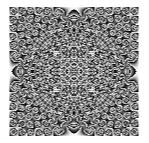
Self Organised Criticality 25 years of power laws

Gunnar Pruessner

Department of Mathematics Imperial College London

University of Warwick, 18 May 2012


- 2 More models
- Meaning and significance of power laws

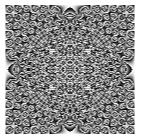
Imperial College London

g.pruessner@imperial.ac.uk (Imperial)

Prelude: The physics of fractals The BTW model Why SOC? Experiments

Prelude: The physics of fractals

Question: Where does scale invariant behaviour in nature come from?

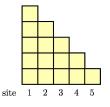

Answer: Due to a phase transition, self-organised to the critical point.

g.pruessner@imperial.ac.uk (Imperial)

SOC: 25 years of power laws

Prelude: The physics of fractals The BTW model Why SOC? Experiments

Prelude: The physics of fractals


- Anderson, 1972: More is different Correlation, cooperation, emergence
- 1/f noise "everywhere" (van der Ziel, 1950; Dutta and Horn, 1981)
- Kadanoff, 1986: Fractals: Where's the Physics?
- Bak, Tang and Wiesenfeld, 1987: Self-Organized Criticality: An Explanation of 1/f Noise

g.pruessner@imperial.ac.uk (Imperial)

SOC: 25 years of power laws

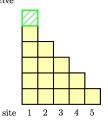
Prelude: The physics of fractals The BTW model Why SOC?

The BTW Model

The sandpile model:

- Bak, Tang and Wiesenfeld 1987.
- Simple (randomly driven) cellular automaton \rightarrow avalanches.
- Intended as an explanation of 1/f noise. 0
- Generates(?) scale invariant event statistics. (Exact results for correlation functions by Mahieu, Ruelle, Jeng et al.) Imperial College

The physics of fractals.


g.pruessner@imperial.ac.uk (Imperial)

4/42

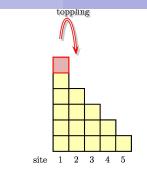
Prelude: The physics of fractals The BTW model Why SOC? Experiments

The BTW Model

The sandpile model:

- Bak, Tang and Wiesenfeld 1987.
- Simple (randomly driven) cellular automaton \longrightarrow avalanches.
- Intended as an explanation of 1/f noise.
- Generates(?) scale invariant event statistics. (Exact results for correlation functions by Mahieu, Ruelle, Jeng *et al.*)

• The physics of fractals.


g.pruessner@imperial.ac.uk (Imperial)

SOC: The early programme

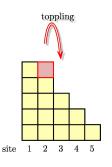
More models

Meaning and significance of power laws

Prelude: The physics of fractals The BTW model Why SOC? Experiments

The BTW Model

The sandpile model:


- Bak, Tang and Wiesenfeld 1987.
- Simple (randomly driven) cellular automaton \longrightarrow avalanches.
- Intended as an explanation of 1/f noise.
- Generates(?) scale invariant event statistics. (Exact results for correlation functions by Mahieu, Ruelle, Jeng *et al.*)

• The physics of fractals.

g.pruessner@imperial.ac.uk (Imperial)

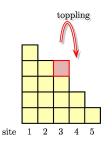
Prelude: The physics of fractals The BTW model Why SOC? Experiments

The BTW Model

The sandpile model:

- Bak, Tang and Wiesenfeld 1987.
- Simple (randomly driven) cellular automaton \longrightarrow avalanches.
- Intended as an explanation of 1/f noise.
- Generates(?) scale invariant event statistics. (Exact results for correlation functions by Mahieu, Ruelle, Jeng *et al.*)

• The physics of fractals.


g.pruessner@imperial.ac.uk (Imperial)

SOC: 25 years of power laws

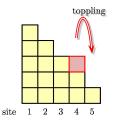
4 / 42

Prelude: The physics of fractals The BTW model Why SOC? Experiments

The BTW Model

The sandpile model:

- Bak, Tang and Wiesenfeld 1987.
- Simple (randomly driven) cellular automaton \longrightarrow avalanches.
- Intended as an explanation of 1/f noise.
- Generates(?) scale invariant event statistics. (Exact results for correlation functions by Mahieu, Ruelle, Jeng *et al.*)


• The physics of fractals.

g.pruessner@imperial.ac.uk (Imperial)

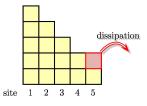
SOC: 25 years of power laws

Prelude: The physics of fractals The BTW model Why SOC? Experiments

The BTW Model

The sandpile model:

- Bak, Tang and Wiesenfeld 1987.
- Simple (randomly driven) cellular automaton \longrightarrow avalanches.
- Intended as an explanation of 1/f noise.
- Generates(?) scale invariant event statistics. (Exact results for correlation functions by Mahieu, Ruelle, Jeng *et al.*)


• The physics of fractals.

