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Outline Optimisation Monte Carlo MCMC

Outline

• Optimisation - shortcomings of gradient methods,
constrained optimisation, search.

• Monte Carlo - motivation, numerical integration, simulation,
simulated annealing.

• MCMC - motivation, Metropolis-Hastings, Independent
sampler, Langevin, Gibbs sampling.
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Optimisation - introduction

In our pursuit of understanding the behaviour of a system -
even when such understanding is not “complete” - we
often find it useful to achieve a model of the system
parameters such that some behaviour is “optimal”,
according to a pre-set criterion.

• What is the optimal distance between an approaching car
and I, for me to cross safely?

• Perhaps that is how the brain works - sampling (locally) for
information and then optimising.
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Statement of the problem

Minimise (or maximise) a function f : X −→ H, where H ⊂ R

(for real objective functions) and X ⊂ R
N (for finite dimensional

systems)., i.e. the attempt is to minimise or maximise the
objective function f (x), where x = (x1, x2, . . . , xN)

T is the model
parameter vector (Adby & Dempster).
If the optimal inputs are sought,

xmin = arg min
x

f (x) (1)

If optimal inputs are sought when there are constraint(s) on
some of the N parameters,

xmin = arg min
x

f (x) subject to gk (x) = 0, hk (x) ≤ 0. (2)
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Hessian

f (x + δx)− f (x) = J(x)δx +
1
2
δxT Hδx, (3)

where f : RN =⇒ R, J is the Jacobian and the Jacobian of the
gradient of f is the H(N×N) Hessian matrix, i.e. the matrix with
∂2f
∂x2

i

along the diagonal and
∂2f

∂xi∂xj
, i 6= j off-diagonal.
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Second order partial derivative test

How to distinguish between convergence to local minima and
global minima?
If root of f

′

(x) is identified at x0

H positive definite at x0 =⇒ f is minimum at x0.
H negative definite at x0 =⇒ f is maximum at x0.
H has positive and negative eigenvalues =⇒ x0 is a saddle
point.
If none of the above, second order partial derivative test is
inconclusive.
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Unconstrained optimisation

• Gradient descent - highest space rate of change in f (x) is
along ∇f (x). So minimisation suggests
x i+1 = x i − γi∇f (x i), then f (x i+1) < f (x i), i.e. x0, x1, . . . will
converge to minima of f .

• Newton method - find roots of ∇f to identify stationary
points of f . 2nd order Taylor expansion of f around xi gives
f (xi + δx) = f (xi) + f

′

(xi)δx + (1/2)f
′′

(xi)(δx)2. If a maxima
or minima occurs at xi , f

′

+ f
′′

(xi)δx = 0. Sequence {xi}

generated by δx = xi+1 − xi = −
f
′

(xi)

f ′′(xi)
will coverge to root

of f
′

(x). In high-dim
x i+1 = x i − γ(Hf (x i))

−1∇f (x i).
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Possible shortcomings

• May not be differentiable all over the search space- minima
on the path of discontinuity. Need to identify discontinuites!

• Objective function may not be convex. If not strictly convex,
may not have just one minima in the broader search space
- then need to identify region over which f (x) has only one
minima.

• Narrow valleys imply large change in f (x) with small
change in x  slow convergence. Need to identify narrow
valleys!

• In high dimensions - hard.



Outline Optimisation Monte Carlo MCMC

Lagrange multipliers

The equality constraints are incorporated into the objective
function as

f (x) +
M
∑

k=1

λkgk (x) (4)

where λk , k = 1, . . . ,M are the M lagrange multipliers. The
inequality constraints are incorporated using the slack variables
zk such that hk (x) ≤ 0 transforms to hk (x) + z2

k = 0. Then the

Lagrangian is f (x) +
M
∑

k=1

λkgk (x) +
L
∑

k=1

µk [hk (x) + z2
k ]

Gradient of the objective function is orthogonal to the
surface of the active constraints.
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Kuhn-Tucker conditions - 1 st order

Then for x̃ to be a minimum,

∇f (x̃) +
M
∑

k=1

λk∇gk (x̃) +
L
∑

k=1

µk∇hk (x̃) = 0 (5)

or at the minima ∇(Lagrangian) = 0

and µihi(x̃) = 0

µ̃i ≥ 0

The first equation expresses the condition of stationarity (Kuhn
& Tucker 1951).
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Kuhn-Tucker conditions - 2 nd order

