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Background 

Baker’s transformation	
   Ising spin model	
  

What is the mathematical connection between these two systems? 
Can they be described and analyzed in similar ways? 
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Dyadic representation 
The baker’s map can be written 

where ⎣2x⎦ is the integer part of 2x, and (x, y) ∈ [0, 1]  [0, 1]. 

Positions in binary form: 

 x = 0.x0x1...xn...  y = 0.y0y1...yn... 

with xi and yi ∈ {0, 1}. 

Composed into a bi-infinite sequence: 
 (x, y) = (...yn...y1y0 . x0x1...xn...) 

Then the original baker’s map is just a shift operation: 
 f(x, y) = (...yn...y1y0x0 . x1...xn...) 

  

€ 

(x ',y') = f (x,y) = 2x − 2x⎣ ⎦,
y
2
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The stochastic baker’s map 
Consider instead the following map 

where we have replaced the ⎣2x⎦/2 term in y' with a stochastic variable  
ξ(x, y) ∈ {0, 1} that may depend on position in state space (x, y). 

In order to get symmetry between x and y we also randomly switch between x 
and y, i.e., random choice of compressing in horizontal or vertical direction, to 
form the stochastic baker’s map ϕ : 

  

€ 

(x ',y') = g(x,y) = 2x − 2x⎣ ⎦,y /2 + ξ(x,y) /2( )

  

€ 

(x ',y') =ϕ(x,y) =
2x − 2x⎣ ⎦,y /2 + ξ(x,y) /2( )
x /2 + ξ(y,x) /2, 2y − 2y⎣ ⎦( )

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

with probability 1/2 

with probability 1/2 
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Shuffling and twisting baker’s map 

  

€ 

(x ',y') =ϕ(x,y) =
2x − 2x⎣ ⎦,y /2 + ξ(x,y) /2( )
x /2 + ξ(y,x) /2, 2y − 2y⎣ ⎦( )

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

with probability 1/2 

with probability 1/2 

ξ	
  	
  characterized by conditional probability q0(x, y) = P(ξ=0 | x, y). 
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Dyadic representation 
A time series of consecutive steps of the map ϕ can look like: 

... yn yn–1 ... y1 y0 x0 x1 ... xn–1 xn ... 
yn yn–1 ... y1 y0 ξ1	

 x1 ... xn–1 xn ... ... 
... yn yn–1 ... y1 y0 ξ2	

 x1 ... xn–1 xn ... 
... ... yn yn–1 ... y1 ξ3	

 ξ2	

 x1 ... xn–1 xn 

... yn yn–1 ... y1 ξ4	

 ξ2	

 x1 ... xn–1 xn ... 

When symbols are shifted into the ”wall” |  they disappear and reappear on the 
other side as ξ(x, y), a stochastic variable that may depend on the full 
sequences for x and y. 

Dynamics characterized by an invariant measure µb(x, y) over state space  
[0, 1] 	
  [0, 1]. 

t	
  

t+1	
  

t+2	
  

t+3	
  

t+4	
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Entropy rate of ϕ	


The entropy rate can be 
derived from the symbolic 
dynamics description, and a 
certain resolution or binary 
precision n. 

If we have an arbitrarily long 
history there is almost always 
1.  no uncertainty of what is 

shifted in from lower 
levels of resolution 

2.  1 bit of uncertainty from 
the shift direction 

3.  uncertainty sξ due to ξ	



... yn yn–1 ... y1 y0 x0 x1 ... xn–1 xn ... 

yn yn–1 ... y1 y0 ξ1	

 x1 ... xn–1 xn ... ... 

... yn yn–1 ... y1 y0 ξ2	

 x1 ... xn–1 xn ... 

... ... yn yn–1 ... y1 ξ3	

 ξ2	

 x1 ... xn–1 xn 

... yn yn–1 ... y1 ξ4	

 ξ2	

 x1 ... xn–1 xn ... 

resolution level 



complex systems group 

Entropy rate of ϕ	


... yn yn–1 ... y1 y0 x0 x1 ... xn–1 xn ... 

yn yn–1 ... y1 y0 ξ1	

 x1 ... xn–1 xn ... ... 

... yn yn–1 ... y1 y0 ξ2	

 x1 ... xn–1 xn ... 

... ... yn yn–1 ... y1 ξ3	

 ξ2	

 x1 ... xn–1 xn 

... yn yn–1 ... y1 ξ4	

 ξ2	

 x1 ... xn–1 xn ... 

  

€ 

sξ = µb(x,y)σ (q0(x,y))
x ,y
∑

  

€ 

σ(p) = p log 1
p

+ (1− p)log 1
1− p

where σ is the entropy function 

The entropy rate from ξ is then 

The entropy rate can be 
derived from the symbolic 
dynamics description, and a 
certain resolution or binary 
precision n. 

If we have an arbitrarily long 
history there is almost always 
1.  no uncertainty of what is 

shifted in from lower 
levels of resolution 

2.  1 bit of uncertainty from 
the shift direction 

3.  uncertainty sξ due to ξ	
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Information theory for equilibrium spin systems 

•  Consider interactions between nearest 
neighbours only, i.e., energy contributions 
only come from local spin interaction. 

•  Equilibrium is defined by a maximum in the 
entropy s, given a specified value on the 
energy u. 

•  Ising model in 1d and 2d... 