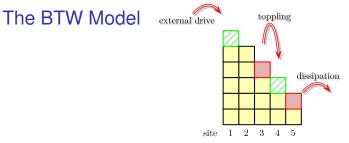
g.pruessner@imperial.ac.uk (Imperial)

SOC: 25 years of power laws

Prelude: The physics of fractals The BTW model Why SOC? Experiments

The BTW Model

The sandpile model:

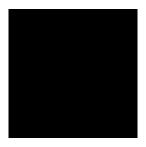

- Bak, Tang and Wiesenfeld 1987.
- Simple (randomly driven) cellular automaton \longrightarrow avalanches.
- Intended as an explanation of 1/f noise.
- Generates(?) scale invariant event statistics. (Exact results for correlation functions by Mahieu, Ruelle, Jeng *et al.*)

• The physics of fractals.

g.pruessner@imperial.ac.uk (Imperial)

SOC: 25 years of power laws

Prelude: The physics of fractals The BTW model Why SOC? Experiments


The sandpile model:

- Bak, Tang and Wiesenfeld 1987.
- Simple (randomly driven) cellular automaton \longrightarrow avalanches.
- Intended as an explanation of 1/f noise.
- Generates(?) scale invariant event statistics. (Exact results for correlation functions by Mahieu, Ruelle, Jeng *et al.*)

• The physics of fractals.

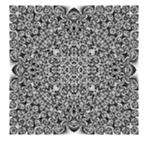
Prelude: The physics of fractals The BTW model Why SOC? Experiments

The BTW Model

The sandpile model:

- Bak, Tang and Wiesenfeld 1987.
- Simple (randomly driven) cellular automaton \longrightarrow avalanches.
- Intended as an explanation of 1/f noise.
- Generates(?) scale invariant event statistics. (Exact results for correlation functions by Mahieu, Ruelle, Jeng *et al.*)

• The physics of fractals.


g.pruessner@imperial.ac.uk (Imperial)

SOC: 25 years of power laws

4 / 42

Prelude: The physics of fractals The BTW model Why SOC? Experiments

The BTW Model

Key ingredients for SOC models:

- Separation of time scales.
- Interaction.
- Thresholds (non-linearity).
- Observables: Avalanche sizes and durations.

g.pruessner@imperial.ac.uk (Imperial)

SOC: 25 years of power laws

4 / 42

Prelude: The physics of fractals The BTW model Why SOC? Experiments

1/f noise — a red herring? I

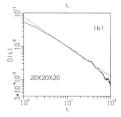


FIG. 3. Distribution of lifetimes corresponding to Fig. 2. (a) For the 50×50 array, the slope $\alpha \approx 0.42$, yielding a "1//" noise spectrum $f^{-1.58}$, (b) $20 \times 20 \times 20$ array, $\alpha \approx 0.90$, yielding an $f^{-1.1}$ spectrum

From: Bak, Tang, Wiesenfeld, 1987

• Power spectrum $P(f) \propto 1/f$, thus correlation function (via Wiener Khinchin) decays "very slowly".

g.pruessner@imperial.ac.uk (Imperial)

SOC: 25 years of power laws

Prelude: The physics of fractals The BTW model Why SOC? Experiments

1/f noise — a red herring? II

۰.

Dimensional analysis:

$$\int df \ 1/f^{\alpha} e^{-2\pi i f t} = \ldots \propto t^{\alpha - 1} = \text{const}$$

- 1/f noise suggests long time correlations
- Initially, SOC was intended an explanation of 1/f noise.
- Initially the BTW model was thought to display 1/f noise.
- Jensen, Christensen and Fogedby: "Not quite."
- Today: Reduced interest in 1/f.
- Today: Power laws in other observables.

g.pruessner@imperial.ac.uk (Imperial)

Prelude: The physics of fractals The BTW model Why SOC? Experiments

Why is SOC important?

SOC today: Non-trivial scale invariance in avalanching (intermittent) systems as known from ordinary critical phenomena, but without the need of external tuning of a control parameter to a non-trivial value.

Emergence!

- Explanation of emergent,
- ...cooperative,
- ... long time and length scale
- ...phenomena,
- ... as signalled by power laws.

Prelude: The physics of fractals The BTW model Why SOC? Experiments

Why is SOC important?

SOC today: Non-trivial scale invariance in avalanching (intermittent) systems as known from ordinary critical phenomena, but without the need of external tuning of a control parameter to a non-trivial value.

Universality!

- Understanding and classifying natural phenomena
- ... using Micky Mouse Models
- ... on a small scale (in the lab or on the computer).
- (Triggering critical points?)
- But: Where is the evidence for scale invariance in nature (dirty power laws)?

