# Bayesian analysis of non-Gaussian Long-Range Dependent processes

# Tim Graves $^1,$ Christian Franzke $^2,$ Nick Watkins $^2,$ and Bobby Gramacy $^3$

Statistical Laboratory, University of Cambridge, Cambridge, UK

British Antarctic Survey, Cambridge, UK

Booth School of Business, The University of Chicago, Chicago, USA

May 18, 2012





2 Exact Bayesian analysis for Gaussian case

3 Approximate Bayesian analysis for general case





2 Exact Bayesian analysis for Gaussian case

3 Approximate Bayesian analysis for general case

# Long Range Dependence

#### Definition

A Long Range Dependent process is a stationary process for which

$$\sum_{k=-\infty}^{\infty}\rho(k)=\infty.$$

k

## Long Range Dependence

#### Definition

A Long Range Dependent process is a stationary process for which

$$\sum_{=-\infty}^{\infty}\rho(k)=\infty.$$

... [T]he stationary long memory processes form a layer among the stationary processes that is "near the boundary" with non-stationary processes, or, alternatively, as the layer separating the non-stationary processes from the "usual" stationary processes. [Samorodnitsky, 2006]

# Long Range Dependence

#### Definition

A Long Range Dependent process is a stationary process for which

$$\rho(k) \sim ck^{2d-1}, \quad 0 < d < \frac{1}{2}.$$

# Long Range Dependence

#### Definition

A Long Range Dependent process is a stationary process for which

$$ho(k) \sim ck^{2d-1}, \quad 0 < d < rac{1}{2}.$$

#### Definition

A Long Range Dependent process is a stationary process for which

~

$$X_t = \sum_{k=0}^{\infty} \psi_k \epsilon_{t-k},$$

$$\psi_k \sim ck^{d-1}, \quad 0 < d < \frac{1}{2}.$$

< A >

#### ARFIMA processes

#### Definition

A process  $\{X_t\}$  is an ARFIMA(p, d, q) process if it is the solution to:

$$\Phi(B)(1-B)^d X_t = \Theta(B)\varepsilon_t,$$
  
where  $\Phi(z) = 1 + \sum_{j=1}^p \phi_j z^j$  and  $\Theta(z) = 1 + \sum_{j=1}^q \theta_j z^j,$ 

and the innovations  $\{\varepsilon_t\}$  are iid with 0 mean and variance  $\sigma^2 < \infty$ . We say that  $\{X_t\}$  is an ARFIMA(p, d, q) process with mean  $\mu$ , if  $\{X_t - \mu\}$  is an ARFIMA(p, d, q) process.

□ ▶ < □ ▶ < □</p>

### **ARFIMA** parameters

#### • $\mu$ – location parameter

- $\sigma$  scale parameter
- $d \log$  memory parameter (long memory process iff 0 < d < 0.5 )
- $\phi p$ -dimensional short memory parameter
- $\theta q$ -dimensional short memory parameter

#### Which parameters are of interest?

When considering *long memory* processes, we are usually primarily interested in the parameter d (and possibly  $\mu$ ). The parameters  $\sigma, \phi, \theta$  (and even p, q) are essentially nuisance parameters.

同 ト イ ヨ ト イ ヨ ト

#### **ARFIMA** parameters

- $\mu$  location parameter
- $\sigma$  scale parameter
- $d \log$  memory parameter (long memory process iff 0 < d < 0.5 )
- $\phi p$ -dimensional short memory parameter
- $\theta q$ -dimensional short memory parameter

#### Which parameters are of interest?

When considering *long memory* processes, we are usually primarily interested in the parameter d (and possibly  $\mu$ ). The parameters  $\sigma, \phi, \theta$  (and even p, q) are essentially nuisance parameters.

