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Every case has a certoin mmmber of measiirements.

Cases (and hence the measmrements) evolve as a
The movement of eacih cose Uy case trajectory.

The movement of o distribution (or devsity) of cases
U e density trajectory.

Owir approociv aums to- capture e mojoruy ano
mnoruty #W#WWM'W%%WWW
the motion of densifies:
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Ordinary Differential equations
* Tradittonally wsed to- model mechanical, electrical,

chemical, biotogleal and ecological processes.

o Examples are popudation growtin, predator-pr
models, possive electrondie circnds, wwmmwb%rm&y
and stroany, furst and secono order chhenmuical reactionsy,

rofe of forgettung eft.

*  Furst order differenfial equation — Guen velocity fund
position Need. initial conditions.

« Soluflon B o trogectory wirlev w a function of fume
(Just one ndependent vourlable)
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ODEys

*  For owr puaposes, ODEy can be wsed to- modlel case
trajectories
&= f(x);2(0) = 20
» Need velocity wnformation of cases un ovoer to- compunte
cose trajectories by solving tihe ODE.

o Velocity con be a function of e cuvrrent case profile,
ool cimrrent tune,

« Solyung anv ODE a,moww{yfo-wmpwfmg Hhe cose
trojectory guwen e velocity unformation
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Advection eguation — travsport of
oevusity of coses

o Transforms tire motion of undiwtodumal cases to-tine
pe +V - (fp) = 0;plr, = 0; p(,0) = po(x)
© Regquires tive inifial distribution of case profules, and
the velocity vector fleld of coses (some as tire one useo
e ODE), and can compute e motion of tire
wutial devusity assuming tivat tive total vaumber of cases
U o covstount (called mass corservation property).

o Used un modeling of travusport plhrhenomena suei as
flmtde dynamics (ol spll), traffie on streedts
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Advection equation — frovmsport of
oevusity of coses

* Thisy W a partial differential equation (PDE) sunce tire
dersity sy a fuumction of thhe case profule and tume (more

* Prior work — Using the advection PDE to- study tihe
aggregote motiov of stofes unstead of uindivtdual
trojectories to- coun a new- notiove of stabity called
almost everywiere uniform stabiity.

*  Motion of indinvtdunal stotes are deseriped by novdinear
ODEy, lhhowever tive motion of aggregates U described by
o lnear PDE!!
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Adwection equation — transport of-
devusity of coses

«  Notiow of travuport s applicable to-a variety of topics
wv sociology sk as residential mobility and healtin
trogectories:

o Resudentfial mobility — vaurtables are actual
geogrophuical ones: Trojectories are unv phuysical
coovrdunate spoce.

o Healtir trajectories— Vorlables are biological,
sociotogleal markers — state space L more abstroct






Modlelling cases atthe individual

lexel — tie vector spoce approaciv

. Eaciv case v a vector un a k dumensional vector space
o of 4 cguienlont victor asrom it
The collection of cases (or k-dmersional vectors) v
a vector spoce

ence, a cose trojectory k~
' W represented. as o
H' L v%fra%@o{vigrbwwvmw(m
dmersional
sometumes called. tive state space)

ODE



Stafe space - the case trajectory viewpount

Eaciv point s a k
L . |

Whew cases evolve
witiv tume, the k
components change

Entwre stofe space v
filled with case
trajectories
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Modelling cases ot tine aggregate
Level— tihe devusity approaciv

Awn aggregote of cases forms a distribution (or a
density) n state space
As tine cases evolve, tihe density of cases also- evolyes

The untial devsity con be chosen to- hvave more cases
Wit a ceirtain profue and viee versa: Any unifial
Aistripution can be chrhosen

The motiow of densities witiv mass conservation s
movleled by tie adwection equation wiriele o PDE



Stotfe space - the density trajectory WM

o | | /‘/\L Funal dersity at tume
t=e ﬂ =T

The initial density evolves indo-the final

after gong
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Modelling aggregote dynamics

At tihe mucroscopie level, whw@mwbmwawb
complex dynamicsy but at-tihve macroscopie level, we
hawve lower order and slow-dynamics

The macroscopie aggregote dynomics are akin to-
Hakews ovder poiroumeters.

trendls.

