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Power Laws: What? So What?
Bad Practices

Better Practices
No Really, So What?

References

Summary

1 Everything good in the talk I owe to my co-authors, Aaron
Clauset and Mark Newman

2 Power law distributions, p(x) ∝ x−α, are cool, but not that
cool

3 Most of the studies claiming to �nd them use unreliable 19th
century methods, and have no value as evidence either way

4 Reliable methods exist, and need only very straightforward
mid-20th century statistics

5 Using reliable methods, lots of the claimed power laws
disappear, or are at best �not proven�

You are now free to tune me out and turn on social media
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De�nitions and Examples

What Are Power Law Distributions? Why Care?

p(x) ∝ x−α (continuous)

P (X = x) ∝ x−α (discrete)

∴ P (X ≥ x) ∝ x−(α−1)

and
log p(x) = logC − α log x

�Pareto� (continuous), �Zipf� or �zeta� (discrete)
Explicitly:

p(x) =
α− 1

xmin

(
x

xmin

)−α
(discrete version involves the Hurwitz zeta function)
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Money, Words, Cities

The three classic power law distributions

Pareto's law: wealth (richest 400 in US, 2003)
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Money, Words, Cities

The three classic power law distributions

Zipf's law: word frequencies (Moby Dick)
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Money, Words, Cities

The three classic power law distributions

Zipf's law: city populations
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Properties

Highly right skewed

Heavy (fat, long, . . . ) tails: sub-exponential decay of p(x)
Extreme inequality (�80/20�): high proportion of summed values
comes from small fraction of samples/population
�Scale-free�:

p(x |X ≥ s) =
α− 1

s

(x
s

)−α
i.e., another power law, same α
∴ no �typical scale�
though xmin is the typical value
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Origin Myths

Catchy and mysterious origin myth from physics:

Distinct phases co-exist at phase transitions

∴ Each phase can appear by �uctuation inside the other, and
vice versa

∴ In�nite-range correlations in space and time

∴ Central limit theorem breaks down

but macroscopic physical quantities are still averages

∴ they must have a scale-free distribution

So critical phenomena ⇒ power laws
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Origin Myths (cont.)

De�ating origin myths:

Piles of papers on my o�ce �oor [1, 2, 3]

I start new piles at rate λ, so age of piles ∼ Exponential(λ)

All piles start with size xmin

Once a pile starts, on average it grows exponentially at rate µ

X ∼ Pareto(λ/µ+ 1, xmin)

Mixtures of exponentials work too [4]
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There are lots of claims that things follow power laws, especially in
the last ≈ 20 years, especially from physicists

word frequency, protein interaction degree (yeast), metabolic network

degree (E. coli), Internet autonomous system network, calls received,

intensity of wars, terrorist attack fatalities, bytes per HTTP request,

species per genus, # sightings per bird species, population a�ected by

blackouts, sales of best-sellers, population of US cities, area of wild�res,

solar �are intensity, earthquake magnitude, religious sect size, surname

frequency, individual net worth, citation counts, # papers authored, #

hits per URL, in-degree per URL, # entries in e-mail address books, . . .
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⇒ Mason Porter's Power Law Shop
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You Can Do Everything with Least Squares, Right?
Actually, No
Alternative Distributions

How do physicists come up with their power laws?

Remember
log p(x) = logC − α log x

& similarly for the CDF

Suggests:

Take a log-log plot of the histogram, or of the CDF, and

Fit an ordinary regression line, then

Use �tted slope as guess for α, check goodness of �t by R2

This is a clever idea for the 1890s
Fun fact: �statistical physics� involves no actual statistics
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Why Is This Bad?

Histograms: binning always throws away information, adds lots of
error
log-sized bins are only in�nitessimally better

CDF or rank-size plot: values are not independent; ine�cient
Least-squares line:

Not a normalized distribution,

All the inferential assumptions for regression fail

Always has avoidable error as an estimate of α

Easily get large R2 for non-power-law distributions
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Some Distributions Which Are Not Power Laws

Log-normal: lnX ∼ N (µ, σ2):

p(x) =
1

(1− Φ( ln xmin−µσ ))x
√
2πσ2

e
− (ln x−µ)2

2σ2

Stretched exponential/Weibull: X β ∼ Exponential(λ)

p(x) = βλeλx
β
minxβ−1e−λx

β

Power law with exponential cut-o� (�negative gamma�)

p(x) =
1/L

Γ(1− α, xmin/L)
(x/L)−αe−x/L

like a power law for x � L, like an exponential for x � L
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R^2 values from samples

black=Pareto, blue=lognormal	500 replicates at each sample size
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R2 for a log normal (limiting value > 0.9)
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Actually, No
Alternative Distributions

