequence
{Xκ | 0 < κ < ω · ξ} of theories each of which properly implies all earlier
ones: Xκ = pωη+1·ξ ∧

∧{¬pωη ·ι | 0 < ι < κ} ∧∨
Sη. The sequence having

no last element, a standard compactness argument shows that Ωωη+1·ξ is
not a finite extension of

∨
Sη.

(iv) Assume that η ≤ ν. Each ordinal ξ in the interval 0 < ξ ≤ ων−η ·n
is either a successor ordinal ι + 1 where 0 ≤ ι < ων−η · n, or a limit ordinal
ω · κ where 0 < κ ≤ ων−η−1 · n. In the first case Ωωη ·ξ belongs to Aη, as
shown in (ii). In the second case (which is not possible at all if ων−η · n
is finite; that is, if η = ν), Ωωη ·ξ does not belong to Aη, as shown in (iii).
Given that (30) holds for η, we may conclude via (17) that (31) does too;
and that provided η < ν, (30) holds also when η is replaced by η + 1.

(v) Let λ be a limit ordinal not greater than ν, and suppose that (30)
holds for all η < λ. Choose 0 < ι < ων · n. Then Ωι belongs to Sλ, which
is defined by (14d) to be

⋂{Sη | η < λ}, if and only if ι is of the form
ωη · ξ for every η < λ. It is immediate that ι = ωλ · ξ for some ξ; for it is
certainly a right multiple of a power of ω, but there is no η < λ such that
ι = ωη · j for a finite j. But if ι < ων · n, then ι = ωλ · ξ if and only if
ξ ≤ ων−λ · n. We conclude that (30) holds when η = λ.

Corollary 26 : Every calculus satisfying the conditions of the Theorem
has characteristic triple 〈ν, n,ℵ0〉.
Proof: It follows at once from (31) that if η < ν then Aη is denumer-
ably infinite. It is finite for the first time when η = ν, and Aν contains
exactly n complete theories.

We turn now to the characteristic triple 〈µ,m, 2ℵ0〉, where µ is any de-
numerable ordinal and m any natural number. The intuitive idea here is
much the same as before, except that to the end of the sequence {pκ}
of propositional letters, each one of which is implied by all its predeces-
sors, we now add denumerably many more letters qk, each implied by || 23

each pκ, but themselves completely independent. In short, the lettersv

are the elements of the disjoint sets {pκ | 0 < κ < ωµ · (m + 1)} and
{qk | 0 < k < ω}, and the consequence operation is that of classical
propositional logic with {pι → pκ | 0 < ι < κ < ωµ · (m + 1)} and
{pι → qk | 0 < ι < ωµ · (m+ 1); 0 < k < ω} as additional postulates. Since
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the qk constitute a completely independent set, and for no k is either qk or
¬qk implied by the theory

∧{¬pκ | 0 < κ < ωµ · (m + 1)}, this latter the-
ory, which turns out to be identical with

∨
Sµ+1, has 2ℵ0 unaxiomatizable

complete extensions and no axiomatizable ones.

In order to be able to give a simple name to each complete theory of
this calculus, we adopt the convention that ¬i is to be the negation sign
if i = 0 and to be the empty string if i = 1 (for i > 1 it is undefined).
Each complete assignment of truth values to the letters qk may thus be
represented by the theory Q(σ) =

∧{¬σ(k)qk | 0 < k < ω}, where σ is
a function from the positive natural numbers to {0, 1}. We shall (rather
lazily) write 2ω for the set of all such functions, and υ for that element of
2ω that has constant value 1. For each ξ satisfying 0 < ξ < ωµ · (m + 1),
there is, in parallel to (28), a complete theory

Ωξ =
∧
{¬pκ | 0 < κ < ξ} ∧(37)

∧
∧
{pκ | ξ ≤ κ < ωµ · (m + 1)} ∧Q(υ);

and for each σ in 2ω there is a complete theory

Ωσ =
∧
{¬pκ | 0 < κ < ωµ · (m + 1)} ∧Q(σ).(38)

It is clear that the Ωξ and the Ωσ are all complete theories of the calculus,
since each of them settles the truth value of each pκ and of each qk. It is
clear also that they are all the complete theories, and that there are 2ℵ0 of
them. Their disposition among the Sη and Aη is stated in Theorem 27.
(Note that ωµ−η · (m + 1)− 1 = ωµ−η · (m + 1) when η < µ.)

