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Outline of this lecture

1. The inverse appoach in complex systems.
• non-parametric learning when: many, coupled degrees of

freedom + non-linear physics (defining correlations,
evolution).

• Bayesian mindset.
• inverse problems and a personal classification - model

structure in each case.
• relevance to quality and quantity of data, sparsity.
• something to think about.

2. Inference - optimisation, Monte Carlo, MCMC.

3. Case studies - real deprojection problem; inverse learning
in dynamical systems.
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Why does nonparametric modelling suggest itself readily when the
system manifests complexity?

⋆ Heterogeneous nature of underlying phase or state space
- multimodal density function; isolated, sharply declining
modes.

Figure: Left: Stellar velocities recorded in the j th S cell are used to
estimate fj(U,V ) (overlaid in solid black contour lines over) f0(U,V )|D
(from Chakrabarty, 2007). Right: SEM image of real-life material.
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Why does nonparametric modelling suggest itself readily when the
system manifests complexity?

⋆ Heterogeneous nature of underlying network structure

Figure: Heterogeneous complex network using archived movie data bases (Zeqian Shen, Kwan-liu Ma, and
Tina Eliassi-Rad, 2006). Network shows eight “node types” - person, movie, role, studio, distributor, genre, award
and country. There are 35,312 nodes and 108,212 links. The data is noisy and contains missing relationships.
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Parametric models - aka analytical approximations - for an average
description insufficient?

Mean field approach is a shortcoming when system manifests

• non-uniform structural correlation distribution.

• unequal dynamical correlations (Pair approximation
theories-Newman, 2010)

• non-uniform distribution of states over degree-k nodes.
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When is an average description sufficient?

Gleeson et. al, Phys Rev E, 2012 - explore pertinence of Mean
Field theory in the context of real dynamical systems on
networks MF theories are relatively more accurate when
most nodes have high-degree neighbours. Barabasi, Albert &
Jeong (1999) suggest a MF theory for the scale-free random
networks. Lacroix et. al (2011) treat nucleons as independent
particles that are playing in a MF potential. They say this model
works because nucleons inside the nucleus experience widely
different potential from nucleons inside the nucleus. But Cook
(2010) contradicts.

• when heterogeneity in dynamical correlation distribution is
low.

• when modularity can be assumed.

• when local and global effects are well decoupled.

• ......
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Wish list ...

lots of parameters in the model that is free-form . . .

parameters to be learnt from the data

• under-
abundance of
data
compared to
parameters.

• constricted
information -
renders large
allowed
solution set.

• inference in
high-dim is
hard.

• Introduce correlation among
parameters . . . invoke assumptions
about topology of phase/state space.
Can test for support in data for
assumption(s) by designing bespoke
statistical tests of hypothesis.

• Improve information content - scrutinise
system geometry, extra information
from theory, elicit from literature, the
p-word.

• Improve inference.
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Input care into modelling - ease inference if possible

Epistimeologically speaking, inference can be
“probabilistic” or “relativistic”

The probability of it raining
tomorrow is 0.5

The probability of it raining
tomorrow∈ [0, 1]. Out of these,
I, as the observer, think that
there is more chance it raining
rather than staying dry
tomorrow | the information I
possess.

With respect to the observer.
Helps contract solution space.
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The Bayesian mindset and Bayes rule

All are random varibles distributed as a probability
distribution - prior. Pr(A) = 0.298 means that the
probability that A = a is 0.298.

• Relative to the practitioner.

• Subjectivity diminishes with data.
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The Bayesian mindset and Bayes rule

Probability of A,conditional on B is

Pr(A|B) =
Pr(A ∩ B)

Pr(B)
(1)

Then if A := “model” and B := “data”, we get

Pr(model |data) =
Pr(data|model)Pr(model)

Pr(data)
(2)

Bayes Rule provides for a bridge between inverse problems -
that which we actually want to solve in Science - and the
forward problem (the kind which find easy to deal with).
Examples −→
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Inference

Statistical inference, in the context of inverse nonparametric
learning of model parameters of a complex system could be

• deterministic if there is “no shortage” of data trivial soln;
non-unique/non-existent solutions otherwise.

• In lieu of so much information about the system,
practitioner brings in “her own” information - Bayesian. In
the presence of “lots of parameters”, inference gets hard.

• If system is itself probabilistic, inference has to account for
inherent variation in model parameters.

