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Outline of this lecture

• Learning the density of the gravitational mass in a distant
galaxy - nonparametric inverse learning given partially
sampled, noisy data.

1. background - motivation for non-parametric approach.
2. description of underabundance.
3. invoking domain physics to achieve dimensionality

reduction.
4. model structure.
5. inference using Metropolis-Hasting.

• Learning the material density and the microscopy
correction function, using 2-D image data.

1. background - harder than usual deprojection problem.
2. description of ill posedness.
3. to overcome ill posedness - expanding information,

identifying priors, eliciting from literature.
4. resolution in data guides model structure.
5. inference - Metropolis within Gibbs.
6. uniqueness considerations.
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Gravitational mass density of a galaxy

Understanding dark matter is one of the fundamental
challenges in science today. On the scale of galaxies, this
reduces to the estimation of the density of gravitational mass
ρ(x , y , z) > 0, ρ : R3 −→ R>0 of all matter in the galaxy - dark
as well as the luminous mass. Gravitational mass density of
luminous matter ρL(x , y , z) is achieved by modelling telescopic
image data using astronomical modelling. Then dark matter
mass density is given by ρ(x , y , z)− ρL(x , y , z). So we need to
learn ρ(x , y , z).
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Gravitational mass density of elliptical galaxies

• ρ(x , y , z) of elliptical galaxies is hard to achieve.
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Dark Matter & Galaxies

Light distribution from an example “elliptical” galaxy;
cosmological modelling galaxy lies embedded in extended
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Gravitational mass density of elliptical galaxies

Hard to achieve. Data include:

• line-of-sight velocity component of individual galactic
particles - noisy, partially sampled from the system phase
space, can be modelled to estimate ρ(x , y , z) given a
model for the phase space probability density function.

• gravitational lensing observations - can be modelled to
estimate projections of gravitational mass distribution.

• X-ray measurements - can be modelled under the
assumption of hydrostatisc equilibrium and a model for
emissivity, using very noisy temperature measurements.
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Earth - Sun system

Earth

Sun

Motion tracks gravitational
mass
Earth going around Sun in
circular orbit, at distance D
from Sun, with circular speed
vC :

GMSun

D2 =
v2

C

D
Here MSun ≡ Menclosed(D)

=

∫ D

0
ρ(r)4πr2dr (1)

Similarly, motion of galactic
particle traces mass
enclosed within orbit.
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In general it is not possible to express M(D) as function of |v| of
galactic particle (eg. star) because

• only 1 component of v is measurable - along LOS.

• particle orbital shape is unknown, i.e. f (w) unknown - need
to know f (·).

• strong non-linear effects exist (Chakrabarty 2004, 2007; Chakrabarty & Sideris 2009).



Outline Mapping between unknowns and data is unknown A difficult projection problem Wrapping up

Inside the system Measurables:
• 1 out of 3 components of v

of individual resident
particles of an
astrophysical system, viz.
galaxy - v3.

• where on the image this
particle is - x1, x2.

• δv3 - measurement error in
v3.

• measured with instruments
mounted on telescopes.

• 1-time measurements.

• no pattern in spatial
sampling of v3 data.
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Measurement errors in v3

Astronomers, have suggested that the error distribution is
Gaussian with variance that is due to the astronomical
apparataus, i.e.

ǫv3 ∼ N (0, σ2
0)

where σ0 is given.

A generic modelling strategy for autonomous, hamiltonian
dynamical sytems is being motivated here. So we want to
leave incorporation of measurement uncertainties generic.
Thus. our model works even when noise distribution is
non-Gaussian.
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Statement of the problem

D = ξ[ρ(x , y , z)], where ρ(x , y , z) is unknown and sought.
Data is unknown functional of unknown gravitational mass
density. Here D = {X (k)

1 ,X (k)
2 ,V (k)

3 }
Ndata
k=1

1. Learning a function given measurement vectors?
Discretise and learn model parameter vector instead of
system function. Seek ρ = (ρ1, ρ2, . . . , ρNrad )

T .
2. Comparing model to data? Choose a likelihood function -

Gaussian perhaps - of the distance between data D and
function of ρ that compares with vector (X (k)

i ,X (k)
2 ,V (k)

3 )T ,
= 1, . . . ,Ndata. g(ρ) −→ discrete phase space
coordinates? Not possible! Discard this formulation.

