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Introduction Global quantities

Surprising experimental fact

global quantities

Definition: global quantity

Measurable quantity,
sum of microscopic or local variables.
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Introduction Global quantities

Surprising experimental fact

global quantities

Definition: global quantity

Measurable quantity,
sum of microscopic or local variables.

@ Magnetization of a system of N spins: M = 1N Z,’:’ﬂ Ok-
@ Total dissipated power in a fluid : P =", p(rx)
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Introduction Global quantities

Surprising experimental fact

Probleme

Quantity of interest
Probability density function (PDF) of global quantities

Gaussian distribution < central limit theorem (CLT)
Poisson distribution
and a full zoo of other possibilities...

What could we say in general of PDF of global quantities ?
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Introduction Global quantities

Surprising experimental fact

Injected power fluctuations in a turbulent fluid

[Labbe, Pinton, Fauve, J. Phys Il (Paris), 6, 10099 (1996)]

Experience

@ Contra-rotating disks
> Q @ Angular speed 2 constant

@ Reynolds number
Re = L?Q/v ~ 5 x 10°:
Turbulent regime.

IL,

BN
_QC

= Injected power fluctuations
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Introduction

Global quantities
Surprising experimental fact

Injected power fluctuations in a turbulent fluid

[Pinton, Holdsworth, Labbé, Phys. Rev. E, 60 R2452 (1999)]

0

log, ,( PDF )

(P - <P>)/ Prms
Figure: Measured injected power PDF for various Reynolds numbers. @
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Introduction

Global quantities
Surprising experimental fact

Magnetisation fluctuations in the 2d XY model

[P. Archambault et al., J. Appl. Phys. 83, 7234 (1998)]

oQ(M)

PRRTTIT I ATIY| RRATIT RRUITT MR

P oR

R I
—6 —4

I R R
—2 0 2
(M—<M>)/o

mi,é‘””"l \IHHH' \HIHH' \]HHH‘ ||\H|!
%

N

Figure: PDF obtained by Monte Carlo simulations.
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Global quantities
Surprising experimental fact

A surprising similarity

[Bramwell, Holdsworth, Pinton, Nature (1998)]
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Figure: The two previous results. @
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Introduction Global quantities

Surprising experimental fact

Density fluctuation in a tokamak

[B. Ph. van Milligen et al., Phys. Plasmas 12, 052507 (2005)]
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Figure: Plasma density fluctuations in a tokamak. @
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Introduction Global quantities

Surprising experimental fact

Resistance of a disordered conductor

[C. Pennetta et al., SPIE Proc. 5471 (2004)]

@ 2d resistor network

10 @ In a steady state
Threshold current . .
107 | -— Gaussian % @ Monte Carlo simulations
— BHP ) .
10" ‘:\ @ Fluctuations closed to the
e \ threshold.
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Introduction

Global quantities
Surprising experimental fact

Probleme

Experimental fact

Similar distributions
in various complex systems
Turbulent flows, magnetic systems, SOC models,
electroconvections, Freederick transitions, granular materials,
spin glass, universe sheets ...

Origine for this similarity ?

@ "Limit theorem” for complex systems ?
@ Similar physics behind these distributions ? @
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Introduction Global quantities

Surprising experimental fact

BHP distribution and extreme value statistics

Interesting observation :

Ga(j) o exp [aba(u —53) — aeba(“*sa)} a=m/2

1E
F - BHP distribution
I — Generalised Gumbel distribution

10"

1102

1108

1104

X105 1 1 1 1 1
-8 6 4 2 0 2
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Surprising experimental fact

Extreme value statistics

Extreme value statistics

@ For ainteger, G; is Gumbel distribution,
an aymptotic distribution for extremes

Maxime Clusel Generalised extreme value statistics



Introduction

Global quantities
Surprising experimental fact

Extreme value statistics

Extreme value statistics

@ For ainteger, G; is Gumbel distribution,
an aymptotic distribution for extremes

Let X, = {x1,..., Xn} be a set of nrandom variables
independent and identically distributed.

Let z, = Max(®) (x,) be the k™ largest element of X .