• All this notwithstanding, variation or noise inherent in
measurements acknowledgemed in learning of model
parameters.
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General inverse problem - statement; finite dimensional sytems

I = P[ρ] + ε (3)

where data I ∈ D: D is the Banach space of functions
I : U ⊂ R

m −→ R, while the unknown function ρ ∈ H, H is the
Banach space of functions ρ : V ∈ R

n −→ R. Here U and V are
closed intervals in R

m and R
n respectively, defined by problem

at hand.
For the operator P : H −→ D, n > m leads to a
fundamentally ill-posed problem (Tarantola 2004, Bereto
1998, Hansen 1998, Cotter et. al 2010, Stuart 2010).

ε is the measurement noise, the distribution of which, may be
known, but may or may not be Gaussian!
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Ill-posedness

P : Rm −→ R
n, m ≤ n =⇒ learning of ρ is fundamentally

ill-posed in the Hadamard sense.

• solution ρ = P−1(I) does not exist.

• solution non-unique.

• solution not continuous with variations in data −→
ill-conditioned.

In real-life, many interesting inverse problems may not be
well-posed in this sense but may be tractable by bringing
in extra information into the model or if the model is sparse
“enough” (Donoho & Tanner, 2005)
, while maintaining P as square.
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Sparse density functions

Figure: Simulated images of Copper-Tungsten alloy - sparse (left)
and dense (right) density structure.
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Two types of inverse problems - a personal classification
P is known. Typically, then P is a
projection operator. The problems
could include learning of density in
n-D from inversion of n − 1-D
images, blind deconvolution
problems. I and ρ can be vectors
or matrices. Traditionally these are
handled using inverse-Radon
transforms which fails if data is not
Holder continuous or if viewing
angle measurements are
limited/unavailable. Deprojection
is in general ill-posed even when
noise is absent. P is linear or
non-linear.

P is unknown. Data is unknown
functional of model parameters.
This description lends itself to
many problems in which we want
to learn vector/matrix of model
parameters ρ given data
vector/matrix I which is then an
unknown functional of unknown ρ.
Usually, in these kinds of
problems, extra information is
needed (eg. the unknown
functional is a realisation of a
known stochasticprocess); when ρ

is a function of model parameters,
discretisation has to be invoked.
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Linear inverse problems - integral equation formulation

Fredholm equation of the 1 st kind

i =
∫ b

a
p(i , x)ρ(x)dx (4)

One example of Volterra equation of the 1 st kind - in
astronomy

i(x , y) = p(x , y) ∗
∫ (h(x ,y)

0
ρ(x , y , z)dz (5)

Tricomi book.
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m < n - Radon Transform

f (x) = f (x , y) be a continuous
function bounded in R

2. Radon
transform of f (x) is the projection
of this function on the line segment
L:

Rf (L) =

∫

L
f (x)du (6)

u is orthogonal to L

p(x ′, θ) =

∫

y ′

f (x , y)|(x ,y)=Rθ(x ′
,y ′)dy ′

2-D RT
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Inverse RT

• Inverting: RT at a given θ corresponds to the inverse
Fourier Transform of a slice taken at the same angle θ in
the Fourier space.

• Applications - find f , given {θi , p(·, θi)}N
i=1 ... inverse Fourier

methods, (Deans, 1983) - RT in

• Inversion of RT in n-D involves the n − 1th x ′-derivative -
numerically unstable for many real-life samples.

When θi unavailable -
⋆ nature of the problem (astronomy, biology),
⋆ logistical shortcomings (material science)-
RT is fundamentally inapplicable
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Projection and deprojection

If P is a projection operator in I = P[ρ] + ε where data I is
marked by ε and the unknown parameters are in ρ, then in
the low noise limit , i.e. lim ‖ ε ‖−→0,

P+I = ρ from (7)

P†I = P†Pρ

(P†P)−1P†I = ρ

where P+ := (P†P)−1P† is the Moore-Penrose inverse of the
matrix representation of the projection operator P (C.R.Rao et.
al 1971 for generalised inverses, Avner Friedman for projection
matrices, Roger & Charles for matrix analysis). It exists if (P†P)
is invertible.
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Projection and deprojection

• The projection operator is idempotent: P2 = P.

• The operator P is a projection along its null space N (P)
onto its range R(P). R(P) ⊥ N (P) ⇐⇒ P is Hermitian.
Then projection is orthogonal, else oblique.
‖ P ‖=‖ I − P ‖ ∀P (Szyld 2006, refs therein).

• If P is an orthogonal projection, real matrix P, P is
self-adjoint, square symmetric matrix.