Theorem 27 : In a classical calculus whose complete theories are given
in (37) and (38) above, for every η ≤ µ,

Sη = {Ωωη ·ξ | 0 < ξ ≤ ωµ−η · (m + 1)− 1} ∪ {Ωσ | σ ∈ 2ω},(39)

Aη = {Ωωη ·(ξ+1) | 0 ≤ ξ < ωµ−η · (m + 1)− 1};(40)

while for every η > µ | | 24

Sη = {Ωσ | σ ∈ 2ω} and Aη = ∅.(41)

Proof: The proof is very similar to the proof of Theorem 25. The
details are omitted.
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Corollary 28 : Every calculus satisfying the conditions of the Theorem
has characteristic triple 〈µ,m, 2ℵ0〉.
Proof: It follows at once from (40) that if η < µ then Aη is denumer-
ably infinite. It is finite for the first time when η = µ, and Aµ contains
exactly m complete theories.

Mostowski has shown (op. cit., Corollary 12) that any two calculi with
the same characteristic triple 〈ν, n,ℵ0〉 are isomorphic with respect to the
relation `; that is, they are of the same structural type (Tarski, p. 370).
Matters are less neat when |S| = 2ℵ0 ; here sameness of structural type is
assured for the characteristic triples 〈0,m, 2ℵ0〉, but not otherwise (op. cit.,
Theorem 14). The failure of isomorphism is illustrated by our final example:
a calculus with triple 〈1, 0, 2ℵ0〉 that is distinct from the one whose complete
theories are obtained by setting µ = 1 and m = 0 in (37) and (38) above.
The new calculus has the same letters {pk | k < ω} ∪ {qk | k < ω}, butw

its postulates are only the conditionals {pi → pk | 0 < i < k < ω} and
{pk → qk | 0 < k < ω}. It may be shown that in the old calculus the
disjunction

∨
A0 is identical with

∨{pk | k < ω}, while in the new one∨
A0 = T. Indeed, in the first case

∨
A0 implies each qk, while in the

second (in which, for instance, both ¬p0 ∧ p1 ∧ q0 and ¬p0 ∧ p1 ∧ ¬q0 are
complete),

∨
A0 implies no qk. Hence the calculi cannot be of the same

structural type.
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Notes (2009)

a The results of this paper are in effect translations into logical terminology of
abstract theorems about the ultrafilters of a Boolean algebra. I hope that
the logical treatment given here will be attractive to philosophers whose
acquaintance with abstract algebra and point-set topology is, like mine,
somewhat limited.

b I now prefer to refer to a set 〈S,Cn〉 as a logic, not as a calculus, a term that
suggests some machinery of calculation. Tarski’s original term deductive
theory is best used, as it is in this paper, for a set of expressions closed
under a consequence operation Cn, and his later term deductive system for
a particular formulation of a logic.

c I now prefer the term maximal theory to complete theory.

d Or, more briefly, by the three sentences p, ¬p ∧ q, and ¬q.

e The condition that if y ∈ Cn(X) then y ∈ Cn(Y ) for some finite subset
Y ⊆ X, in this paper called compactness, is better called finitariness. In
line with traditional usage, Cn may be called compact if (in the language
of the present section) the inconsistent theory S is finitely axiomatizable.
It is not hard to give examples of compact logics that are not finitary, and
of finitary logics that are not compact.

f The expression ‘any tautological t’ is misleading. For although there are
infinitely many tautological sentences, there is only one tautological pro-
position.

g That is to say, x ∧ X is identified with Cn(x) ∧ X.

h A proof of x∧∨
K =

∨{x∧X | X ∈ K} is available when the logic contains
a conditional operation →. Suppose first that x ∧ ∨

K ` z. Then by the
deduction theorem,

∨
K ` x → z, and hence X ` x → z for each X ∈ K.