Pn(zn) — Gk(2)

n—oo

Note that here k is an integer by construction @
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Introduction Global quantities

Surprising experimental fact

A phenomenology based on extremes ?

What is the meaning
of a generalized Gumbel distribution (a € R) ?
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Introduction

Global quantities
Surprising experimental fact

A phenomenology based on extremes ?

What is the meaning
of a generalized Gumbel distribution (a € R) ?

@ Physics controled by a hidden complex process ?

n
X =" X~ Max[f(xq...xp)] ?
k=1

@ Interpretation of generalised extreme value statistics ?

v
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Extremes and sums
Generalised extreme value statistics Generalization
Limit distribution for correlated sums

Generalised extreme value statistics

[E. Bertin and M. Clusel, J.Phys.A 39 7607 (2006)]

k! largest element

T

Gumbel Gy, k integer

Figure: Principle of the proof
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Extremes and sums
Generalised extreme value statistics Generalization
Limit distribution for correlated sums

Equivalence: ordering

Ordering
@ Xy aset of N IID random variables xj.

| | | | | | | [ | ~
X2 X10Xa X7 X4 Xe X5 XgXg X3
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Extremes and sums
Generalised extreme value statistics Generalization
Limit distribution for correlated sums

Equivalence: ordering

Ordering
@ Xy aset of N IID random variables xj.

| | | | | | | [ | ~
X2 X10Xa X7 X4 Xe X5 XgXg X3
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Extremes and sums

Generalised extreme value statistics Generalization
Limit distribution for correlated sums

Equivalence: ordering

@ Xy aset of N IID random variables xj.

|| | >

| |
| | 1 I

L

[ I
Z10 29 28 Z7 Z6 Z5 Z4 Z3Zp 2

@ Zzx = X,(k), With o ordering permutation zy > z,... > zy.

@
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Extremes and sums
Generalised extreme value statistics Generalization
Limit distribution for correlated sums

Equivalence: ordering

Ordering
@ Xy aset of N IID random variables xj.

uﬂo Yo 1“8 1U71 Us | Us 1u4 | Us 1u% th |
I T 1 I 1 1 T >
Z10 29 28 Z7 Z6 Z5 Z4 Z3Zp 2
Increments
Uy = Zk—Zk+1,V1§k§N—1, un = 2Zy.

Zn

Max(”) [}:N} = zN: Uy,
k=n
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Extremes and sums
Generalised extreme value statistics Generalization
Limit distribution for correlated sums

Equivalence: ordering

Ordering
@ Xy a set of N IID random variables x.

Increments
Uy = Zk—Zk+1,V1§k§N—1, un = Zy.

Max(") [%N} = i U,
k=n

Zn

Interpretation

Equivalence between sums and extremes. @

Maxime Clusel Generalised extreme value statistics



Extremes and sums
Generalised extreme value statistics Generalization
Limit distribution for correlated sums

Equivalence: correlation

Induced correlations
Ordering process = a priori non-lID.
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Extremes and sums
Generalised extreme value statistics Generalization
Limit distribution for correlated sums

Equivalence: correlation

Induced correlations
Ordering process = a priori non-lID.

Joint probability

:lk7N(Uk,...,UN) = Nl/ dZNP(ZN).../ dZ1P(Z1)
0 Zo

N—1

x0(Un — ZN) H 6(Un — Zn + Znt1)
n=k

V.
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Extremes and sums
Generalised extreme value statistics Generalization
Limit distribution for correlated sums

Equivalence: correlation

Integration

@ Successive integration

/Oo de_1P(Zk_1).../OO dz; P(Z1) = (k—11)!F(U)k1’

° F(u)= [;°dz P(z2)
@ Shift of indices.

k=1 N

N
J/(’N(Uk, acog UN) = (inI"I)I F <Zk U,) H P (Z U,) . @
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Extremes and sums
Generalised extreme value statistics Generalization
Limit distribution for correlated sums

Equivalence: correlation

Final result

N LY N

~ N!