Blogospheric Navel-Gazing

Shirky [5]: in-degree of weblogs follows a power-law, many
consequences for media ecology, etc., etc.
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Estimating the Exponent

Use maximum likelihood

L(α, xmin) = n log
α− 1

xmin

− α
n∑

i=1

log
xi

xmin

∂

∂α
L =

n

α− 1
−

n∑
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log
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Properties of the MLE

Consistent: α̂→ α

Standard error: Var [α̂] = n−1(α− 1)2 + O(n−2)
E�cient: no consistent alternative with less variance
In particular, dominates regression

Asymptotically Gaussian: α̂ N (α, (α−1)2
n )

Ancient: Worked out in the 1950s [7, 8]
Computationally trivial
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α̂ depends on xmin; �Hill� plot [9]

1 5 10 50 100 500 1000

0
5

10
15

20
25

30
35

Hill Plot for weblog in-degree

xmin

α̂

Cosma Shalizi Heavy Tails



Power Laws: What? So What?
Bad Practices

Better Practices
No Really, So What?

References

Estimating the Exponent
Estimating the Scaling Region
Goodness-of-Fit
Testing Against Alternatives
Visualization

α̂ depends on xmin; �Hill� plot [9]

1 5 10 50 100 500 1000

0
5

10
15

20
25

30
35

Hill Plot for weblog in-degree

xmin

α̂

Cosma Shalizi Heavy Tails



Power Laws: What? So What?
Bad Practices

Better Practices
No Really, So What?

References

Estimating the Exponent
Estimating the Scaling Region
Goodness-of-Fit
Testing Against Alternatives
Visualization

Estimating the Scaling Region

Maximizing likelihood over xmin leads to trouble (try it and see)

Only want the scaling region in the tail anyway
Minimize discrepancy between �tted and empirical distributions
[10]:

x̂min = argmin
xmin

max
x≥xmin

|P̂n(x)− P(x ; α̂, xmin)|

= argmin
xmin

dKS(P̂n,P(α̂, xmin))
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Goodness-of-Fit

How can we tell if it's a good �t or not, if we can't use R2?

You shouldn't use R2 that way for a regression

Use a goodness-of-�t test!
Kolmogorov-Smirnov statistic is nice: for CDFs P,Q

dKS(P,Q) = max
x
|P(x)− Q(x)|

Compare empirical CDF to theoretical one
Tabulated p-values, assuming the theoretical CDF isn't estimated
Analytic corrections via heroic probability theory [11, pp. 99�]
or, use the bootstrap, like a civilized person
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Given: n data points x1:n
1 Estimate α and xmin; ntail = # of data points ≥ xmin

2 Calculate dKS for data and best-�t power law = d∗

3 Draw n random values b1, . . . bn as follows:
1 with probability ntail/n, draw from power-law
2 otherwise, pick one of the xi < xmin uniformly

4 Find α̂, x̂min, dKS for b1:n
5 Repeat many times to get distribution of dKS values

6 p-value = fraction of simulations where d ≥ d∗

For the blogs: p = 6.6× 10−2
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Testing Against Alternatives

Compare against alternatives: more statistical power, more
substantive information

∗IC is sub-optimal here
Better: Vuong's normalized log-likelihood-ratio test [12]
Two models, θ, ψ

R(ψ, θ) = log pψ(x1:n)− log pθ(x1:n)

R(ψ, θ) > 0 means: the data were more likely under ψ than under θ
How much more likely do they need to be?
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Distribution of Likelihood Ratios: Fixed Models

Assume X1,X2, . . . all IID, with true distribution ν
Fix θ and ψ; what is distribution of n−1R(ψ, θ)?

n−1R(ψ, θ) =
log pψ(x1:n)− log pθ(x1:n)

n

=
1

n

n∑
i=1

log
pψ(xi )

pθ(xi )

mean of IID terms so use law of large numbers:

1

n
R(ψ, θ)→ Eν

[
log

pψ(X )

pθ(X )

]
= D(ν‖θ)− D(ν‖ψ)

R(ψ, θ) > 0 ≈ ψ diverges less from ν than θ does
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Use CLT:

1√
n
R(ψ, θ) N (

√
n(D(ν‖θ)− D(ν‖ψ)), ω2

ψ,θ)

where

ω2
ψ,θ = Var

[
log

pψ(X )

pθ(X )