Ising spin model	
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1D: entropy for symbol sequences 

The entropy s, or the average uncertainty about the next 
symbol, can be derived from the conditional probability of the 
next symbol, with an increasing number of preceding symbols 
(x1,…, xm–1): 

1	
   0	
   1	
   0	
   0	
   1	
   0	
   ?	
  

    

€ 

s = lim
m→∞

p(x1,…,xm −1) p(xm |x1,…,xm −1)log
1

p(xm |x1,…,xm −1)xm

∑
x1 ,…,xm −1

∑
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2D: one state per step 
•  Generalization of the 1D entropy expression adding one state at the 

time. 

N 

M 

  

€ 

s = lim
M ,N →∞

p(BM ,N )S[p(x |BM ,N )]
BM ,N

∑

BM,N 

x 

Conditional probability for x given B	
  
Invariant measure µ gives the probability for B 	
  

x 
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2D: one state per step 

•  If interactions are only between nearest neighbours, we don't need the 
infinity limit for N (but still for M), 

x 

BM 
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Information theory for equilibrium 2d spin systems 

•  Equilibrium is defined by a maximum in the entropy s, given a specified 
value on the energy u. 

•  This implies that the block shape required for calculating the entropy is 
simplified – the state ξ need not depend on anything below the rows of 
states to the left and right below: 

•  This means that the spin system is characterized by the measure µ over 
blocks of spins B containing (yn-1...y1y0_x0x1...xn-1) and the conditional 
probability P(ξ='0') = p0(yn-1...y1y0_x0x1...xn-1) in the limit n → ∞. 

yn–1 y0y1
x0 x1 xn–1
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Equivalent representations 
•  Repeated applications of conditional probability for ξ given the 

configuration B∞ = (...yn-1...y1y0_x0x1...xn-1...) means that we move along the 
edge, building up a new row on top of x. 

•  One step in this process can then be represented by 
  (...yn-1...y1y0_x0x1...xn-1...) → (...yn-1...y1y0ξ_x1...xn-1...)  

yn–1 y0y1
x0 x1 xn–1

•  This is formally identical to the basic step in the stochastic baker’s map: 

   g(...yn-1...y1y0 . x0x1...xn-1...) = (...yn-1...y1y0ξ . x1...xn-1...)	
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Equivalent invariant measures	


•  Therefore, if we choose the conditional probability in the baker’s map 

identical to the one for ξ in the spin system: 

  q0(yn-1...y1y0 . x0x1...xn-1) = p0(yn-1...y1y0_x0x1...xn-1)  

then the spatial statistics of the spin system is identical to the statistics of 
the corresponding stochastic baker’s map and they are both characterized 
by the same invariant measure 

       µb = µ  

•  This means that for each equilibrium 2d spin system, with nearest 
neighbour interaction, there is a corresponding stochastic baker’s 
map that contains all the properties of the spin system. 	
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One example 
•  Take the 2d Ising model with spins 0 and 1, and interaction constant J = 1. 

•  Local energy contribution (in terms of kB) is –1 and +1 from parallel and 
anti-parallel spins, respectively. 

•  We have run Monte Carlo simulations, at T = 4 (above Tc), collecting 
3.1·106 spin configurations and from that derived the spin system 
conditional probabilities p0(y2y1y0_x0x1x2), based on block size n = 3. 

•  Then the same conditional probabilities q0 defines a stochastic baker’s map. 
We estimate the invariant measure µb at a binary resolution of m = 8, i.e., 
the unit square is divided into 28  28 cells. 
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Invariant measure 
The invariant measure for the baker’s map at binary resolution m = 8 and 
temperature T = 4: 
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Free energy calculations 
•  Free energy g = u – T s 

•  Energy u is calculated from local averages (both in MC and in baker’s map), 
while entropy s is estimated from blocks Bn with n=3. 

•  Calculation of the free energy for the this example results in:  

–  Exact value  gex ≈ –3.02643 

–  Monte Carlo  gMC ≈ –3.02643 

–  Baker's map  gb ≈ –3.02634  (so deviation <10–4) 
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Invariant measure 
The invariant measure for the baker’s map at T = 2.2 < Tc: 
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Invariant measure 
The invariant measure for the baker’s map at T = 2.2 < Tc: 
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Summary 
•  We have demonstrated that there is a representation that makes a class of 

stochastic baker’s maps formally equivalent to two-dimensional equilibrium 
spin systems with nearest-neighbour interaction. 

•  The generalization to longer (but still finite) interaction distance is 
(relatively) straightforward. 

•  The invariant measure of the stochastic baker’s map is identical to the 
translation invariant measure of the spin system. 

•  Thus:  
For any two-dimensional equilibrium spin system there is a 
corresponding stochastic baker’s map that contains all the 
characteristics of the spin system. 
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More information... 
•  Paper (free access), K. Lindgren, EPL 90, 30011 (2010): 

http://iopscience.iop.org/0295-5075/90/3/30011/fulltext/ 

•  Lecture notes (draft) available on course web site: 

http://studycas.com/node/114 
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Two envelopes puzzle 
 Let us say you are given two indistinguishable envelopes, each of 
which contains a positive sum of money. One envelope contains 
twice as much as the other. You may pick one envelope and keep 
whatever amount it contains. You pick one envelope at random 
but before you open it you are offered the possibility to take the 
other envelope instead. 

Would you switch? 