Jk,N(Ukw--,UN): m F Z;U,' l_IkP ZU,‘
i= n= i=n

General case:

@ Not factorised : impossible to write

N/
JN/(U1 5 aoog UN/) = H 7"'n(un)a

n=1

@ Random variables U, are not IID. @
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Extremes and sums
Generalised extreme value statistics Generalization
Limit distribution for correlated sums

Generalised extreme value statistics

[E. Bertin and M. Clusel, J.Phys.A 39 7607 (2006)]

equivalence

T

k" largest element Sum of random variables Jx

\/

Gumbel G, k integer

Figure: Principle of the proof @
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@ Generalization
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Extremes and sums
Generalised extreme value statistics Generalization
Limit distribution for correlated sums

Generalisation: extended joint probability

Previous results
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Extremes and sums
Generalised extreme value statistics Generalization
Limit distribution for correlated sums

Generalisation: extended joint probability

Previous results

()T (3e)
@
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Extremes and sums
Generalised extreme value statistics Generalization
Limit distribution for correlated sums

Generalisation: extended joint probability

Generalisation

A\

Functions

@ Q(F), (arbitrary) positive function of F

F) ~ FalacR
—

© Zy = [ dvQ(v)(1 - v)N-T.

A\
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Extremes and sums
Generalised extreme value statistics Generalization
Limit distribution for correlated sums

Generalised extreme value statistics

[E. Bertin and M. Clusel, J.Phys.A 39 7607 (2006)]

equivalence

Kt largest element Sum of random variables Jx

\/

Gumbel G, k integer

Y

Sum of random variables jointed by Ja

Figure: Principle of the proof
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Limit distribution for correlated sums

Outline

9 Generalised extreme value statistics

@ Limit distribution for correlated sums
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Extremes and sums
Generalised extreme value statistics Generalization
Limit distribution for correlated sums

The simple exponential case

Factorisation conditions
® Y(x,y), P(x+y)=P(x)P(y) = P(x) = re~"¥
° Y(Fy, F2), QF1F2) = Q(F1)Q(F2) = Q(F) = F&!
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Extremes and sums
Generalised extreme value statistics Generalization
Limit distribution for correlated sums

The simple exponential case

@ Y(x,y), P(x+y) = P(x)P(y) = P(x) = re™"¥
° Y(Fy, F2), QF1F2) = Q(F1)Q(F2) = Q(F) = F&!

v

Factorised joint probability

JN’ U1,.. UN’ Hwn Un

mn(Un) = (n+a— 1)k e—(n+a—1)nun'
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Extremes and sums
Generalised extreme value statistics Generalization
Limit distribution for correlated sums

The simple exponential case

® V(x,y), P(x +y) = P(X)P(y) = P(x) = xe~*
o Y(Fy, F), QFi F) = Q(FR)QFR) = Q(F) = F&—1

Factorised joint probability

JN’ U1,.. UN’ Hﬂ'n Un

mn(Un) = (n+a— 1)k e—(n+a—1)nun'

Variables up
Independent, but non-identically distributed.
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Extremes and sums
Generalised extreme value statistics Generalization
Limit distribution for correlated sums

The simple exponential case

@ uj is distributed according to my(un), a € R.
@ Sy = Z,’L Un.
@ Let Ty be the distribution of sj,.

Fourier transform of Ty

N N iw -
F[Tn] (w) = nl]]:[Wn] (w) = H <1 - /<c(n—|-a—1)> .

n=1

Maxime Clusel Generalised extreme value statistics

What is the asymptotic distribution limpy_,.o Tn ?




Extremes and sums
Generalised extreme value statistics Generalization
Limit distribution for correlated sums

The simple exponential case

First two moments of Ty

N N

(Sw) = YU =73 i,

n=1 n=1
N

N
1 1
2
o= Vel =5 e
n=1 n=1
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Extremes and sums
Generalised extreme value statistics Generalization
Limit distribution for correlated sums

The simple exponential case

First two moments of Ty

(Sw) = YU =73 i,

oZ = 3 Var(Un) =

Breakdown of central limit theorem

lim oy < oo
N—oco

Lindeberg condition not satisfied. @




Extremes and sums
Generalised extreme value statistics Generalization
Limit distribution for correlated sums

