Reproducibility In Particle Physics and possible applications to other sciences

Tony Weidberg (Particle Physics, Oxford University)

Talk Outline

- Science & Experiments
- Case Studies to illustrate past problems
 - Wrong claims for discovery of top quark & SUSY.
- Lessons learned
 - How to minimise chances of wrong clams of discovery
- Example of procedures
 - Higgs boson discovery.

- Critical issues and possible applications to other sciences
 - Discussion session not a lecture
 - Aim to provoke discussion.
 - I will act as scientific secretary: document consensus (if any!).

Science & Experiments

Very Naïve Philosophy of Science

- Complex links between experiment & theory but need both!
- "It doesn't matter how beautiful your theory is, it doesn't matter how smart you are. If it doesn't agree with experiment, it's wrong." Richard P. Feynman
- Science requires reliable experimental results.
 - Discuss criteria for obtaining reliable results in this talk.

2 Way Interactions

Wrong Top Discovery

- G. Arnison et al., 1984, Physics Letters B, 147, p494.
- Claim for top quark discovery:
 - "The two-jet signal has an over-all invariant mass clustering around the W mass, indicating a novel decay of the W"
 - "They are, however, consistent with the process W → tb, where t is the sixth "top" quark of the Cabibbo current. If this is indeed the case, then the mass of the top is bounded between 30 and 50 GeV/c²".
- Now known to be wrong, top quark mass ~ 175 GeV
- Fooled by statistical fluctuation.

Wrong SUSY

- Search for Supersymmetry (SUSY) G. ARNISON, 1984, Phys. Lett B. 139, p115.
 - Supersymmetry allows for Weakly Interacting Massive Particles
 - WIMPs candidate for dark matter in universe.
 - WIMPs don't interact in detector → apparent violation of conservation of momentum.
- Discovery claim:
 - "We report the observation of five events in which a missing transverse energy larger than 40 GeV is associated with a narrow hadronic jet and of two similar events with a neutral electromagnetic cluster (either one or more closely spaced photons). We cannot find an explanation for such events in terms of backgrounds or within the expectations of the Standard Model."
- Result was wrong because backgrounds were not carefully evaluated.

Right & Wrong Results in Particle Physics

- Several correct discoveries in 1980s-1990s:
 - Overwhelmingly statistically significant.
 - Confirmed by multiple experiments.
- A few wrong results
 - Not confirmed by other experiments
 - Some discovered to be wrong by better background calculations.
- Problem hasn't gone away completely ...
 - e.g. BICEP 2 claim for B mode polarization of CMB.
 - DAMA claim to observe dark matter.

Rewards & Punishment

- Fame and glory for scientists who are first to make big discoveries
 - Also £££ in some areas
- Wrong discoveries can be published in high impact journals → high citation index
- No sanctions for making wrong discoveries (unless fraudulent).

How to avoid mistakes at LHC

- Discussion between two general purpose experiments ATLAS and CMS before data taking.
 - High statistical power
 - Blind analysis
 - 5 sigma significance for discovery claim
 - Rigorous checking of results before publication
 - Need two independent experiments
- Illustrate this approach with Higgs discovery.

Case study: Higgs boson discovery

- Scientific procedures
 - Statistical
 - Blind analysis
 - 5 sigma threshold for discovery

- Levels of checking
 - Low level x-checks
 - Sub-group
 - Working groups
 - Editorial Board
 - (Several further levels)
 - Collaboration
 - Refereed journals
 - Confirmation by another experiment.

Statistical Power Higgs Search

- Assume a value for the mass of the Higgs boson
- Detailed Monte Carlo for signal & background & detector response.
- Expected significance > 5σ.
- If experiment works as expected, either confirm or reject Standard Model Higgs boson theory.

Expected mass spectrum for assumed m_H Bump above smooth background.

Blind Analysis

- Avoid finding spurious signals in very large data sets use blind analysis:
 - Monte Carlo simulations for signals and backgrounds
 - Optimise analysis (separation of signal from background) using Monte Carlo samples
 - Review analysis and then "open box" and look at data without changing analysis
 - Warning: this is a very simplified description!

Higgs Boson

- In the Standard Model of particle physics
 Higgs boson gives mass to other elementary particles.
- Use high energy proton-proton collisions to try to produce Higgs bosons.
- Reconstruct decay products and use E=mc²
- Look for peak in mass spectra at mass of Higgs boson (m_H)

Higgs boson discovery

One channel: $H \rightarrow \gamma \gamma$ is the "bump" a statistical fluctuation or significant evidence for a Higgs boson?

Statistical Procedures

- Frequentist approach:
 - Define probability p₀ that if experiment were repeated infinite number of times that we would see a larger discrepancy with the no-signal model than in the actual data set.
- Combine all channels
- Plot p₀ vs Higgs mass (m_H)
- Look Elsewhere Effect → Global signficance.
- 5 σ rule

Checking Results

- Internal
 - Low level x-checks
 - Sub-group
 - Working groups
 - Editorial Board
 - (Several further levels)
 - Collaboration
- Refereed journals
- Confirmation by another experiment.

Works well because of scientific culture in which everybody is encouraged to give critical feedback

Applicability to other sciences (1)

Don't do low power experiments?

Applicability to other sciences (2)

Blind analysis

Applicability to other sciences (3)

- High level of statistical significance for claiming discovery
 - **− 5σ may be very high but is 95% c.l. appropriate?**

Applicability to other sciences (4)

- Internal checking by collaboration before publication
 - Requires healthy scientific culture in which junior
 PhD student can criticize results.

Applicability to other sciences (5)

Confirmation of claim by at least one other independent experiment