This implies (by modus ponens) that x ∧ X ` z for each X ∈ K, and
therefore that

∨{x ∧ X | X ∈ K} ` z. The proof of the converse goes in
reverse.

i The original text had the word ‘language’ here instead of ‘calculus’.

j (11) can of course be equivalently expressed as the converse of (10).

k The original text used ‘s’, rather than ‘⊥’, but this is evidently an irregul-
arity.
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l Lemma 6.

m Let I,K be the classes of axiomatizable and unaxiomatizable complete the-
ories respectively, and let α = |I| = ℵ0. If

∨
K = Cn(y) for some proposi-

tion y, then by Theorem 2, Cn(y) =
∧{¬ω | ω ∈ I}, so that by (3), there

is some finite subset {ω0, . . . , ωi−1} ⊆ I for which ¬ω0 ∧ · · · ∧ ¬ωi−1 ` y;
that is, for which ¬ω0 ∧ · · · ∧ ¬ωi−1 ` ¬ωi, where ωi is distinct from each
element of {ω0, . . . , ωi−1}. But since distinct complete theories are mutu-
ally contradictory, ωi ` ¬ωj for each j < i, and hence ωi ` ¬ωi, which is
absurd.

n Wilfrid Hodges has shown me that the principal result of this section, The-
orem 14, can be proved much more simply, avoiding all appeal to the theory
of ordinals. Definition (14) will, however, be used in the final two sections
of the paper.

Hodges’s proof proceeds in four short stages as follows.

Lemma A: If J is a finite set of theories, then R[
∨

J] =
⋃{R[Y ] | Y ∈

J}.
Proof: Since Y ` ∨

J for each Y ∈ J, whether or not J is finite, it is
trite that

⋃{R[Y ] | Y ∈ J} ⊆ R[
∨

J]. Conversely, if Ω ` Y for no Y ∈ J,
then in each Y ∈ J there is a proposition yY such that Ω ` ¬yY . Let
y =

∨{yY | Y ∈ J}. Then
∨

J ` y and Ω ` ¬y, and therefore Ω 6` ∨
J. It

may be concluded that R[
∨

J] ⊆ ⋃{R[Y ] | Y ∈ J}.
Lemma B: Let X = {x | |R[x]| ≤ ℵ0} and Z =

∧{¬x | x ∈ X}. If
β > ℵ0, then Z is consistent.
Proof: If Z ` ⊥ then by (3) there is some finite subset Y ⊆ X such
that

∧{¬y | y ∈ Y } ` ⊥; that is, such that
∧{¬y | y ∈ Y } = S. It follows

that if
∨{y | y ∈ Y } ` u then ¬u ` S, and hence that

∨{y | y ∈ Y } = T,
whence by Lemma A, R[T] =

⋃{R[y] | y ∈ Y }, which is denumerable.
This contradicts the assumption that β > ℵ0, which implies that |R[T]| =
α + β > ℵ0.

Theorem C: The theory Z defined in Lemma B has no finite completion.
Proof: Suppose that Z ∧ z = Ω. We shall show that R[z] is denumer-
able, which implies that z ∈ X, and hence that z contradicts Z. It follows
that Z is not finitely completable.

Let Ψ be a complete theory that implies z. If Ψ 6= Ω then Ψ 6` Z, and
hence there is some x ∈ X for which Ψ ` x. Now for each x ∈ X, the range
R[x] is denumerable, and therefore there can be only denumerably many
complete theories Ψ that imply z. That is, R[z] is denumerable.
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Corollary D: For every calculus that is based on classical propositional
logic and contains no consistent theory that is not finitely completable

β ≤ ℵ0.

Proof: Immediate.

I should like to thank Hodges warmly for this proof, and for his critical
reading seventeen years ago of sections 0–6 of the paper. Responsibility for
errors and misjudgements is strictly reserved.

o This Lemma, and Lemma 11, are better placed in the next section, between
Lemmas 17 and 18.

p Formula (19) must be proved also for limit ordinals λ. Again it suffices to
prove that R[

∨
Sλ] ⊆ Sλ, so suppose that Ψ ` ∨

Sλ. By (16), Ψ ` ∨
Sν

for all ν < λ, and hence by the induction hypothesis, Ψ ∈ Sν for all ν < λ.
It follows by (14d) that Ψ ∈ Sλ, which is what was to be proved.

q The original proof of Lemma 21 contains some small errors, and is also in
some respects incomplete. In the first sentence ‘ι’, rather than ‘i’, was used
as a subscript, and at the end of the fourth sentence ‘

∨
Sµ’ appeared with-

out the symbol ‘
∨

’. These are evidently typographical irregularities. The
equation in the third sentence, which depends implicitly on the distributive
law, originally read erroneously ‘yi ∧

∨
Sµ =

∨{yj ∧ Ωj | j < k} = Ωi’.