・ 同 ト ・ ヨ ト ・ ヨ ト

#### **ARFIMA** parameters

- $\mu$  location parameter
- $\sigma$  scale parameter
- $d \log$  memory parameter (long memory process iff 0 < d < 0.5 )
- $\phi p$ -dimensional short memory parameter
- $\theta q$ -dimensional short memory parameter

#### Which parameters are of interest?

When considering *long memory* processes, we are usually primarily interested in the parameter d (and possibly  $\mu$ ). The parameters  $\sigma, \phi, \theta$  (and even p, q) are essentially nuisance parameters.

#### **ARFIMA** parameters

- $\mu$  location parameter
- $\sigma$  scale parameter
- $d \log$  memory parameter (long memory process iff 0 < d < 0.5 )
- $\phi$  p-dimensional short memory parameter
- $\theta$  q-dimensional short memory parameter

#### Which parameters are of interest?

When considering *long memory* processes, we are usually primarily interested in the parameter d (and possibly  $\mu$ ). The parameters  $\sigma, \phi, \theta$  (and even p, q) are essentially nuisance parameters.

#### **ARFIMA** parameters

- $\mu$  location parameter
- $\sigma$  scale parameter
- $d \log$  memory parameter (long memory process iff 0 < d < 0.5 )
- $\phi p$ -dimensional short memory parameter
- $\theta$  q-dimensional short memory parameter

#### Which parameters are of interest?

When considering *long memory* processes, we are usually primarily interested in the parameter d (and possibly  $\mu$ ). The parameters  $\sigma, \phi, \theta$  (and even p, q) are essentially nuisance parameters.





#### 2 Exact Bayesian analysis for Gaussian case

3 Approximate Bayesian analysis for general case

- Assume Gaussian distribution for the innovations
- Bayesian: use flat priors for  $\mu$ ,  $\log(\sigma)$ , and d...

- Assume Gaussian distribution for the innovations
- Bayesian: use flat priors for  $\mu$ ,  $\log(\sigma)$ , and d...
- ... but can use any set of (independent) priors if desired.

- Assume Gaussian distribution for the innovations
- Bayesian: use flat priors for  $\mu$ ,  $\log(\sigma)$ , and d...
- ... but can use any set of (independent) priors if desired.
- Even assuming Gaussianity, the likelihood for *d* is very complex impossible to find analytic posterior

- Assume Gaussian distribution for the innovations
- Bayesian: use flat priors for  $\mu$ ,  $\log(\sigma)$ , and d...
- ... but can use any set of (independent) priors if desired.
- Even assuming Gaussianity, the likelihood for *d* is very complex impossible to find analytic posterior
- Must resort to MCMC methods in order to obtain samples from the posterior

- Assume Gaussian distribution for the innovations
- Bayesian: use flat priors for  $\mu$ ,  $\log(\sigma)$ , and d...
- ... but can use any set of (independent) priors if desired.
- Even assuming Gaussianity, the likelihood for *d* is very complex impossible to find analytic posterior
- Must resort to MCMC methods in order to obtain samples from the posterior
- Don't want to assume form of short memory (i.e. p, q) must use Reversible-Jump (RJ) MCMC [Green, 1995]

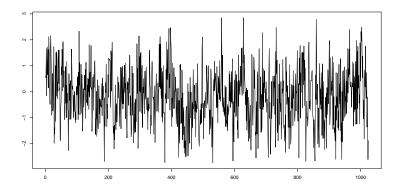
• Re-parameterisation of model to enforce stationarity constraints on  $\Phi$  and  $\Theta$ 

- Re-parameterisation of model to enforce stationarity constraints on  $\Phi$  and  $\Theta$
- Efficient calculation of Gaussian likelihood (long memory correlation structure prevents use of standard quick methods)

- Re-parameterisation of model to enforce stationarity constraints on  $\Phi$  and  $\Theta$
- Efficient calculation of Gaussian likelihood (long memory correlation structure prevents use of standard quick methods)
- Necessary use of Metropolis-Hastings algorithm requires careful selection of proposal distributions

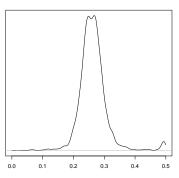
- Re-parameterisation of model to enforce stationarity constraints on  $\Phi$  and  $\Theta$
- Efficient calculation of Gaussian likelihood (long memory correlation structure prevents use of standard quick methods)
- Necessary use of Metropolis-Hastings algorithm requires careful selection of proposal distributions
- Correlation between parameters (e.g.  $\phi$  and d) requires blocking.