If the relevant functions are twice differentiable, then at a
minima,

xT

[

∇2f (x̃) +
M
∑

k=1

λ̃k · ∇2gk (x̃) +
L
∑

k=1

µ̃k · ∇2hk (x̃)

]

x > 0(6)

at the minima ∇gk (x̃) · x = 0 when µk > 0

∇gk (x̃) · x ≥ 0 when µk = 0

∇hk (x̃) · x = 0

Convergence criterion of constrained optimisation techniques
must converge to a point x̃ satisfying the 1st or 2nd order KTT
conditions. All functions convex =⇒ 1st order conditions
guarantee global minima.
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Constrained optimisation methods

• Methods that account for the constraints explicitly - barrier
methods:

1. Direct search methods - when close to constraint, modify
direction of search. Thus, repulsion away from constraints.
These methods may not rely on differentiability of the
functions and are not affected by lack of robustness in
numrical differentiation.

2. Gradient methods - when violation of constraint is
impending, change direction given by the negative gradient,
into the feasible region.

• Methods that account for constraints implicity - penalise
constraint violation. As a result, these are more widely
applicable. These include sequential penalty transforms,
exact penalty transforms.

Francesca, van Beek & Walsh, 2006.
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Penalty function based methods - sequential penalty transforms

The basic idea is to rephrase the constrained optimisation
problem as a sequence of unconstrained optimisation
problems, where the sequence is configured to reduce the
set of unconstrained optimisations, as equivalent to the
original problem (Fiacco & McCorick 1968, Lootsma 1972).

Thus, min f (x) subject to gk (x) ≤ 0, k = 1, . . . ,M

is equivalent to min ξi(x) = min[f (x) + sk

M
∑

k=1

h(zk (x))],

where zk (x) is the distance of the solution x from the feasibility
region - and is therefore dependent on the constraint gk - and
h(·) is a monotonically non-decreasing penalty function such
that h(0) = 0.
So, the idea is to solve the 2nd minimisation problem and use
the result as input for the next iteration, with a bigger penalty
parameter, s2 > s1 . . . =⇒ the 1st minimisation is solved.
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Barrier methods

Aim: minimize f (x) subject to gi(x) ≥ 0.
Define the barrier function

B(x, µ) = f (x)− µ

M
∑

i=1

log(gi(x)) (7)

So µ −→0 =⇒ min(B(x, µ)) −→ sought solution. So we
minimise B(·, ·). Thus,

B
′

(x, µ) = ∇f (x)− µ
M
∑

i=1

∇(gi(x))
gi(x)

. (8)
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Brute force search methods

A blind search that can - in principle - proceed without any
knowledge of the application. Of limited use in real-life complex
problems.

• Initiate the algorithm with a candidate solution x0 for the
optimisation problem.

• Generate a next candidate solution x̃.

• Check if x̃ is a solution for the given optimisation problem.

• If so, accept x̃ as a solution. If not, generate a new
candidate solution and proceed as before.

• How to generate new candidate solution in
high-dimensional space?

• When to stop?
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Simulated annealing - approximation to the global minima
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Simulated annealing - approximation to the global minima

Kirkpatrick, Gelatt & Vecchi (1983).

• Initiate with a seed solution x0.

• Propose next solution x̃1.

• Check if x̃1 is accepted at pre-set probability.

• If so, accept x̃1 = x1 as a solution. If not, reject x̃1 and
generate a new candidate solution.

• Save x i as “best” solution if L(x i) > L(x j), j = 0, . . . , x − i .

• Probability of transition from state x i to candidate state
x̃ i+1 depends on the current temperature parameter T .

• Probability of accepting proposed candidate state
P(Li ,Li+1,T ). This is in some algorithms placed as 1 if
Li+1 > Li but exp((Li+1 − Li)/T ).

• Cooling schedule: Ti = f (T0, i).
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Optimisation using sampling

Optimisation problems in which decision is made or
learning of system parameter happens in consequence of
a process that results in noisy inputs.

When there are multiple secondary maxima, in addition to a
global maxima - which represents the most likely solution - the
most likely solution is not the best solution. In a
high-dimensional situation, a direct global search becomes
difficult. Randomly generate sample of models, distributed as
the objetive fuction - approximates search space.
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Monte Carlo
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History
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Monte Carlo methods

Solving a deterministic problem by using random
numbers. Is most pertinent for a system for which the
observables are uncertain and can work even for systems
with large number of degrees of freedom.

• Generate samples from a chosen probability distribution.

• Pass the generated sample through a criterion or perform
some computation with it.