• Orthogonal projection matrices are then diagnolisable - P+

then exists.

• The Moore-Penrose inverse when it exists, is unique
=⇒ ρ = P+I is unique, if P+ exists. From an inference
point of view,
⋆ dimensionality of range of P = dimensionality of data
space =⇒ no I outside range of P and P is square - soln.
exists and unique.
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Projections in a space of functions

If P is a projection in the Banach space H, we can
represent D as the direct sum of the two orthogonal
subspaces, as in H = R(P)⊕R(I − P), where I − P is also
a projection.

In the case of
infinite-
dimensional space
onto which a
continuous
projection
happens, R(P)
must be a closed
subspace.

A subspace D of H can be the range of a
contractive projection in H, under specific
conditions (Lindberg 72, Villanueva 1991),
leading to a contractive projection onto D
defined as a real-valued continuous function
on the extreme points.
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Condition number

What is the fractional uncertainty in the learnt ρ̂,
‖ ρ− ρ̂ ‖
‖ ρ ‖ ,

given noise in the data
δI
I

, (where I + δI = P[ρ̂])?

‖ I ‖ = ‖ Pρ ‖≤‖ P ‖‖ ρ ‖, (8)

=⇒ ‖ ρ− ρ̂ ‖
‖ ρ ‖ ≤ ‖ P ‖‖ P−1 ‖‖ δI ‖

‖ I ‖

Also
‖ ρ− ρ̂ ‖
‖ ρ ‖ ≥ ‖ δI ‖

‖ P ‖‖ ρ ‖ ≥ ‖ δI ‖
‖ P ‖‖ P−1 ‖‖ I ‖ .

Here the condition number is κ = ‖ P ‖‖ P−1 ‖.
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How to solve the inverse problem?

• Inversion of a high-dimensional P(n×n) matrix is
cost-intensive with the computational complexity varying
from O(n3) to approximately O(n2.38) with different
algorithms - not doable if placed within an iterative scheme.

• So, in the n-th step of the forward model, compute the
norm ‖ Pρ̂n − I ‖ the likelihood; ∀ n.

• In a Bayesian framework, likelihood L(I|ρ) is used in
conjunction with prior π0(ρ), to define the posterior
probability of the model parameters, given the data
(π(ρ|I)), as per Bayes rule.
⋆ Measurement noise has to be built into all this - maybe in
the definition of the likelihood, or by convolving posterior
with noise distribution.
⋆ Sample from the posterior using MCMC techniques.

• In a frequentist framework, likelihood is optimised, in
presence of imposed constraints, aka regularisation.
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When the mapping to the data space is unknown

This is a bigger challenge but perhaps encountered more
frequently in Science, especially when complexity manifests in
system behaviour.
Data is considered

• unknown function of system parameter vector ρ:
I = ξ(ρ), example, (1) observed image data in distant
galaxy as an unknown function of the unknown vector of
gravitational mass density at different spatial locations in the
system,(2) house prices observed at different time points, as
an unknown function of the sought vector of pre-identified
economic parameter at these times.

• unknown functional of ρ(x) where X is a system
variable: I = ξ[ρ(x)], example, partial phase space
information - available for a sample of particles in an
autonomous dynamical system - is unknown functional of
evolution function g(w), whereW is phase space vector.
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Inverse problem

Aim is to invert the equation I = ξ(ρ) to learn ρ, given I.
Thus, the problem to solve is inverse. Instead, when
knowing a new parameter ρ(new), we want to predict I(new),
that is a forward problem.

Interested in learning ρ(·) - not necessarily in learning the
form of ξ[·]. The suggestion is to compute posterior
probability [ρ|I] and sample from this posterior, to learn ρ.
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The Bayesian approach

Bayesian approach is a natural choice for such problems
because

• when too much is unknown, we can bring in information
into the model in the form of priors. Constraints can be
built into the prior structure. In lieu of “enough” data,
solution is prior-driven (Stuart 2010).

• it readily allows for quantification of uncertainties in learnt
parameters.

• non-linear optimisation in high-dimensions is in general
much less efficient than MCMC techniques.
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Supervised learning

Thus, we are discussing learning of model parameters, as
supervised by some training data.