Prelude: The physics of fractals The BTW model Why SOC? Experiments

Experiments:

Granular media, superconductors, rain...

Photograph courtesy of V. Frette, K. Christensen, A. Malthe-Sørenssen, J. Feder, T. Jøssang and P. Meakin.

- Large number of experiments and observations:
- Earthquakes suggested by Bak, Tang and Wiesenfeld.
- Sandpile experiments by Jaeger, Liu and Nagel (PRL, 1989).
- Superconductors experiments by Ling, et al. (Physica C, 1991).
- Ricepiles experiments by Frette et al. (Nature, 1996).
- Precipitation statistics by Peters and Christensen (PRL, 2002).

g.pruessner@imperial.ac.uk (Imperial)

SOC: 25 years of power laws

8 / 42

Imperial College

Prelude: The physics of fractals The BTW model Why SOC? Experiments

Where is the evidence?

Lots of "dirty power laws", but...

- Experiments: Difficult to perform. Result: Mostly no scaling. Few solid results in superconductors, granular media, Gutenberg-Richter, precipitation.
- Numerics: Easy to perform, but require large scales, display slow convergence.
- Analytically: Little support beyond directed and mean-field-like models.

Non-conservative: The Forest-Fire Models Better Models: The Manna Model Collapse with Oslo Exponents in 1,2,3D Field theory for SOC

Outline

SOC: The early programme

More models

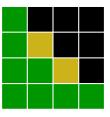
- Non-conservative: The Forest-Fire Models
- Better Models: The Manna Model
- Collapse with Oslo
- Exponents in 1,2,3D
- Field theory for SOC
 - Simplifications, bare propagators
 - Vertices, tree level
 - The SOC mechanism

3 Meaning and significance of power laws

Non-conservative: The Forest-Fire Models
Better Models: The Manna Model
Collapse with Oslo
Exponents in 1,2,3D
Field theory for SOC

More models

- Initial intention for more models: Expand BTW universality class.
- Later: Provide more evidence for SOC as a whole.
- More models...

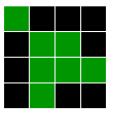

More models

The failure of SOC?

- Zhang Model (1989) [scaling questioned]
- Dhar-Ramaswamy Model (1989) [solved, directed]
- Forest Fire Model (1990, 1992) [no proper scaling]
- Manna Model (1991) [solid!]
- Olami-Feder-Christensen Model (1992) [scaling questioned, $\alpha \approx 0.05$ (localisation), $\alpha = 0.22$ (jump)]
- Bak-Sneppen Model (1993) [scaling questioned]
- Zaitsev Model (1992)
- Sneppen Model (1992)
- Oslo Model (1996) [solid!]
- Directed Models: Exactly solvable (lack of correlations)

Non-conservative: The Forest-Fire Models Better Models: The Manna Model Collapse with Oslo Exponents in 1,2,3D Field theory for SOC

The Forest Fire Model

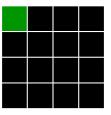

- Originally by Bak, Chen and Tang (1990).
- Intended as a model of turbulence.
- Sites empty, occupied (by tree) or on fire.
- Slow regrowth at rate *p*.
- Occasional re-lighting.
- Grassberger and Kantz (1991): Deterministic pattern, scale given by 1/p.

g.pruessner@imperial.ac.uk (Imperial)

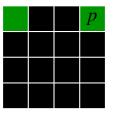
SOC: 25 years of power laws

12/42

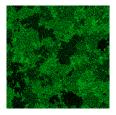
Non-conservative: The Forest-Fire Models Better Models: The Manna Model Collapse with Oslo Exponents in 1,2,3D Field theory for SOC


- Originally by Henley (1989) and independently by Drossel and Schwabl (1992).
- Fires instantaneous, explicit lightning mechanism with θ trees grown between two lightnings attempts.
- Grassberger (2002) and Pruessner and Jensen (2002): Not scale invariant.

Non-conservative: The Forest-Fire Models Better Models: The Manna Model Collapse with Oslo Exponents in 1,2,3D Field theory for SOC


- Originally by Henley (1989) and independently by Drossel and Schwabl (1992).
- Fires instantaneous, explicit lightning mechanism with θ trees grown between two lightnings attempts.
- Grassberger (2002) and Pruessner and Jensen (2002): Not scale invariant.

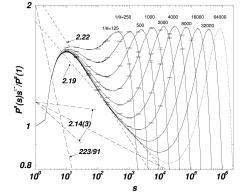
Non-conservative: The Forest-Fire Models Better Models: The Manna Model Collapse with Oslo Exponents in 1,2,3D Field theory for SOC


- Originally by Henley (1989) and independently by Drossel and Schwabl (1992).
- Fires instantaneous, explicit lightning mechanism with θ trees grown between two lightnings attempts.
- Grassberger (2002) and Pruessner and Jensen (2002): Not scale invariant.