3. Consider projecting phase space probability density
function - with ρ(x , y , z) embedded in its structure - onto
subspace of observables.

4. How to link phase space pdf and ρ(x , y , z)? Physics.
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Galaxies as Mechanical Systems

• Evolution - through iterated applications of dynamical rule
g(x, v, t), X ∈ R

3, V = Ẋ.

• Evolution of w0 is deterministic - equations of motion under
deterministic (but unknown) gravitational potential Φ(x, v, t)
g : R3n × R

3n × R>0 −→ R :
Equations of motion ẍ = g(x, v, t).

• First model assumptions :autonomous Hamiltonian
system.

• g(·) = −∇Φ(x)
• Gravitational potential ∇2Φ(x) = −4πGρ(x), Poisson

equation.
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Phase space pdf

Galactic phase space W is the space of all possible states -
V and X of all galactic particles; W = (X,V)T . Thus, W ⊆ R

6.

Phase space pdf is f (x, v), where f : R6 −→ R≥0.
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Given data D, want to learn

• dynamical rule (functional of ρ(x)) that determines
evolution of {w0},

• by embedding ρ(x) in hidden phase space density f (x, v).
• So we also need to learn f (x, v).

• Evolution of f (x, v) is given by Collisionless Boltzmann
Equation - difference with non-stationary inverse problems,
though connection possible.

df (x, v)
dt

= 0 (2)

Jeans th; f is a stationary solution of the CBE if it depends
on phase space coordinates via integrals of motion.
Inversely any function of integrals of motion, is a solution of
the CBE.
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Invoke domain physics to perform model structuring

• Second model assumption about topology of phase
space .

• Simplest to assume that phase space is isotropic, so that
f (x, v) is an isotropic function.

• f (x, v) is an isotropic function if f (x, v) = f (Qx,Qv), for any
orthogonal transformation matrix Q (Truesdell, Noll &
Antman 2004; Wang 1969).

• Then, the set of invariants (with respect to Q) of this
isotropic scalar function is ΥQ = {x · x, v · v, x · v}.

• Then pdf of isotropic phase space admits representation
f (ΥQ) ≡ f (x · x, v · v, x · v).
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Isotropic phase space pdf

Phase space pdf admits representation
f (ΥQ) ≡ f (x · x, v · v, x · v).
Recall that f can depend on x , v through integrals of
motion, aka energy ( E), angular momentum ( L). Achieved,
if phase space is represented as f (E), where
E := Φ(

√
x · x) + h(v · v).

For the physical interpretation of E as particle energy,
Φ(|x|) the potential energy,
h(|v|) ≡ |v|2/2 the kinetic energy.

Other integrals of motion dependent on x and v as
ΥQ(x · x, v · v, x · v) ? Possible perhaps←− more work on the
dynamics aspect needs to be input.
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Isotropic phase space implies

• Gravitational potential and thereby grav. mass density
depends on |x| = x2

1 + x2
2 + x2

3 := r2.

• phase space pdf is f (E) = f [ρ(r), v2
1 , v

2
2 , v

2
3 ].

In discretied model,

• discretise range in R - ρ = (ρ1, . . . , ρNrad )
T , where ρi is grav

mass density for r ∈ [ri−1, ri), i = 1, . . . ,Nrad .

• discretise range of E - f = (f1, . . . , fNeng )
T , where fi is phase

space pdf for E ∈ [Ej−1,Ej), j = 1, . . . ,Neng .
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Isotropy =⇒ 1-D mass
density histogram .
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Bayesian inverse nonparametric learning of ρ, f

Motion tracks gravitational field implies D = ξ(ρ), where ρ is
unknown and sought. Inverse learning is achieved by
attempting the forward problem iteratively . Likelihood -

projection of f (E) onto the subspaceM⊂W of these
observables, the pdf of which is ν(x1, x2, v3). Assume i.i.d.
observable vectors (x (k)

1 , x (k)
2 , v (k)

3 )T , k = 1, . . . ,Ndata.
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Bayesian inverse nonparametric learning of ρ, f

L =

Ntot
∏

k=1

ν(x (k)
1 , x (k)

2 , v (k)
3 )

ν(x (k)
1 , x (k)