To prove the existence of a set Y of pairwise incompatible propositions,
exactly one of which follows from each of the complete theories {Ωi | i < k},
we note first that if Ω 6= Ψ then there is some proposition y such that
Ω ` y and Ψ 6` y; that is (by negation completeness) some proposition
y such that Ω ` y and Ψ ` ¬y. For each distinct i, j < k, let wij be a
proposition such that Ωi ` wij and Ωj ` ¬wij . It is evident that Ωi implies
yi =

∧{wij | j 6= i; j < k} ∧∧{¬wji | j 6= i; j < k} for each i < k, and that
the propositions {yi | i < k} are pairwise incompatible.

It may be noted that no such set Y of pairwise incompatible consequences
need exist for an infinite set K of complete theories. This is immediate if K
is not denumerable. It is also immediate that if K is a denumerable set of
axiomatizable complete theories then Y may be identified with K. But the
picture is different when unaxiomatizable complete theories are considered,
even in the most primitive case of a calculus with characteristic pair 〈ℵ0, 1〉,
such as elementary logic with identity and no other predicates (see the first
paragraph of section 1 above). The axiomatizable complete theories ωj

of this calculus state, for each positive j, that exactly j distinct objects
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exist, while the one unaxiomatizable complete theory Ω =
∧{¬ωj | j ∈ N}

states that there is no finite bound on their number. It is plain that if y
is a proposition that is incompatible with each ωj , then y ` Ω, and hence
y = ⊥. In other words, Ω implies no proposition that is incompatible with
each ωj ; and a fortiori, Ω implies no proposition that is incompatible with
at least one consequence of each ωj . For the set S of complete theories of
this calculus, no set Y of pairwise incompatible consequences exists.

r Here there is an implicit use of Lemma A in note n above.

s That there is a unique such ordinal may be proved by a straightforward
induction on η. Note that ν − η may equal ν even if η 6= 0; a simple
example is provided by ω − 1, which equals ω. (See also the parenthetical
sentence just before Theorem 27 on p. 23.) The term ν − η − 1, used in
parts (iii) and (iv) of the proof of Theorem 25, may be identified with
either ν − (η + 1) or (ν − η)− 1, since these terms are easily proved to be
equal. For on the one hand, ζ = ν − (η + 1) if and only if ν = (η + 1) + ζ.
On the other hand, ζ = (ν − η) − 1 if and only if ν − η = 1 + ζ; that is,
if and only if ν = η + (1 + ζ). The result follows from the associativity of
ordinal addition.

t See note f and text.

u In the original text the antecedent of formula (34) was incorrectly given as
ξ + 1 < κ ≤ ων−η · n.

v Y is a completely independent set of propositions if for every X ⊆ Y the
set X ∪ {¬y | y ∈ Y \X} is consistent. The relation of complete indepen-
dence, which is central to the theory of elementary propositions of Wittgen-
stein’s Tractatus Logico-Philosophicus (1921), originates with E. H. Moore
(1910), p. 82. ‘Introduction to a Form of General Analysis’. In E.H. Moore,
J. Wilczynski, & M.Mason (1910). The New Haven Mathematical Colloqu-
ium, pp. 1–150. AMS Colloquium Publications, volume 2. It is mentioned
on p. 36 of Logic, Semantics, Metamathematics, but not further discussed.

w When µ = 1 and m = 0 the denumerable sequence {pκ | 0 < κ < ωµ · (m +
1)} reduces to a simple progression.

x The translations in Logic, Semantics, Metamathematics were prepared by
J.H. Woodger. The 2nd edition, edited by J. Corcoran, was published in
1983. Indianapolis: Hackett Publishing Company.
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