Let f (s) describe the data.
Then we want to infer f (·)
given the data, i.e. predict
the value of measurement
vn+1 at a new point s (n+1).
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Inference

In the forward model,
• consider ξ[·] to be a realisation from a known stochastic

process - popular choices include a Gaussian Process
(Rasmussen’s book). But we need to be cautious if
ρ(x) ≥ 0 or if ρ(x) is not continuous. Then compute
π[ρ1, ρ2, . . . , ρN ,Υ|I],
where ρ(xi) := ρi , i = 1, . . . ,N, where we rephrase the aim
of wanting to learn the function ρ(x) as wanting to learn
vector ρ = (ρ1, . . . , ρN)

T . In other words, we discretise the
relevant closed interval of X .

• Once this posterior is computed, we can marginalise it over
{Υi}M

i=1. Sample from this marginalised posterior using
MCMC.

• Downsides
1. matrix inversion - less of a problem for smaller data sets
2. learning smoothness of the chosen process from the data

may be difficult - more of a problem for smaller data sets.
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Stochastic Processes

A Stochastic Process is a collection of random variables
indexed by “time”.
⋆ discrete time SP X = {Xt , t = 0, 1, 2, . . .}; index could include
negative values too.
⋆ continuous time SP X = {X (t)|t ∈ T ⊂ R}
For t ∈ T ⊂ R, Xt : Ω −→ R defined on the probability space
(Ω,F ,Pr), the function X : T × Ω −→ R, is a Stochastic
Process. Then x(t |ω = ω0) is a sample function of this SP.

Random variable assigns a real number to outcome ω ∈ Ω;
SP assigns sample function x(t , ω) to outcome ω ∈ Ω.
SP is a distribution of a space of functions. For a given
time t = t1, the random function X1 = x(t1, ω) - sample path
of X at ω. Xi is a random variable −→ definition of process.
All {Xi}N

i=1 are i .i .d .
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Poisson Process

Poisson Process is a continuous time, counter process
example of an SP, such that number of arrivals in time interval
[a, b] is N(a, b) which is distributed as a Poisson distribution.

• Number of arrivals in non-overlapping intervals is
independent.

• The inter-arrival times are distributed as an exponential
distribution.

• Pr[N(t) = n] =
(λt)n

n!
exp(−nt), where λ is the rate

parameter;
1. rate parameter is independent of time interval [a,b] for

homogeneous Poisson Process - an example of a Levy
Process.

2. rate function λ(t) for inhomogeneous Poisson Process.
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Gaussian Process

Gaussian Process is an example of a stochastic process (Mehr
& McFadden 1965, Shepp 1971, Adler 1981, Abrahamsen
1997, Mackay 1998, Rasmussen & Williams 2006, Santner et.
al 2003). GP can be thought of as a distribution over a function
space, such that any finite subset of the data generated by a
GP, for any domain, is distributed as a multivariate normal, with
specified mean and covariance structures.

i .i .d Xi
N
i=1, in the limit N −→ ∞ =⇒ Gaussian distribution,

i.e. X := (X1,X2 . . . ,Xn)
T is dstributed as

1

(2π)
n
2
√

detS
exp

[

−(x − µ)2

2S

]

(9)

where µ = E(X), S = [sij ] = E((xi − µi)(xj − µj)).
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Markov Process

Stochastic Process with the property that probability of
current event depends only on probability of previous
event, but not on other earlier events (the Markov
property).

The stochastic process defined as

Pr(Xn = xn|Xn−1 = xn−1,Xn−2 = xn−2, . . . ,X0 = x0) = (10)

Pr(Xn = xn|Xn−1 = xn−1)

is a Markov Process.



Outline Introduction Inverse problems Inference re issues

Inference

In the forward model,
• consider ξ[·] to be a realisation from a known stochastic

process - popular choices include a Gaussian Process
(Rasmussen’s book). But we need to be cautious if
ρ(x) ≥ 0 or if ρ(x) is not continuous. Then compute
π[ρ1, ρ2, . . . , ρN ,Υ|I],
where ρ(xi) := ρi , i = 1, . . . ,N, where we rephrase the aim
of wanting to learn the function ρ(x) as wanting to learn
vector ρ = (ρ1, . . . , ρN)

T . In other words, we discretise the
relevant closed interval of X .

• Once this posterior is computed, we can marginalise it over
{Υi}M

i=1. Sample from this marginalised posterior using
MCMC.

• Downsides
1. matrix inversion - less of a problem for smaller data sets
2. learning smoothness of the chosen process from the data

may be difficult - more of a problem for smaller data sets.
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Inference - embed ρ in definition of state space pdf

• In the forward model, attempt dimensionality reduction of
parameter space by invoking system specific functionals in
a discretised model, such that
ξ[ρ(x)] ∼ P(f [Ψ,Φ1, . . . ,Φp])
where Ψ is a function of two vectors x,ρ and Φj(·) is some
other function of x, j = 1, . . . , p.