#### Example: 'Pure' Gaussian Long Range Dependence



$$(1-B)^{0.25}X_t = \varepsilon_t$$

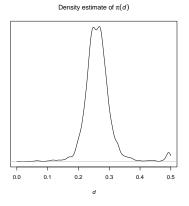
### Example: 'Pure' Gaussian Long Range Dependence



Density estimate of  $\pi(d)$ 

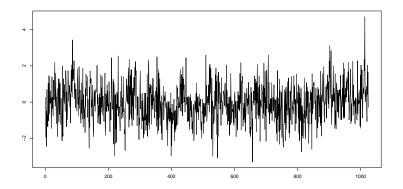
d

# Example: 'Pure' Gaussian Long Range Dependence



- $\bullet$  Similarly good results for  $\mu$  and  $\sigma$
- The posterior model probability for the (0, d, 0) model was 70%

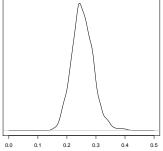
#### Example: 'Corrupted' Gaussian Long Range Dependence



 $(1+0.75B)(1-B)^{0.25}X_t = (1+0.5B)\varepsilon_t$ 

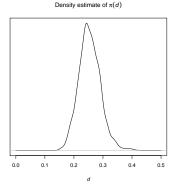
#### Example: 'Corrupted' Gaussian Long Range Dependence





d

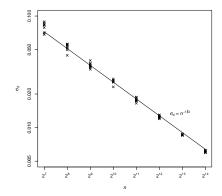
# Example: 'Corrupted' Gaussian Long Range Dependence



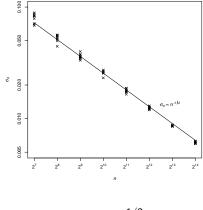
- The posterior model probability for the (1, d, 1) model was 77%
- The posterior model probability for the (0, d, 0) model was 0%

#### Dependence of posterior variance on n

#### Dependence of posterior variance on n



#### Dependence of posterior variance on n



 $\sigma_d \propto n^{-1/2}$ 





2 Exact Bayesian analysis for Gaussian case

3 Approximate Bayesian analysis for general case

#### Assumptions and general method

- Drop the Gaussianity assumption
- Replace with a more general distribution (e.g.  $\alpha$ -stable)
- Seek joint inference about d and  $\alpha$

#### Assumptions and general method

- Drop the Gaussianity assumption
- Replace with a more general distribution (e.g.  $\alpha$ -stable)
- Seek joint inference about d and  $\alpha$
- Initially (for simplicity) we assume no short memory, i.e. we assume a (0, *d*, 0) model

#### Assumptions and general method

- Drop the Gaussianity assumption
- Replace with a more general distribution (e.g.  $\alpha$ -stable)
- Seek joint inference about d and  $\alpha$
- Initially (for simplicity) we assume no short memory, i.e. we assume a (0, *d*, 0) model
- Infinite variance means that auto-covariance approach is no longer sound

## Assumptions and general method

- Drop the Gaussianity assumption
- Replace with a more general distribution (e.g.  $\alpha$ -stable)
- Seek joint inference about d and  $\alpha$
- Initially (for simplicity) we assume no short memory, i.e. we assume a (0, *d*, 0) model
- Infinite variance means that auto-covariance approach is no longer sound
- Lack of closed form for  $\alpha$ -stable density implies lack of closed form for likelihood