2 , v (k)
3 ) =

∫

X3

∫

V1

∫

V2

f [E(x (k)
1 , x (k)

2 , x3, v1, v2, v
(k)
3 )]dx1dx2dv3

E(x (k)
1 , x (k)

2 , x3, v1, v2, v
(k)
3 ) = Φ(

√

{x (k)
1 }2 + {x (k)

2 }2 + {x3}2)+

({v1}2 + {v2}2 + {v (k)
3 }2)

2
.

f and ρ are learnt by sampling from the posterior
Pr[f,ρ|{x (k)

1 , x (k)
2 , v (k)

3 }
Ntot
k=1], using random-walk

Metropolis-Hastings.
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Inference

• Positivity for both ρ(r), f (E).

• Monotonic decline for ρ(r). We also choose monotonic
declie for f (E) since parametric astronomical models
suggest this,but not correct representation. Thus,
monotonicity is left modular in the inference scheme.

Propose ∆̃
(h)
ρ = ∆

(h)
ρ exp(−α/s),

where ∆
(h)
ρ := ρh − ρh+1,

α ∼ U [-0.5,0.5], s is a constant. ρNx+1 := 0, ρ̃Nx+1 := 0.
Then as h is varied from Nx to 1, the proposed h-th component
of the unknown gravitational mass density vector is
ρ̃h = ρ̃h+1 + ∆̃

(h)
ρ .

Similarly for updating fj .
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Results
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Results

−→ Test for support in data for the model assumption of
isotropic phase space - develop bespoke distribution-free test of
hypothesis that work in the context of non-parametric inference.
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MCMC performance
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MCMC performance

From White, Cuevus & Chakrabarty, (under prep)
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A demanding inverse problem - motivation

Electron beam

e

Interaction
volume

Z

X

Backscattered e Secondary e − near the surface

Y

X−rays

Material
sample
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Imaging with Bulk Electron Microscopy - in X-rays, Back Scattered
Electrons (BSE), etc., using Scanning Electron Microscope (SEM)

• Electron beam impinges on material, penetrates sample
surface.

• Electron irradiation causes interaction of the beam
electrons with sample atoms ... interaction bounded by
“interaction volume” (morphology dependent on material
density, electron beam energy, material characteristics,
etc.).

• Results in various kinds of emission (X-rays, secondary
electrons, backscattered electrons BSE) - emission can be
captured by SEM in 2-D pixels, as image.

• Generated radiation modulated by unknown,
material-specific blurring function.

• Image is formed due to projection of generated radiation
along the Z -axis, subsequently averaged over lateral
extent of “interaction volume”.



Outline Mapping between unknowns and data is unknown A difficult projection problem Wrapping up

A demanding inverse problem

I(xi , yi) = 〈P(ρ ∗ η)〉+ ε or (4)

I(xi , yi) =

∫ rmax
r=0

∫ θmax
θ=0 rdrdθ

∫ z=zmax (r ,θ)
z=0 ρ(x) ∗ η(x)dz

∫ rmax
r=0

∫ θmax
θ=0 rdrdθ

+ ε

for i = 1, . . . ,Ndata.
X = (R,Θ,Z )T = (X Y Z )T , with
x − xi = r cos θ, y − yi = r sin θ
interaction-volume: r ∈ [0, rmax ], θ ∈ [0, θmax ], z ∈ [0, zmax ].
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Novelty of problem

Operator P is projection onto the Z=0 plane, followed by
spatial-averaging over the lateral cross-section of the
“interaction-volume”, resulting in a contractive projection
of ρ ⋆ η onto the centre of the interaction-volume =⇒ a
sequence of inversions of (image) data results in
convolution of material density and correction function.

Correction function unknown, material density unknown.

Noise present in image data.
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Novelty of solution

Fully discretised model - helps perform forward model
iteratively while writing posterior, using likelihood that is
function of distance between projected+spatially-averaged
ρ ∗ η.

Expand data space by imaging at multiple beam energies,
ǫk , k = 1, . . . ,Neng

Identify “geometric” priors on ρ(x) + strong priors on η(z)
via elicitation - helps identifiability.