We expect-tive frends to- be a fundamental defuring
characterute of complexty un tive systen



11111l i,
Unigueness of owr approocinv

Deterministic moleling
Dferential equotiony (botiv ODE and PDE)
Gradation of state space based on velotity of motion

Non—equilibrivam clustering using tve Lyapunov-
density plot
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Prediction of longuundinal evolution of cases witiv
nudtiple varwabples acrossy fume

oripits

radation of tine state space into-regiovy wiere cases
fwve/fa#wogaovywwer) from tire veloeity contouwr plot

Non~equiliprivwn clustering of trajectories from tine

Lyapunov-density plot (Ivgher valnes meon more
trajectories have squeezeod Huoughh)
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Strengting

Prediction of majority trendy un trajectories for novel
chotees of unitfual profues or densities

Multiple modely to- deseripe tive same phenomena
allowing for a choice of better ones

Ease of uncorporation of new-dato untfo-tire modeling
process to- fut-tive database as ot grows



Simplifying
Assumptions

—>

Our approach (which combines what is known in
physics and applied mathematics as the inverse and direct
problem) is novel in four important ways: first, we take a
unique, data-driven view of the cases in a cohort, which
we define as K dimensional vectors, where the velocity
vector for each case is computed according to its particu-
lar measurements on some set of empirically defined
social, psychological, or biological variables.

Second, we translate the data-driven, nonlinear trajec-
tories of these microscopic cohort constituents (cases)
into the linear movement of macroscopic trajectories,
which take the form of densities.

Here, we are drawing on Haken'’s synergetics and the idea that self-
organizing macroscopic trajectories are less dynamic, generally speaking,
than microscopic trajectories, which are high dynamic, out of which the

former emerge.
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Assumptions
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For our empirical case, we drew our data from the Gap-
minder website. The Gapminder website (created by Ola
Rosling, Anna Rosling Rnnlund, and Hans Rosling) provides
researchers, teachers, students, and the general public a
wealth ol time-series data (often starting back in the early
1900s) on the economic, political, cultural, social, biomedi-
cal, and health development ol countries throughout the
world, which it converts into a series ol two-dimensional
(2D) animations and interactive graphics (see http://www.
gapminder.org/). For the sake ol demonstration, therefore,
we consider a database with two variables (K = 2) from
Gapminder; namely, per capita GDP (x;(t)) and life expect-
ancy (x2(t)) for 156 countries over 63 years (f).



FIGURE 4

State Space Fit for Best Model
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State space it for the best madal. State space fit for the best model without Kuwait or State space fit for the best model without Kuwalt or
Luxembourg. Luxembourg, but with tine as an independent
variable

Shown here ace several computed Matlab models for the first component of velodity vector f1. Models were crested using the ordinary dfferential eguation solution from
Ewreca In al three models, the X-ais represents GOP; and the Y-ais represents Life Expectancy. In the models, the blue ajectories are from the data; green rajectories
are the fitted model
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Assumptions
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Third, we perform this translation by fitting the time
trajectories of these cases using an autonomous (and, in
some instances nonautonomous) ordinary differential
equation (ODE) (1). In most cohort studies, be they net-
work studies or otherwise, the laws governing their macro-
scopic dynamics are not known [17,18]. Fitting functions
with an autonomous ODE must, therefore, be entirely
data driven and based on a "goodness of fit" model. Our
unique solution to this data-driven problem is to employ
a genetic algorithm, as it does not require any a priori
knowledge of the laws governing the data [19]. Instead, it
uses the data to evolve to an optimal solution. It can do
so because a genetic algorithm is a "brute force” search,
but in an efficient way. Also, it finds global minima (as
opposed to local minima), hence, it is a global optimiza-
tion routine. As such, a genetic algorithm allows research-
ers to lind the novel, mechanical laws ol motion for social
science and biomedical cohort data—with the knowledge
that, often, each new dataset presents a new search for
new laws, hence the study of complexity [20].



FIGURE 2
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"Eureqs gives multiple models for the vector fisld of velocities. Figure 2 shows several computed modeds for the first
componant of velacity vector f1. The best it moedel (215 in owr case, shown above) |5 usually the one that has a midJdevel

complexity in terms of number of polynomial symbols and the error values in the mid range amongst all models.




—— — — S

Shown bere is are the state space trajectories for two of the modeds we settled on using Eurega. Inboth
models (A and B), the X-axis represents GDP (convertad to 2-scores); and the Y-axis represents Life Expectancy
(converted to z-scores). In both models, the arrows show the direction of the trajectories; the larger the arrow
the higher the vector’s welocity, Model A: In this moded, dll countries are included; the red dot located in the
top-left sectonof Figure 2 zhows a addle point; and the red dot located in the top-muddie sectionof Figure 2
shows a spiraling source. Model 8: In this model, the minonty trajectories of Luxembourg and Kuwait were
remaved; the red dot here Is a source.
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Fourth, using the vector field thus obtained, we use the
advection PDE to simulate the evolution of a distribution
of cases (as densities) across time (2). The advection PDE
has been used extensively in fluid mechanics and electro-
magnetism to model the transport of physical quantities
such as mass and charge, respectively [21,22].
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http://faculty.kent.edu/rrajaram/ComplexityPaper2012.pdf
http://faculty.kent.edu/rrajaram/ComplexityPaper2014.pdf
http://ksutube.kent.edu/playback.php?playthis=pi4g0d7c4
http://ksutube.kent.edu/playback.php?playthis=k117nbk9m
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