• Approximate the long memory process as a very high order AR process

## Solution

- Approximate the long memory process as a very high order AR process
- Construct the likelihood sequentially and evaluate using specialised efficient methods

# Solution

- Approximate the long memory process as a very high order AR process
- Construct the likelihood sequentially and evaluate using specialised efficient methods

$$f(x_1,\ldots,x_t|\mathcal{H})=f(x_t|x_{t-1},\ldots,x_1,\mathcal{H})f(x_{t-1},\ldots,x_1|\mathcal{H})$$

where  $\mathcal{H}$  is the finite recent history of the process  $x_0, x_{-1}, \ldots, x_{-n}$ 

# Solution

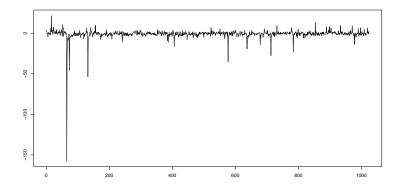
- Approximate the long memory process as a very high order AR process
- Construct the likelihood sequentially and evaluate using specialised efficient methods

$$f(x_1,\ldots,x_t|\mathcal{H})=f(x_t|x_{t-1},\ldots,x_1,\mathcal{H})f(x_{t-1},\ldots,x_1|\mathcal{H})$$

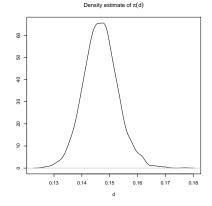
where  $\mathcal{H}$  is the finite recent history of the process  $x_0, x_{-1}, \ldots, x_{-n}$ 

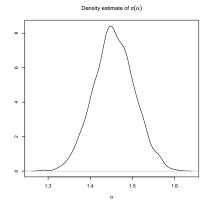
- $\bullet$  Use auxiliary variables to integrate out the (unknown) history  ${\cal H}$
- In practice, setting  $\mathcal{H} = \bar{x}, \dots, \bar{x}$  suffices, providing enormous computational saving.

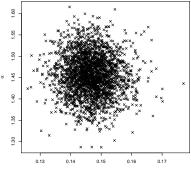
< /₽ > < E > .



 $(1-B)^{0.15}X_t = \varepsilon_t, \qquad \alpha = 1.5$ 

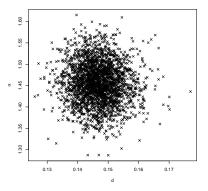






d

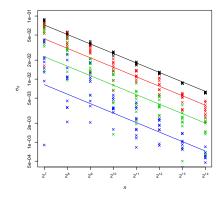
Graves et al. Non-Gaussian Long-Range Dependency



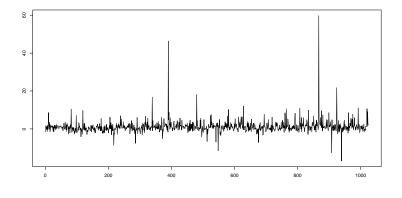
- Good estimation of all parameters
- The posteriors of d and  $\alpha$  are independent

#### Dependence of posterior variance on n

### Dependence of posterior variance on n

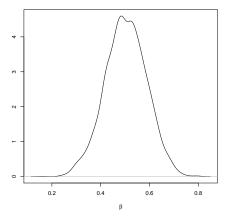


 $\sigma_d \propto n^{-1/2}$ 

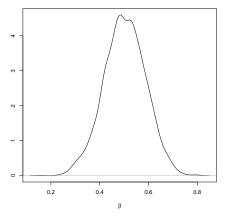


 $(1-B)^{0.1}X_t = \varepsilon_t, \qquad \alpha = 1.5 \qquad \beta = 0.5$ 

Density estimate of  $\pi(\beta)$ 



Density estimate of  $\pi(\beta)$ 



• Good estimation of all other parameters

#### References

#### Green, P. J. (1995).

Reversible jump Markov chain Monte Carlo computation and Bayesian model determination.

Biometrika, 82(4), 711–732.