Non-conservative: The Forest-Fire Models Better Models: The Manna Model Collapse with Oslo Exponents in 1,2,3D Field theory for SOC

- Originally by Henley (1989) and independently by Drossel and Schwabl (1992).
- Fires instantaneous, explicit lightning mechanism with θ trees grown between two lightnings attempts.
- Grassberger (2002) and Pruessner and Jensen (2002): Not scale invariant.

Non-conservative: The Forest-Fire Models Better Models: The Manna Model Collapse with Oslo Exponents in 1,2,3D Field theory for SOC



- Originally by Henley (1989) and independently by Drossel and Schwabl (1992).
- Fires instantaneous, explicit lightning mechanism with θ trees grown between two lightnings attempts.
- Grassberger (2002) and Pruessner and Jensen (2002): Not scale invariant.

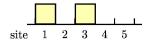
Non-conservative: The Forest-Fire Models Better Models: The Manna Model Collapse with Oslo Exponents in 1,2,3D Field theory for SOC

The Drossel-Schwabl Forest Fire Model

Lack of scaling

- Finite size not the only scale.
- Scale invariance possible only in the limit of $\theta \to \infty.$
- Lower cutoff moves as well.

g.pruessner@imperial.ac.uk (Imperial)


SOC: 25 years of power laws

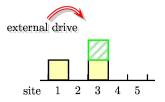
London 14 / 42

Imperial College

Non-conservative: The Forest-Fire Models Better Models: The Manna Model Collapse with Oslo Exponents in 1,2,3D Field theory for SOC

Better Models: The Manna Model

Manna Model (1991)


- Critical height model.
- Stochastic.
- Bulk drive.
- Envisaged to be in the same universality class as BTW.
- Robust, solid, universal, reproducible.
- Defines a universality class.

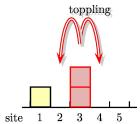
g.pruessner@imperial.ac.uk (Imperial)

SOC: 25 years of power laws

Non-conservative: The Forest-Fire Models Better Models: The Manna Model Collapse with Oslo Exponents in 1.2.3D Field theory for SOC

Better Models: The Manna Model

Manna Model (1991)


- Critical height model.
- Stochastic
- Bulk drive.
- Envisaged to be in the same universality class as BTW.
- Robust, solid, universal, reproducible. ٥
- Defines a universality class.

g.pruessner@imperial.ac.uk (Imperial)

SOC: 25 years of power laws

Non-conservative: The Forest-Fire Models Better Models: The Manna Model Collapse with Oslo Exponents in 1,2,3D Field theory for SOC

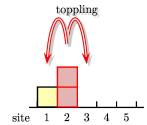
Better Models: The Manna Model

Manna Model (1991)

- Critical height model.
- Stochastic.
- Bulk drive.
- Envisaged to be in the same universality class as BTW.
- Robust, solid, universal, reproducible.
- Defines a universality class.

g.pruessner@imperial.ac.uk (Imperial)

SOC: 25 years of power laws


Warwick, 05/2012 1

15/42

Imperial College

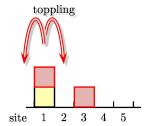
Non-conservative: The Forest-Fire Models Better Models: The Manna Model Collapse with Oslo Exponents in 1,2,3D Field theory for SOC

Better Models: The Manna Model

Manna Model (1991)

- Critical height model.
- Stochastic.
- Bulk drive.
- Envisaged to be in the same universality class as BTW.
- Robust, solid, universal, reproducible.
- Defines a universality class.

g.pruessner@imperial.ac.uk (Imperial)


SOC: 25 years of power laws

Warwick, 05/2012 15

15/42

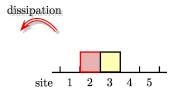
Non-conservative: The Forest-Fire Models Better Models: The Manna Model Collapse with Oslo Exponents in 1,2,3D Field theory for SOC

Better Models: The Manna Model

Manna Model (1991)

- Critical height model.
- Stochastic.
- Bulk drive.
- Envisaged to be in the same universality class as BTW.
- Robust, solid, universal, reproducible.
- Defines a universality class.

g.pruessner@imperial.ac.uk (Imperial)


SOC: 25 years of power laws

Warwick, 05/2012 15

15/42

Non-conservative: The Forest-Fire Models Better Models: The Manna Model Collapse with Oslo Exponents in 1,2,3D Field theory for SOC

Better Models: The Manna Model

Manna Model (1991)

- Critical height model.
- Stochastic.
- Bulk drive.
- Envisaged to be in the same universality class as BTW.
- Robust, solid, universal, reproducible.
- Defines a universality class.