The simple exponential case: asymptotic distribution

Rescaled variable

p= STOW with o = im oy
o N—oo

On(p) = oTn(op + (Sn))-
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Extremes and sums
Generalised extreme value statistics Generalization
Limit distribution for correlated sums

The simple exponential case: asymptotic distribution

Rescaled variable

Pl R
g N—oco

On (k) = o n(op + (SN))-

Large N limit: = limy_, ®n

Foaae=T (1 omte) o (rrta)
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Extremes and sums
Generalised extreme value statistics Generalization
Limit distribution for correlated sums

The simple exponential case: asymptotic distribution

Rescaled variable

RSl - T .
o N—o0

dn(p) = oTn(op + (Sn))-

Large N limit: ® = limy_, ®n

Poo (1) = Galp),
Gz, Gumbel distribution of parameter a € R.
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Extremes and sums
Generalised extreme value statistics Generalization
Limit distribution for correlated sums

Generalised extreme value statistics

[E. Bertin and M. Clusel, J.Phys.A 39 7607 (2006)]

equivalence

Kt largest element Sum of random variables Jx

\/

Gumbel G, k integer

\ Y

Gumbel Gg, areal <—— Sum of random variables jointed by J;

Figure: Principle of the proof @
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Extremes and sums
Generalised extreme value statistics Generalization
Limit distribution for correlated sums

Physical interpretation

1/f noise with cut-off

@ 1D lattice model, continuous variable ¢, on each site.
° ﬁgq = ﬁ Z)L(:1 dx€.

o Total energy : E = 3" [dql? = > Ug,

@ P(up) = ke " and Q(F) = F&1.

= P(E) = G4(E).
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Extremes and sums
Generalised extreme value statistics Generalization
Limit distribution for correlated sums

Physical interpretation

1/f noise with cut-off

@ 1D lattice model, continuous variable ¢, on each site.
° ‘gq = ﬁ Z)L(:1 dx€.

o Total energy : E = 3" [dql? = > Ug,

@ P(up) = ke " and Q(F) = F&1.

— P(E) = Ga(E).

Correlation

2 2w(a—1
® (|6qf?) o o, m =231
@ Correlation length & = ﬁ_” @

Maxime Clusel Generalised extreme value statistics



Extremes and sums
Generalised extreme value statistics Generalization
Limit distribution for correlated sums

Physical interpretation

Correlation

2 1 2 —1
° <|¢q|2> X gm> M= $

@ Correlation length ¢ = WL—U

v

Limit cases

@ ¢ — oo: pure 1/f noise = Gumbel a = 1
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Extremes and sums
Generalised extreme value statistics Generalization
Limit distribution for correlated sums

Physical interpretation

Correlation

2 1 2 —1
° <|¢q|2> X gm> M= $

@ Correlation length ¢ = WL—U

v

Limit cases

@ ¢ — oo: pure 1/f noise = Gumbel a = 1
@ ¢ — 0: uncorrelated white noise = Gaussian a — ~

Maxime Clusel Generalised extreme value statistics



Extremes and sums
Generalised extreme value statistics Generalization
Limit distribution for correlated sums

Interpretation of generalised extreme value statistics

@ Extreme value statistics «= sums of correlated random
variables

@ Generalization of the correlated sums,
and not of the extreme problem.
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Extremes and sums
Generalised extreme value statistics Generalization
Limit distribution for correlated sums

Interpretation of generalised extreme value statistics

@ Extreme value statistics «= sums of correlated random
variables

@ Generalization of the correlated sums,
and not of the extreme problem.