Monte Carlo methods incorporate uncertainties in observables
(inputs) to learn system behaviour. Prior to these methods,
simulations of a (simple) known system behaviour were used to
generate estimates of uncertainty in relevant model
parameters.
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Monte Carlo methods - example

Figure: Area of figure

Area of square
=

Number of particles inside figure

Total number of particles
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Numerical integration

Average over generated samples approximates the truth.
Approximation improves with number of generated
samples.

The maximum a posteriori solution for the model parameter
vector θ, given data D is:

θ⋆ = arg max
θ

π(θ|D) (9)

If problem involves learning of an “optimal” value of a function
f (θ, x), of the learnt θ - could be the utility - then we seek

x̂ = arg max
θ

∑

θ

π(θ)f (θ, x) (10)

≈
∑

i

f (θi , x)
N

where the sample {θ1. . . . ,θn} is drawn from π(θ|D).
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Simulation - using the Metropolis example

Generate sample - the sequence {θ1, . . . ,θN} such that
lim

N−→∞

N(θi)/N = Pr(θi).

1. Start with θ = θ0

2. At the i-th step, generate θ̃t+1 from a proposal density
Q(θ̃t+1|θt).

3. Check if
Pr(θ̃t+1)

Pr(θt)
> 1. Then θt+1 = θ̃t+1. Else, accept

θt+1 = θ̃t+1 if
Pr(θ̃t+1)

Pr(θt)
> r , r ∼ U [0, 1]. This defines the

acceptance probability Pr(θ̃t+1,θt) in the Metropolis
algorithm.

4. Repeat last step N times.
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Evolution to the equilibrium distribution

No. of samples generated in state θ̃t+1 from another state θt =
N(θt)Pr(θt , θ̃t+1)− N(θ̃t+1)Pr(θ̃t+1,θt)

= N(θt)− N(θ̃t+1)
Pr(θt)

Pr(θ̃t+1)
if Pr(θ̃t+1) > Pr(θt) (11)

= N(θt)
Pr(θ̃t+1)

Pr(θt)
− N(θ̃t+1) if Pr(θt) > Pr(θ̃t+1)

So N(θi)/N = Pr(θi) =⇒ No. of samples generated in state
θ̃t+1 from another state θt = 0.
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MCMC - paradigm shift

We saw i .i .d variables ∼ relevant density function π.
Now - correlated samples from a progressively evolving
distributions that eventually approach the target distribution.
The correlated samples - present approximate structure of
distribution they are sampled from (Robert & Casella, 2010).

• Accommodates cases when very little known about π.

• High-dim implementaion can be easily broken down to
smaller. easier problems.
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Markov chains

A finite Markov chain {θi} is defined by

θi+1|θ0, θ1, . . . , θi ∼ K (θi , θi+1) (12)

where K (θi , θi+1) is called the Markov kernel which can be
thought of as a generalisation of the transition matrix relevant to
Markov processes in a finite state space. For example, if we
consider the random walk, the Markov chain is defined by
θi+1 = θi + ǫi so that θi+1 ∼ N (θi , σ).
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Markov chains

• Stationarity: θi ∼ f =⇒ θi+j ∼ f , j > 0.

• Stationarity =⇒ Irreducibility, i.e. starting from state θi , ∀ i ,
it is possible to get to any state θj .

• Irreducibility =⇒ all states are, or no state is, periodic.

Stationarity implies that the stationary distribution f is the
limiting distribution - ergodicity: lim

t−→0
P t(βi , βj) = π(βj). So,

the ergodic Markov chain that is sampled from f will
converge to simulations of f . Then, expectation of a
function h(β) is given by arithetic average of hi := h(βi).

• Proper posteriors for convergence.
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Metropolis-Hastings

Choose a Markov kernel K so that the Markov chain
generated by it converges to the target density f
(Metropolis et. al (1953), Hasting (1973)).

M-H algorithm allows for construction of K so that the
stationary distribution f is achieved, by choosing the conditional
proposal density q(β

′

|β), where

•
f (β

′

)

q(β′ |β)
is known up to a constant independent of β.

• q(β
′

|β) is flexible enough to explore the full support of f , for
any β

′

.