g.pruessner@imperial.ac.uk (Imperial)

SOC: 25 years of power laws

Warwick, 05/2012 1

15/42

Non-conservative: The Forest-Fire Models Better Models: The Manna Model Collapse with Oslo Exponents in 1,2,3D Field theory for SOC

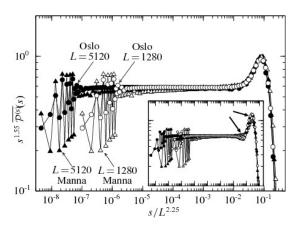
Better Models: The Manna Model

Manna Model (1991)

- Critical height model.
- Stochastic.
- Bulk drive.
- Envisaged to be in the same universality class as BTW.
- Robust, solid, universal, reproducible.
- Defines a universality class.

g.pruessner@imperial.ac.uk (Imperial)

SOC: 25 years of power laws


Warwick, 05/2012

15/42

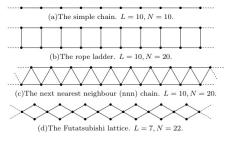
Imperial College

Non-conservative: The Forest-Fire Models Better Models: The Manna Model Collapse with Oslo Exponents in 1,2,3D Field theory for SOC

Collapse with Oslo

The Manna Model is in the same universality class as the Oslo model.

g.pruessner@imperial.ac.uk (Imperial)

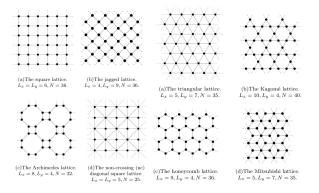

SOC: 25 years of power laws

Warwick, 05/2012 16 / 42

Non-conservative: The Forest-Fire Models Better Models: The Manna Model Collapse with Oslo Exponents in 1,2,3D Field theory for SOC

Manna on different lattices

One and two dimensions


From: Huynh, G P, Chew, 2011

The Manna Model has been investigated numerically in great detail.

Non-conservative: The Forest-Fire Models Better Models: The Manna Model Collapse with Oslo Exponents in 1,2,3D Field theory for SOC

Manna on different lattices

One and two dimensions

From: Huynh, G P, Chew, 2011

Imperial College

The Manna Model has been investigated numerically in great detail."

g.pruessner@imperial.ac.uk (Imperial)

SOC: 25 years of power laws

Warwick, 05/2012 17 / 42

Non-conservative: The Forest-Fire Models Better Models: The Manna Model Collapse with Oslo Exponents in 1,2,3D Field theory for SOC

Manna on different lattices

lattice	d	D	τ	z	α	D_a	τ_a	$\mu_{1}^{(s)}$	$-\Sigma_s$	$-\Sigma_t$	$-\Sigma_a$
simple chain	1	2.27(2)	1.117(8)	1.450(12)	1.19(2)	0.998(4)	1.260(13)	2.000(4)	0.27(2)	0.27(3)	0.259(14)
rope ladder	1	2.24(2)	1.108(9)	1.44(2)	1.18(3)	0.998(7)	1.26(2)	1.989(5)	0.24(2)	0.26(5)	0.26(2)
nnn chain	1	2.33(11)	1.14(4)	1.48(11)	1.22(14)	0.997(15)	1.27(5)	1.991(11)	0.33(11)	0.3(2)	0.27(5)
Futatsubishi	1	2.24(3)	1.105(14)	1.43(3)	1.16(6)	0.999(15)	1.24(5)	2.008(11)	0.24(3)	0.23(9)	0.24(5)
square	2	2.748(13)	1.272(3)	1.52(2)	1.48(2)	1.992(8)	1.380(8)	1.9975(11)	0.748(13)	0.73(4)	0.76(2)
jagged	2	2.764(15)	1.276(4)	1.54(2)	1.49(3)	1.995(7)	1.384(8)	2.0007(12)	0.764(15)	0.76(5)	0.77(2)
Archimedes	2	2.76(2)	1.275(6)	1.54(3)	1.50(3)	1.997(10)	1.382(11)	2.001(2)	0.76(2)	0.78(6)	0.76(3)
nc diagonal square	2	2.750(14)	1.273(4)	1.53(2)	1.49(2)	1.992(7)	1.381(8)	2.0005(12)	0.750(14)	0.75(4)	0.76(2)
triangular	2	2.76(2)	1.275(5)	1.51(2)	1.47(3)	2.003(11)	1.388(12)	1.997(2)	0.76(2)	0.71(6)	0.78(3)
Kagomé	2	2.741(13)	1.270(4)	1.53(2)	1.49(2)	1.993(8)	1.381(9)	1.9994(12)	0.741(13)	0.75(5)	0.76(2)
honeycomb	2	2.73(2)	1.268(6)	1.55(4)	1.51(4)	1.990(13)	1.376(14)	2.000(2)	0.73(2)	0.79(8)	0.75(3)
Mitsubishi	2	2.75(2)	1.273(6)	1.54(3)	1.50(4)	1.999(12)	1.387(12)	1.998(2)	0.75(2)	0.77(7)	0.77(3)