Uniqueness of solutions for ρ ∗ η demonstrated in low noise
limit, condition number of problem of learning ρ ∗ η, in the
presence of measurement uncertainties recalled; deviation
of uniqueness of solutions for ρ(x), η(z) quantified.
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δ

δ

Gridding of the surface of
the material sample (the
Z=0 plane)

h1
h2

h3

h4

Stopping length varies with energy of beam

Gridding along Z−axis is non−uniform; #Z−bins = #beam energies



Outline Mapping between unknowns and data is unknown A difficult projection problem Wrapping up

X

Y

Z

Figure: An example interaction-volume is shown in blue. In this
example, there are 9 grid-cells along the Y -axis and only 3 of the 9
grid-cells along the X -axis are shown. In the full 3-D grid with 9 cells
along each of the X and Y axes, the example interaction-volume, in
blue, is the ik-th one, with i = 38 and k=4, and has a radius of R0(4)

which by definition of the hemispherical shape, equals h(4). The face
on the x = 0 plane, of an example voxel that lies between depths h(3)

and h(4), is shown in red; this is the ik-th voxel, with i=10, k=4.
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Novelty of solution ... cont’d

Fully non-parametric solution for unknown material
density function in high-dimensional voxel space -
correlation structure amongst components provided
through comparison of image data and
projection+spatial-averaging of ρ ∗ η in discretised model.
Density in ik th voxel is ξ

(k)
i , i = 1, . . . ,Ndata, k = 1, . . . ,Neng .

Non-parametric or semi-parametric, discretised solution
for unknonwn microscopy correction function η(k) sought.
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Data

Sequence of Neng 2-D radiation density values recorded in
a square spatial array of Ndata number of pixels,
{̃I(k)i }

Neng

k=1 , i = 1, . . . ,Ndata.

Image system at multiple beam energies {ǫk}Neng

k=1 , where E
is the real-valued discrete energy variable. For E = ǫk , the
image of the whole material sample is formed by Ndata

number of beam pointings on the surface of the material
sample - Ĩ(k)i .
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Model assumptions

Hemispherical “interaction volume” assumed to enhance
simplicity of model  could render problem harder than it
is. Morphological details of “interaction volume” known as
function of material properties from microscopy literature.

Correction function depends only on Z , i.e. independent of
beam location  aids identifiability of solutions of ρ(x),
η(z).
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Geometric priors

In the forward problem, we check if 〈P(ρ ∗ η)〉 = 〈P(ρ ∗ η)〉−mk ,
where 〈P(·)〉−mk := spatial-averaging without including
ρ(xm, ym, z(k)). If so, then we set ρ(xm, ym, z(k)) = 0, i.e.
ξ
(k)
m = 0.

Define

τ
(k)
i :=

I(k)i

I(k−1)
i

, if I(k)i < I(k−1)
i , I(k−1)

i 6= 0 (5)

τ
(k)
i := 1 otherwise

ν
(k)
i (τ

(k)
i ) = pτ

(k)
i (1− p)1−τ

(k)
i , (6)

where ν
(k)
i is a probability density and the hyperparameter

P ∈ R, 0 ≤ p ≤ 1. p ∼ U [0.9, 0.99].
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Geometric priors

π0(ρ) ∝ exp
(

−1
2
〈ρ,S−1ρ〉

)

.

We set the Neng × Neng precision matrix for any i = 1, . . . ,Ndata

to be

Si
−1 = H_iH_iT

H_ikℓ = ν
(k)
i · ν(ℓ)i if k = ℓ

H_ikℓ = 0if k 6= ℓ. (7)

Here k , ℓ = 1, . . . ,Neng and H_ikℓ is the kℓ-th element of H_i.
ν
(k)
i is defined in Equation 6.



Outline Mapping between unknowns and data is unknown A difficult projection problem Wrapping up

Priors on η(z)

Non-parametric model for η(z):
π(η) = NF (η|η0,S), where S = f (η0)|Ψ(0). A uniform prior is
assigned to the hyperparameter η0.

Semi-parametric model for η(z):
Shape of η(z) approximated using available 2-parameter
function in the literature, with Gaussian priors on the two
parameters.
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Taking image details on board

• Size of “interaction volume” R0(k) determined by material
properties, given ǫk .

• (Lateral) size of voxel determined by resolution of imaging
technique at hand (δ ∈ R).