Outline Optimisation Monte Carlo MCMC

Metropolis-Hastings

• For a given βi , simulate B
′

i+1 from q(β
′

i+1|βi).
• Then

Bi+1 = B
′

i+1 with probability α(βi , β
′

i+1), (13)

Bi+1 = Bi with probability 1 − α(βi , β
′

i+1),

where the acceptance probability

α(βi , β
′

i+1) = min

(

f (β
′

i+1)

f (βi)

q(βi |β
′

i+1)

q(β′

i+1|βi)
, 1

)

.
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Metropolis-Hastings vs. Simulated Annealing

• From point of view of implementation - maximisation of the
objective function, as opposed to exploring the support of f .

• From point of view of convergence - convergence to
maxima of objective function as opposed to, convergence
to f .

• From point of view of structure of samples - .i .d . samples,
as opposed to correlated samples.

Convergence to f is dictated by the choice of q. The
parametrisation of efficiency of the algorithm is via the
acceptance rate:

ᾱ = lim
I−→0

I
∑

i=1

α(Bi ,B
′

i+1) =

∫

α(βi , β
′

i+1)f (βi)q(β
′

i+1|βi)dβi dβ
′

i+1
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Salient features

• In the symmetric case, when q(β
′

i+1|βi) = q(βi |β
′

i+1),
α(βi , β

′

i+1) depends on f (β
′

i+1)/f (βi).

• If domain of q is small compare to range of f , the chain has
difficulty converging. Not grammatically wrong to propose
β

′

i+1 from outside the range of f , i.e. f (β
′

i+1=0, but then the
proposed state is going to be rejected −→ chain stuck over
most steps.

• Even when f (β
′

i+1)/q(βi |β
′

i+1) is less than f (βi)/q(β
′

i+1|βi),
the proposed state may be accepted, depending on how
these numbers compare to each other. But if the ratio of
thes numbers suggests too many rejections, performance
of M-H will be depreciated.

• The algorithm employs ratios and thereby does away with
the need for determining the normalisation constants.
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Independent sampler

q is independent of the present state, i.e.
q(β

′

i+1|βi) = q(β
′

i+1). Then acceptance probability depends

on min

(

f (β
′

i+1)q(βi)

f (βi)q(β
′

i+1)
, 1

)

• Generalisation of accept-reject.
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Random walk

B
′

i+1 = Bi + ǫi , i.e. B
′

i+1 ∼ N (Bi , σ
2).

Then q(β
′

i+1|βi) = g(β
′

i+1 − βi).

• To reduce this random walk algorithm to the Metropolis
algorithm, consider the function g to be symmetric, centred
at 0.

• For random walk algorithms, the acceptance probability
does not depend on g.

• But, choice of g will affect range of values of B
′

i+1 and
acceptance rate.

• B
′

i+1 ∼ N (Bi , σ
2), B

′

i+1 ∼ U [Bi − δ,Bi + δ]. This scale δ
affects correlation amongst samples abd convergence.
Bigger δ implies the chain hovers around the same value
over long periods of time, while small δ implies chains
moves slowly away from current state.
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Other than random walk

Some disadvantages of the random walk algorithm:

• wastage of a large number of steps between modes.

• since proposal is symmetric, nearly half the iterations
involve revisiting states it has visited before.

Hence alternatives −→ introduce a gradient of f in the definition
of the proposal density of the Langevin algorithm:

B
′

i+1 = Bi +
σ2

2
∇ log f (Bi) + σǫi , ǫt ∼ g(ǫ) (14)

α(βi , β
′

i+1) = min

(

f (β
′

i+1)

f (βi)

g[(βi − β
′

i+1)/σ − σ∇ log f (β
′

i+1)/2]

g[(βi − β
′

i+1)/σ − σ∇ log f (βi)/2]
, 1

)

.

Here, σ is a scale. σ is fixed. But Langevin causes differential
strengthening of the local modes.
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Joint distribution and conditional distributions

In the case f is a multivariate probability distribution, transition
is from one joint update to another.

f is a joint distr over β, sampling from the joint distribution
of β(1), β(2), . . . , β(n) can be difficult or impossible. In
contrast, the conditional distribution of
β(i)|β(1), β(2), . . . , β(i−1), β(i+1), . . . , β(n) might be easy.

One way is Gibbs sampling (Geman & Geman 1984).
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Gibbs sampling

Sought: j samples from f (β(1), β(2), . . . , β(n)).

• Start with β0.

• Let the current value of the vector be βi .

• Then sample
β
(k)
i+1 ∼ f (β(k)

i+1|β
(1)
i+1, β

(2)
i+1, . . . , β

(k−1)
i , β

(k+1)
i , . . . , β

(n)
i ),

∀ k = 1, . . . , n.
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