From: Huynh, G P, Chew, 2011

The Manna Model has been investigated numerically in great detail

g.pruessner@imperial.ac.uk (Imperial)

SOC: 25 years of power laws

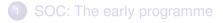
London

Non-conservative: The Forest-Fire Models Better Models: The Manna Model Collapse with Oslo Exponents in 1,2,3D Field theory for SOC

Manna on different lattices

Lattice	\overline{q}	$\overline{q^{(v)}}$	$\langle z \rangle$	D	au	z	α	D_a	τ_a	$\mu_{1}^{(s)}$	$-\Sigma_s$	$-\Sigma_t$	$-\Sigma_a$
\mathbf{SC}	6	1	[0.622325(1)]	3.38(2)	1.408(3)	1.779(7)	1.784(9)	3.04(5)	1.45(4)	2.0057(5)	1.38(2)	1.395(16)	1.36(13)
BCC	8	4	[0.600620(2)]	3.36(2)	1.404(4)	1.777(8)	1.78(1)	2.99(2)	1.444(18)	2.0030(5)	1.36(2)	1.390(19)	1.33(6)
BCCN	14	5	[0.581502(1)]	3.38(3)	1.408(4)	1.776(9)	1.783(11)	3.01(3)	1.44(3)	2.0041(6)	1.38(3)	1.39(2)	1.32(7)
FCC	12	4	[0.589187(3)]	3.35(4)	1.402(8)	1.765(16)	1.78(2)	3.1(2)	1.48(14)	2.0035(11)	1.35(4)	1.37(4)	1.5(5)
FCCN	18	5	[0.566307(3)]	3.38(4)	1.408(7)	1.781(14)	1.787(18)	3.00(4)	1.44(3)	2.0051(8)	1.38(4)	1.40(3)	1.32(9)
Overall				3.370(11)	1.407(2)	1.777(4)	1.783(5)	3.003(14)	1.442(12)	2.0042(3)		1.380(13)	

From: Huynh, G P, 2012


The Manna Model has been investigated numerically in great detail.

Imperial College London

g.pruessner@imperial.ac.uk (Imperial)

SOC: 25 years of power laws

- 2 More models
- 3 Meaning and significance of power laws

Imperial College London

g.pruessner@imperial.ac.uk (Imperial)

SOC: 25 years of power laws

Warwick, 05/2012 34 / 42

$$F = G \frac{m_1 m_2}{r^2}$$

(2) "Power laws are not any different from any other functional dependence." — What is the physical significance of scaling?

- (3) "There is no significance in non-integer (weird) exponents."
 - what makes an exponent of, say, 2.24 any different from, say, the exponent of -2 in Newton's law of gravitation?
- (4) "Power laws are wrong." Nature is different and/or more complicated; see the "fractal discussion" by Avnir, Biham, Lidar, Malcai, 1998.
- (5) "Power laws are irrelevant." or "Physicists get excited about power laws, biologist do not." — see Stumpf and Porter, 20092.

$$F = G \frac{m_1 m_2}{r^2}$$

(2) "Power laws are not any different from any other functional dependence." — What is the physical significance of scaling?

- (3) "There is no significance in non-integer (weird) exponents."
 what makes an exponent of, say, 2.24 any different from, say, the exponent of 2 in Newton's law of gravitation?
- (4) "Power laws are wrong." Nature is different and/or more complicated; see the "fractal discussion" by Avnir, Biham, Lidar, Malcai, 1998.

(5) "Power laws are irrelevant." or "Physicists get excited about power laws, biologist do not." — see Stumpf and Porter, 2002.

$$F = G \frac{m_1 m_2}{r^2}$$

(2) "Power laws are not any different from any other functional dependence." — What is the physical significance of scaling?

- (3) "There is no significance in non-integer (weird) exponents."
 - what makes an exponent of, say, 2.24 any different from, say, the exponent of -2 in Newton's law of gravitation?
- (4) "Power laws are wrong." Nature is different and/or more complicated; see the "fractal discussion" by Avnir, Biham, Lidar, Malcai, 1998.
- (5) "Power laws are irrelevant." or "Physicists get excited about power laws, biologist do not." — see Stumpf and Porter, 20092.

$$F = G \frac{m_1 m_2}{r^2}$$

- (2) "Power laws are not any different from any other functional dependence." — What is the physical significance of scaling?
- (3) "There is no significance in non-integer (weird) exponents."
 - what makes an exponent of, say, 2.24 any different from, say, the exponent of -2 in Newton's law of gravitation?
- (4) "Power laws are wrong." Nature is different and/or more complicated; see the "fractal discussion" by Avnir, Biham, Lidar, Malcai, 1998.
- (5) **"Power laws are irrelevant."** or **"Physicists get excited about power laws, biologist do not."** see Stumpf and Porter, 2002.