• f [·], is the p + 1-variate state-space probability density
function, defined over the product space given by a direct
product of the domains of Ψ,Φ1, . . . ,Φp. In fact, it is treated
in the discretised model as the (2N)× (p + 1)-dimensional
matrix such that
f i
(2N×(p+1)) := (f i1, . . . , f i(2N))

T , i = 1, . . . , p.
• P is a contractive projection onto a sub-space of H.
• Then likelihood L := P(f [Ψ(ρ, x),Φ1(x), . . . ,Φp(x)]).
• Once L is defined, π(ρ, f1, . . . , fp |I) is written with the help

of the priors, and sampled from using MCMC.
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Dimensionality reduction

For our purposes, the choice of nonparametric models
implies a very large number of parameters in general. So,
dimensionality reduction in inverse nonparametric
modelling of complex systems refers to the reduction in
number of parameters in the model.

This can be brought about by

• invoking symmetries in topology of state space, thus
introducing correlations between certain model
parameters.

• identifying details of system geometry.

• identifying sparsity in the model description.

• projection onto an “optimal” subspace of the system
(Tokdar et. al 2010), where such a subspace is a
characteristic of the system.
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Data-driven choice of modelling strategy

The choice of modelling strategy depends primarily on:
• quantity and quality of available data.
• available information (deterministic and/or

probabilistic).
• degree of non-linearity in the problem, which in turn

determines the dimensionality of parameter space.
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Data-driven choice of modelling strategy

For large data sets -

• inverting the P matrix is not feasible (unless P is sparse)

• writing the likelihood function and optimising or using
MCMC methods is a possibility.

Small data sets, under-abundant systems -

• As long as the P matrix can be maintained to be a square,
direct inversion is feasible, though this might be
numerically unstable if data is not Holder continuous
(Rullgard 2004, Markoe & Quinto 1985).

• For under-abundant systems, a square P matrix is not
achievable. Then (and also if mapping to data-space is
unknown), dimensionality reduction of parameter space is
if vital importance.
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What to do with noisy or incomplete data?

For noisy data -

• when the distribution of measurement uncertainties is
Gaussian, the likelihood can be defined as Gaussian in
‖ ξ[ρ]− I ‖, with zero mean and variance defined by the
measurement uncertainty.

• when the noise distribution is not Gaussian, but known,
this distribution can be convolved with the posterior
probability π(ρ|I0), where data is I = I0 + δI.

For incomplete data -

• in the discretised models that are typically of relevance,
non-uniform gridding might be called for to accommodate
non-uniform sampling from data space.

• risky to interpolate between datum in the presence of
non-linearities; learn given whatever quality of data is
available.
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What to do with “partially sampled” data?

By “partially sampled” is meant data that is sampled from only a
subspace of the system state space. This might be due to
logistics that affect the experiment or in the nature of the
problem. Then,

• projection of ξ[ρ] into this observed subspace is invoked, in
order to define likelihood.
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Uniqueness considerations

• If problem can be reduced to the form I = Pρ, where P is a
known squre matrix, then solution for ρ is deterministic
(P+I), given I - this is equivalent to solving the least
squares problem. Then in the presence of noise in data I,
solution is no longer deterministic, with condition number
given as discussed above. As we saw above, such an

uncertainty in the solution is ‖ ρ− ρ0 ‖≤ ‖ ρ ‖ κ
δI
I

, where

ρ0 is the solution in the zero noise limit and κ ≥1 is the
condition number for the problem I = Pρ.

• Otherwise, infinite solutions are feasible. When sampling
from posterior is undertaken, uncertainty estimation given
multimodal posterior is a challenge.

• Point estimates do not bear information about the range of
solutions. Interval estimates are readily available in the
Bayesian approach - crucial superiority.
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Influence of sparsity

• Ill-posed deconvolution or deprojection problems are
solvable (Li & Speed 2000, Ramalau & Teschke 2006) if
they admit a sparse representation. In this paradigm, the
inverse problem is described by constraints of sparsity with
respect to a chosen frame.

• If the problem can be reduced to the form I = Pρ, where P
is a sparse matrix. Then even if P is high-dimensional,
direct inversion is possible.

• In the Bayesian paradigm, priors on sparsity can be
identified.
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