• 3 models - depend on resolution of image technique.
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Spatially-averaged+projected ρ ∗ η from all voxels included within
the “interaction volume” formed at the i th beam pointing, at the k th

beam energy value to get Ĩ(k)i

Ĩ(k)i =
1

(R0(k))2

∫ R0(k)

x=0
dx

∫

√
(R0(k))2−x2

y=0
dy f (x , y),

f : R× R −→ R

f (x , y) =

j(x ,y)
∑

t=0

ξ
(t)
n(x ,y)φ

(t) +

ξ
(j(x ,y)+1)
n(x ,y) φ(j(x ,y)+1) ∆(x , y)

(R0(j(x ,y)+1) − R0(j(x ,y)))
(8)
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Gaussian likelihood

(9)

L(I(k)i |ρ(xi , yi , z
(k)
i ),Φ(z(k))) =

1
√

2πσ(k)
i

exp

[

−(I(k)i − Ĩ (k)
i )2

2(σ(k)
i )2

]

,

k = 1, . . . ,Neng , i = 1, . . . ,Ndata
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Posterior

Posterior density, given the image data, is defined using Bayes
rule. Assume contribution from all “interaction volume”, are
conditionally iid so that

π(ξ
(1)
1 , . . . , ξ

(Neng)
1 , . . . , ξ

(1)
Ndata

, . . . , ξ
(Neng)
Ndata

,Φ(1), . . . ,Φ(Neng)|data) ∝
Ndata
∏

i=1

Neng
∏

k=1

L(̃I(k)i |ρ(xi , yi , z
(k)
i ),Φ(z(k)))

π0(ξ
(1)
1 , . . . , ξ

(Neng)
Ndata

)ν0(Φ
(1), . . . ,Φ(Neng))

where π0(ξ
(1)
1 , . . . , ξ

(Neng)
Ndata

) is the joint prior probability density of
ρ(x).
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Inference

• State space of the fully discretised model is
Ndata × Neng + Neng-dimensional while for the
semi-parametric implementation of the correction function,
the state-space is Ndata × Neng + 2-dimensional.

• Sample from high-dimensional posterior using
Metropolis-within-Gibbs.

• Adaptive Metropolis-Hastings (Haario et. al 2006).

ξ̃
(k)
i |n ∼ NF (µ

(k)
i |n, ς

(k)
i |n) k = 1, . . . ,Neng (10)

µ
(k)
i |n = ξ

(k)
i |n−1, ∀ k = 1 . . . ,Neng , i = 1, . . . ,Ndata, n = 1, . . .

(

ς
(k)
i |n

)2
=

∑n−1
p=n0

(

ξ
(k)
i |p

)2

n − n0
−





∑n−1
p=n0

(

ξ
(k)
i |p

)

n − n0





2

if n ≥ n0

= T ξ
(k)
i |0 if n < n0
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In the small noise limit

In the small noise limit, it can be shown that joint posterior
probability density for the material density and blurring function,
given the image data, for all beam locations (all i) and all beam
energies (all k ), reduces to a product of Ndata × Neng Dirac
measures, with the ik -th measure centred at the solution to the
equation Ĩ(k)i = I(k)i . Then Ĩ := C[(ρ ∗ η)(k)i ] implies that the

unique matrix [(ρ ∗ η)(k)i ] = C+I.
Learning ρ and η from the unique ρ ∗ η is ill-posed but ratio of
unknown to known parameters ≥ 0.99 typically −→ deviations
from uniqueness accommodated in 95% highest probability
density regions.
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Simulation - coarsest resolution

Figure: Simulated images of Copper-Tungsten alloy - sparse (left)
and dense (right) density structure.
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Application to real image data (11 images) of a nano-composite of
Ni-Ag nanoparticles, made by dropcast method, imaged in

BackScattered Electrons with an SEM - resolution of about 50 nm.
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Learnt functions
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MCMC Diagnostics
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Summary

• In complex systems, with many degrees of freedom,
non-linearity guides correlation structure amongst
parameters, as well as evolution – non-parametric learning.

• Decompose to smaller problems, input domain physics as
much as possible.

• Identify details in topology of relevant subspaces if
possible - sparsity in the model, morphological details.

• Inference in high-dim state space - MCMC←− practice +
understanding + luck.

• Test for assumptions in data - develop bespoke
non-parametric tests.
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