$$F = G \frac{m_1 m_2}{r^2}$$

- (2) "Power laws are not any different from any other functional dependence." — What is the physical significance of scaling?
- (3) "There is no significance in non-integer (weird) exponents."
 - what makes an exponent of, say, 2.24 any different from, say, the exponent of -2 in Newton's law of gravitation?
- (4) "Power laws are wrong." Nature is different and/or more complicated; see the "fractal discussion" by Avnir, Biham, Lidar, Malcai, 1998.
- (5) **"Power laws are irrelevant."** or **"Physicists get excited about** power laws, biologist do not." — see Stumpf and Porter, 2012.

(1): Power laws are trivial.

"Why get excited? Lots of basic physics is based on power laws!"

Indeed. This is universal physics. The fact that Newton's law of gravitation goes like r^{-2} on every¹ scale makes it universal².

Masslessness of the graviton (Gravitation) and the photon (Coulomb interaction) vs. finite range for other fundamental forces.

Note: Power law of observables vs. PDF.

¹every scale = enormous, intermdediate scale; GR! ²Until the next level of physics kicks in.

g.pruessner@imperial.ac.uk (Imperial)

SOC: 25 years of power laws

(1): Power laws are trivial.

"Why get excited? Lots of basic physics is based on power laws!"

Willinger *et al.*, 2004, Stumpf and Porter, 2012: All it takes for a power law distribution is a power law distribution!

- Willinger *et al.*: Power law distributions are stable under some operations.
- Power law distributions are limiting distrubtions for suitably normalised sums/extreme values drawn from heavy tailed (asymptotically heavy-tailed) distributions.
- Where do they come from?
- Underlying and resulting distributions have finite support (finite size scaling).
- Agenda? HOT?

London

(1): Power laws are trivial.

"Why get excited? Lots of basic physics is based on power laws!"

Mechanisms producing non-trivial power law distributions require (by definition) non-trivial, non-linear interaction.

(2): Power law or not makes no physical difference.

"Why is a power law any different from any other functional dependence? What is the physical significance of scaling?"

Full scaling¹ — pure power law: No scale from within. Example:

• Exponential correlations, $C(r) = \exp(-x/\xi)$. Correlation length² = distance over which correlations decay by e^{-1} .

$$C(r+\xi) = C(r)/e$$

• Power law, $C(r) = ar^{-2}$: Correlations decay by the same factor at every multiple:

$$C(r\sqrt{e}) = C(r)/e$$

¹As opposed to finite size scaling with intermediate power law scaling. ²In general, this holds only asymptotically.

g.pruessner@imperial.ac.uk (Imperial)

SOC: 25 years of power laws

(3): There is no significance in non-integer exponents.

"What's the difference between an exponents of, say, 2.24 and, say, the exponent of -2 in Newton's law of gravitation?"

Dimensional consistency usually requires other scales to be present — to fix the dimension, yet, not to *govern* the behaviour:

$$\mathcal{P}(E) = \mathbf{a}^{\tau - 1} E^{-\tau}$$

rather than¹ $\mathcal{P}(E) = a^{-1}e^{-E/a}$

Other scales are present without destroying the scaling.

There is an *arbitrarily wide*, intermediate range of power law scaling.[†]

¹Below can be cast in the form above with $\tau = 1$.

g.pruessner@imperial.ac.uk (Imperial)

SOC: 25 years of power laws

(3): There is no significance in non-integer exponents.

[†]Terms and conditions:

I have ignored a couple of points here. Let's retrace the naive argument and what happens with it: Naively one might think that $\mathcal{P}(E) = E^{-\tau}$ is the sort of power law we are after. However, this is dimensionally inconsistent. So, we require an additional scale *a* is not only allowed, it is necessary. And yet, it does not dominate the large scale behaviour of $\mathcal{P}(E)$, as it does in $\mathcal{P}(E) = a^{-1} \exp(-E/a)$. If the presence of an additional scale is not the criterion to distinguish scaling and non-scaling, one might be tempted to dismiss $\mathcal{P}(E) = a^{-1} \exp(-E/a)$. If the presence of an additional scale is not the criterion to distinguish scaling and non-scaling, one might be tempted to dismiss $\mathcal{P}(E) = a^{-1} \exp(-E/a)$. If the presence of an additional scale is not the criterion to distinguish scaling and non-scaling, one might be tempted to dismiss $\mathcal{P}(E) = a^{-1} \exp(-E/a)$ on the basis that it contains a "modulating" function, whose effect is parameterised by the additional scale a_1 , d_e . It is not a pure power law, However, in finite systems, one has to allow for such scaling functions even where standard scaling is found, $\mathcal{P}(E) = a^{\tau-1}E^{-\tau} \Im \left(\frac{E}{E_{e}}\right)$, with upper cutoff E_{e} . So, what is the difference between scaling and non-scaling? Both may be modulated by additional functions and both incorporate additional scales. And while *a* does (apparently — why?) not dominate the large scale in the scaling case, E_{e} does. It gets worse: Finite size scaling usually requires an additional lower cutoff. Scaling breaks down below a certain lower cutoff, not least to guarantee normalistion of $\mathcal{P}(E)$.