Conclusion

Observation of generalised Gumbel distribution
= Correlation and not necessarly extremes

Maxime Clusel Generalised extreme value statistics
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Outline

0 1d confined granular gas
@ Model
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Volume fluctuations
1d confined granular gas Physical interpretation

A simple model for 1d confined granular gas

[E. Bertin et al., J.Stat.Mech P07019 (2008)]

Piston —_ @ N point particles

@ Quasi 1d cylinder

) @ Equilibrium at T

@ Reflective wallat z =0

o
o
Particle ———)'O

@ Piston at z,

Potentials

@ Piston: Uy(zp)
@ Particle: U(z2) @

0P
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Volume fluctuations
1d confined granular gas Physical interpretation

A simple model for 1d confined granular gas

Joint probability

N
1
Pn(z1,. .., 2N, 2y) = > D) H e P& e(z, — z),

i=1

Volume fluctuations
Integration on particles positions:

1 % N
P(z) = 5 & P2 ( /0 dz eBU(Z)> ,
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Volume fluctuations
1d confined granular gas Physical interpretation

Outline

0 1d confined granular gas

@ Volume fluctuations
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Model
Volume fluctuations
1d confined granular gas Physical interpretation

Two simple cases

Free particles

1
P(Zp) = ?Zé\l e_/BUP(ZP)

Gaussian fluctuations in the large N limit.

Maxime Clusel Generalised extreme value statistics
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Volume fluctuations
1d confined granular gas Physical interpretation

Two simple cases

Free particles

U(z)=0

1
Gaussian fluctuations in the large N limit.

A particle as piston

Uo(25) = U(2)

d
P(z) = disz(zp)NH
Standard extreme value statistics. @

Maxime Clusel Generalised extreme value statistics
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Volume fluctuations
1d confined granular gas Physical interpretation

Case U(z) = Uy 2%, Up(25) = Uy 2,

@ zq,...,zy satisfying 0 < z; < z,

@ permutation: o : Z,(1) < Zy2) < ... < Zy()

@ space interval: h; h; = z,(j) — Z(i-1), i=2,...,N.
hi = Unyo_;

Equilibrium probability distribution

. N+1 N+-1 i
In(hi, o bngr) = KQ | F (Z m) IIe{>n|.
i=1 i=1 Jj=1
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Volume fluctuations
1d confined granular gas Physical interpretation

Case U(z) = Uy 2%, Up(25) = Uy 2,

Equilibrium probability distribution

()

In(hi, s hngr) = K Q

()

J=1

P(z) =xePY@ F(z)= / h P(Z)dZ'.

ay) = exp [BUF(v) — BUF ()] . vy €lo, 11
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Volume fluctuations
1d confined granular gas Physical interpretation

Case U(z) = Uy z°, Up(25) = U 2

Equilibrium probability distribution

) N1 N1 i
In(h1, s Ang) = K Q| F (Z hi) |[IREDAE
i—1 =1\ =

Maxime Clusel Generalised extreme value statistics
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1d confined granular gas Physical interpretation

S / - I 57
Case U(z) = Uy z°, Up(2p) = Uy 25
Equilibrium probability distribution

N+1 N-+1 i
F(3n)| TP (32n).
i=1 i=1 j=1

INCEIES
p <In y> (y = 0)

with a = U(/)/Uo
wgeneralised Gumbel distribution of parameter a @

Maxime Clusel Generalised extreme value statistics

In(hi, s hngr) = K Q

Q)= By
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1d confined granular gas Physical interpretation

Case U(z) = Uy 2%, Up(25) = Uy 2,

Equilibrium probability distribution

~ N+1 N-+1 i
In(hi, - bnse) = KQ | F (Z h,-> Ie{>n|.
=1 i=1 j=1

Depending of the behaviour of
@ v > «: Gaussian distribution

@ v < a: Exponential distribution
@ ~ = «a: Generalised extreme value distribution

Maxime Clusel Generalised extreme value statistics
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Outline

0 1d confined granular gas

@ Physical interpretation
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Physical interpretation: gravity case o = v = 1

o (z) = ()~ ST (1+4).

@ P,(V)=ak,TIn (1 + g) P, = Mg/S = amg/S.
o M > Nm: P(V) = Nk, T

@ M < Nm: Py(V) = ak, T In(N/a)

Compressibility

@ Abnormally small fluctuations, logarithmic decay @

Maxime Clusel Generalised extreme value statistics
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1d confined granular gas Physical interpretation

Conclusion

Generalised extreme value statistics

@ So called “generalised EVS”:
=-Associated with sum of correlated random variables

@ A priori no simple extreme processes at play
@ Misleading name !
@ Any suggestion ?