]
so if the models are equally good, we get a mean-zero Gaussian
but if one is better R(ψ, θ)→ ±∞, depending
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Distribution of R with Estimated Models

two classes of models Ψ,Θ; ψ̂, θ̂ = ML estimated models
ψ̂ → ψ∗, θ̂ → θ∗: converging to pseudo-truth; ψ∗ 6= θ∗

some regularity assumptions

Everything works out as if no estimation:

1√
n
R(ψ̂, θ̂)  N (

√
n(D(ν‖θ∗)− D(ν‖ψ∗)), ω2

ψ∗,θ∗)

1

n
R(ψ̂, θ̂) → D(ν‖θ∗)− D(ν‖ψ∗)

ω̂2 ≡ Varsample

[
log

pψ(X )

pθ(X )

]
→ ω2

ψ∗,θ∗
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Vuong's Test for Non-Nested Model Classes

Assume all conditions from before

If the two models are really equally close to the truth,

R√
nω̂2

 N (0, 1)

but if one is better, normalized log likelihood ratio goes to ±∞,
telling you which is better

Don't need to adjust for parameter #, but any o(n)
adjustment is �ne; [13] is probably better than ∗IC
Does not assume that truth is in either Ψ or Θ

Does assume ψ∗ 6= θ∗
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Back to Blogs

Fit a log-normal to the same tail (to give the advantage to power
law)

R(power law, log − normal) = −0.85
ω̂ = 0.098

R√
nω̂2

= −0.83

so the log-normal �ts better, but not by much � we'd see
�uctuations at least that big 41% of the time if they were equally
good
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Fitting a log-normal to the complete data
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Visualization

Beyond the log-log plot: Handcock and Morris's relative
distribution [14, 15]
Compare two whole distributions, not just mean/variance etc.

Have a reference distribution, CDF F0 (or just a reference

sample) and a comparison sample y1, . . . yn
Construct relative data

ri = F0(yi )

relative CDF:
G (r) = F (F−10 (r))

relative density

g(r) =
f (F−10 (r))

f0(F−10 (r))
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Relative data are uniform ⇔ distributions are the same

g(r) tells us where and how the distributions di�er

Can estimate G (r) by empirical CDF of ri

Can estimate g(r) by non-parametric density estimation on ri

Invariant under any monotone transformation of the data
(multiplication, taking logs, etc.)

Related to Neyman's smooth test of goodness-of-�t

Can adjust for covariates �exibly [15]

R package: reldist, from CRAN
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Relative Distribution with Power Laws

1 Estimate power law distribution from data

2 Use that as the reference distribution
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How Bad Is the Literature?

[10] looked at 24 claimed power laws

word frequency, protein interaction degree (yeast), metabolic network

degree (E. coli), Internet autonomous system network, calls received,

intensity of wars, terrorist attack fatalities, bytes per HTTP request,

species per genus, # sightings per bird species, population a�ected by

blackouts, sales of best-sellers, population of US cities, area of wild�res,

solar �are intensity, earthquake magnitude, religious sect size, surname

frequency, individual net worth, citation counts, # papers authored, #

hits per URL, in-degree per URL, # entries in e-mail address books

Of these, the only clear power law is word frequency
The rest: indistinguishable from log-normal and/or stretched
exponential; and/or cut-o� signi�cantly better than pure power
law; and/or goodness-of-�t is just horrible
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What's Bad About Hallucinating Power Laws?

Scientists should not try to explain things which don't happen

e.g., years of theorizing why biochemical networks are scale-free [16, 17, 18], when

they aren't [19, 20]

Decision-makers waste resources planning for power laws which
don't exist
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Does It Really Matter Whether It's a Power Law?

Maybe all that matters is that the distribution has a heavy tail
Probably true for Shirky

Then don't say that it's a power law
Do look at density estimation methods for heavy-tailed distributions
[21, 22]

Data-independent transformation from [0,∞) to [0, 1]

Nonparametric density estimate on [0, 1]

Inverse transform
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The Correct Line

1 Lots of distributions give straightish log-log plots

2 Regression on log-log plots is bad; don't do it, and don't
believe those who do it.

3 Use maximum likelihood to estimate the scaling exponent

4 Use goodness of �t to estimate the scaling region

5 Use goodness of �t tests to check goodness of �t

6 Use Vuong's test to check alternatives

7 Ask yourself whether you really care
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