The physics is in the ruler! $\mathcal{P}(E) = a^{\tau-1}E^{-\tau} \Im\left(\frac{E}{E_c}\right)$ should be regarded a scaling symmetry, the physics of which becomes visible if there is a way to reach an intermediate asymptotic regime, $E_0 \ll E \ll E_c$, where $\mathcal{P}(E)$ a approximated arbitrarily well by a multiple of a pure power law $E^{-\tau}$. In SOC, E_c diverges with the system size and this is the *only* scale that enters.

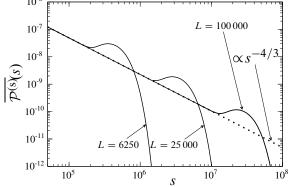
Other scales are present without destroying the scaling.

There is an *arbitrarily wide*, intermediate range of power law scaling.[†]

Imperial College

(3): There is no significance in non-integer exponents.

"What's the difference between an exponents of, say, 2.24 and, say, the exponent of -2 in Newton's law of gravitation?"


$$\mathcal{P}(E) = a^{\tau-1} E^{-\tau} \mathcal{G}\left(\frac{E}{E_c}\right) \quad \text{for } E \gg E_0$$

rather than
$$\mathcal{P}(E) = a^{-1} e^{-E/a}$$

Other scales are present without destroying the scaling.

There is an *arbitrarily wide*, intermediate range of power law scaling.[†] Different physics kicks in below and above a certain scales. In between: The same physics throughout.

(3): There is no significance in non-integer exponents. Other scales are present without destroying the scaling.

There is an *arbitrarily wide*, intermediate range of power law scaling.[†]

(4): Power laws are wrong.

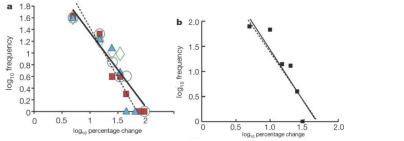
"Nature is different and more complicated." (e.g. Avnir, Biham, Lidar, Malcai, 1998)

Perfect power laws are much less common than alleged. A year in the lab is often not enough to extract the allegedly *ubiquituous* power law.

Nature is full of *dirty* power laws, "almost scaling".

Problem: Publication bias and self-selection.

Imperial College London


g.pruessner@imperial.ac.uk (Imperial)

SOC: 25 years of power laws

(4): Power laws are wrong.

"Nature is different and more complicated." (e.g. Avnir, Biham, Lidar, Malcai, 1998)

Nature is full of *dirty* power laws, "almost scaling".

(Freckleton and Sutherland, 2001)

Problem: Publication bias and self-selection.

g.pruessner@imperial.ac.uk (Imperial)

ondon

(4): Power laws are wrong.

Power laws are misunderstood!

Powerlaws do NOT indicated unpredictability and/or optimisation

- Predictability: Power law correlated events are predictable (Gutenberg and Richter law).
- Optimisation: Large susceptibility is an optimum of what? (HOT? COLD? TEPID?)

(5): Power laws are irrelevant.

"Physicists get excited about power laws, biologists do not." (see Stumpf and Porter, 2012)

Suppose a power law has been identified. What does it mean?

- Exponents: Actual values can play a rôle in engineering (predicting observables).
- Exponents: Determine universality class.
- Scaling suggests emergence & universality \Rightarrow underlying physics.
- Scaling provides a mechanism (not the other way around).
- Scaling: Same physics on different scales (simple models).
- Scaling: Usually characterises asymptote (large upper cutoff).

Why CLT,
$$N^{-1/2} \sum_{i}^{N} x_i$$
?

Imperial College

Summary: Why bother?

Narrative: **If** power laws are observed in a PDF (or other observable) on an arbitrarily large but intermediate range:

- ... they are (likely to be) caused by power law correlations.
- ... they indicate the absence of an intrinsic scale.
- ... they are the signature of emergence, collective behaviour, "more is different" (Anderson, 1972), extreme events(?).
- Exponents identify universality classes.
- Exponents characterise observables ("summary" of a PDF).

Power laws are not an end in itself.