Maxime Clusel Generalised extreme value statistics
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1d confined granular gas Physical interpretation

Consider a set of realisations {u,} of N (correlated) random
variables Uy, with the joint probability (??). We then define as
above the random variable Sy = Zﬁ:1 U,, and let T be the
probability density of Sy. Then Ty is given by

00 N
TN(S) = / dUN...dU1 JN(U1 o0 UN) 1) (S = Z Un> ;
0 n=1
= T pis)a(F(s) ints).
N
with
[o.¢] (o] N
In(S) :/0 duNP(uN).../O duyé (s - ;un> .
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1d confined granular gas Physical interpretation

To evaluate Iy, let us start by integrating over uy, using

0 N N
/ du16<s—2un>:@<s—2un>,
t n=1 n=2
where © is the Heaviside distribution. This changes the upper

bound of the integral over u by u'® = max (O, s—YN, un>.
Then the integration over u, leads to

N N
duaP(up) = [F (Z Un> = F(S)] © (S— Zun> ;
n=3

umax

&
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By recurrence it is then possible to show that

1

(s) = i (1= F0)

finally yielding the following expression for T y:

T ! ps)(F(s)) (1= F(s))" 1
N(s) = - P(9)Q(F(s)) (1~ F(9)) (1)
In the following sections, we assume that Q(F) behaves
asymptotically as a power law Q(F) ~ Qo F3~" when F — 0

(a > 0). Under this assumption, we deduce from Eq. (1) the
different limit distributions associated with the different classes
of asymptotic behaviours of P at large x.

Maxime Clusel Generalised extreme value statistics
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1d confined granular gas Physical interpretation

P(x) decays faster than any power law at large x.

To that purpose, we define sy, by F(sy) = a/N. If ais an
integer, this is nothing but the typical value of the a largest
value of s in a sample of size N. As P is unbounded we have

lim sy = +oc.
N—oo

Let us introduce g(s) = —In F(s) and, assuming g’(sn) # O,
define the rescaled variable v by
v
S=5Sy+ —. 2)
N g'(sy)

Maxime Clusel Generalised extreme value statistics
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1d confined granular gas Physical interpretation

For large N, series expansion of g around sj;:

(n
o(s) = g(si) +v+Z LE f)N)

For P in the Gumbel class, g(")(s})/g'(s})" is bounded as a
function of n so that the series converges. In addition, one has

(n) (g
lim gi(s,\,) =0,Vn>2,
N—co g'(Sy)"
so that g(s) may be written as
a(s) =g(sy) + v +en(v), with Nlin en(v) =0. (3)
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1d confined granular gas Physical interpretation

Given that P(s) = g/(s) F(s), one gets using Egs. (1) and (3)

oM = grgry THE)
1409 P
= Ziatey FORFO(1-FE)

where s is given by Eq. (2). For P in the Gumbel class, it can
be checked that, for fixed v

(S v/g(sh)

=1.
N—oo g'(sy)

Besides, F(sy + v/g'(sy)) — 0 when N — o, so that one can
use the small F expansion of Q(F).
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Altogether, one finds
D (AN avay) [ 8 gveyw)]"
Pnv)~ 7 (N) € [1 N € }

Using a simple change of variable in Eq. (??), one can show
that

a
im M4n _

N—ooo g

r(a)

It is then straightforward to take the asymptotic limit N — oo,
leading to

a

r(a)

Poo(V) = exp [-av —ae ] .
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In order to recover the usual expression for the generalised
Gumbel distribution, one simply needs to introduce the reduced
variable

with, ¥ being the digamma function,
(v)=lna—v(a), o2=V(a).

The variable p is then distributed according to a generalised
Gumbel distribution.
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1d confined granular gas Physical interpretation

To sum up, if one considers the sum Sy of N > 1 random
variables linked by the joint probability (??), then the asymptotic
distribution of the reduced variable y defined by

_ sy—(Sn)
:u’ - oN )
with
Ina—V¥(a) V'(a)

S :S*—i—ﬁ,()’: T\ "
(S =St —gey " N gisy)

is the generalised Gumbel distribution.

Maxime Clusel Generalised extreme value statistics
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