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Finite size effects in a stochastic condensation model

Model: The zero-range process

A continuous-time Markov Chain. Driven diffusive system.

1-p g(3) p
VERVERY

[Spitzer (1970), Andjel (1982)]

Lattice: A, ={1,...,L} with pbc
Configuration: n = (ny)xen, With n, € Np
State space: X; = Nj*

Jump rates: g : Ny — [0, 00)
g(n) =0 <= n=0
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Motivation

g(k) \, = effective attraction, condensation possible
b
g(k):lJrk?, b>0,~ve(0,1)
[Evans (2000)]

o Many applications. [Evans and Hanney (2005)]
@ Including to granular media and traffic flow.

[van der Meer, van der Weele, Lohse, Mikkelsen,
Versluis (2001-02)]

Introduction Motivation
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Motivation: Granular media

1=0s 1=10s

s 3. “u PR Lahl - 'f_.:‘..!,_

=25y Ti=63s

[van der Meer, van der Weele, Lohse, Mikkelsen, Versluis (2001-02)]
stilton.tnw.utwente.nl/people/rene/clustering.html

@ Typical sizes L ~ 10 — 100, N ~ 1000.

Model: ZRP  Motivation Previ
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Motivation: Traffic

Mapping ZRP to ASEP:

g(3) g(1) g(2)

X g(3) g(1) g(2)
oy Y Y
————1—¢—¢—
1 2 3 4 5 6 7 8 9 10 1 12 L+N
1 2 3 4 5 6

..................

@ ASEP can be considered as a simple traffic model
[Kaupuzs, Mahnke, Harris (2008)]

@ Typical sizes L ~ 1000, N ~ 200.

Introduction Model: ZRP Motivation Previous results
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Outline
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Stationary measures: Grand canonical ensemble

There exist stationary product measures.

Stationary weights: w(n H g(k

Grand canonical ensemble

vi(n) = Z(;)L H w(ny) o™  where z(¢) = %W

xXEAL

Fugacity: ¢ € [0, ¢.)

(/") Density: (n.),, = R(¢) = ¢0slogz(¢), pc= q}E‘;CR(@ € (0, 00]

Current: (g())v, = ¢

Introduction Model: ZRP Motivation Previous results
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Stationary measures: Canonical ensemble

Dynamics conserve the total particle number:

(n) = Z =N

xEAL

Fixed L and N: system is irreducible and finite state so ergodic.

Unique stationary measure:

Canonical Ensemble

TN (n) = Z(LlaN) I w@n)a (3o ne=n)

XEAL X

Density: (1)r, v =p=N/L

Introduction Model: ZRP Motivation Previous results
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Thermodynamic limit

Equivalence of ensembles:
[GroBkinsky, Schiitz, Spohn (2003)]

N/L — p

Previous results
In the thermodynamic limit L, N — oo,

R! if p <
TLN LN Vay(p) where ®(p) = { b (e) ifz > ZZ
. > pe

b
g(k)zl—l—k—,y, b>0,v€(0,1) = p. < o0

(p—p)L

n
1 condensed

fluid

Current j

Density p

Model: ZRP ivation Previous results
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Thermodynamic limit

Thermodynamic entropy:

s(p) = sup (logz(¢) — plog®)
#€[0,1)

Convergence of canonical entropy:

Jim. % log Z(L, [pL]) = logz(®(p)) — plog @(p) = s(p)

siP) -

s(p)

EDmsjty p

Introduction Model: ZRP Motivation Previous results
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Numerics in the Canonical Ensemble

Exact numerics, canonical current
¥=05.b=4

Recursion relation

Z(L,N) = é:ow(k) Z(L—1,N—k)

Current j

Canonical current

05—

Ji=(8n))my = Z(ZL(LNI;)I)

Density p

@ Large fluid current overshoot.
@ Sharp transition to putative condensed phase.

Observations Numerics MC simulations
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Numerics in the Canonical Ensemble

Exact numerics, canonical current

¥=05.b=4
2 T T T 03
s(py)
02
15—
=
c
o 01
= —
=S Q
(6} w
0
L=100
— L=200
05— L=500 |
— L=1000
— L=2000 -0.1
I R I
5 2 -0.2,

0

Density p

imulations

Observations
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Monte Carlo simulations

Distribution of switching times
¥=02,b=4

Current switching
¥=02,b=4
T T 1 . ;

26 ’ E — Exponential Fit

Current j
P(t>1)

L L n . 1 L . 1 L
0 5000 10000 0015 500 1000 1500 2000

Time

Left: Metastable switching between fluid and condensed
currents.

Right: Exponential distribution of waiting time in the
condensed and fluid ‘phases’.

Observations MC simulations
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Fluid and Condensed approximations

Approximate entropy
Current Overshoot L=1000,y=05p=4
L=1000,y=0.5b=4 T

16 T T 0.25( =
15 - [
L 0.2
14 i
e 0.15-
é 13 E 0
3t
0.1 -
12 — Numerics i — Numerics \
L — Fluid approx. —- Fluid approx. AN
11 — Qurrem_matching 0.05 —- Condensed approx. N
o Simulation N\
L \\\\,
Y O R B N R [0) . | . . | |
jpc 0.4 05 0.6 0.7 0.8 0.9 17c 0 0.2 0.4 0.6 0.8 1
Density p Density p

@ Describe where the approximations come from
@ How they can be used to find the leading order effect

Results Approximations unction Current matching Sca
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Rate function

Aim:
@ Find the scaling of the overshoot region.

@ Understand the apparent metastability close to the
maximum current .

Approach:
@ Find something like a rate function which describes the
metastability in some scaling limit in terms of the
background density.

N—m%m
c
TLN (LX_I = pbg) ~ exp (—L1,(pvg))

Results Approximations Rate function Current matching Scaling limit
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Rate function

Notation:
TLN (pbg) C=TLN (N — max 1y = ppg (L — 1)>
xEAL

= TLN <max Tix = 77max>
xEAL

where pye(L — 1) = N — Nmax.

Results Approximations Rate function matching S
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Rate function

Notation:

= N — = L—1
TLN (Pbg) TLN ( )ICEEXZ Tx Pbg( ))

= TLN <max Tix = 77max>
xEAL
where pye(L — 1) = N — Nmax.

We have:

TLN (pbg) Z(L N W (7max ) Z H w (1)

/r]exx 1
L—1
where X = {n: Y 1 = pog(L—1), m,- -, 1 < N—pog(L—1)}.
x=1

Results Approximations Rate function Current matching Scaling limit
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Rate function

L—-1
X={n:> ne=pugl=1), n,....m-1 < N—pog(L—1)}

x=1

Results Approximations Rate function C t matching limit



Finite size effects in a stochastic condensation model

Rate function

L—1
X - {n : an = Pbg(L_l)a Ny-eesM—1 < N—pbg(L—l)}
x=1
N (Pbg) Z( 77max Z HW 77x
nex x=1
1
pbé(L 1 T
=z ma)o Y D 1:[ W)
nex x=
1 —ppa(L—1) L—1 -1
— mLW("?max)gb Pog( )anax (¢)V¢ynmax (ZLfl = Pbg(L—l))

Results Approximations Rate function Current matching Scaling limit
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Rate function

L—1
X - {n : an = Pbg(L_l)a My---5NL—1 < N—pbg(L—l)}
x=1
N (Pbg) Z( 77max Z HW 77x
nex x=1
1
,(L—1) .
= Zy Lm0 Y HW )"
nex x=1
1 - —
= Z )6~ (000, (Rt = poe(L=1)
where,

énimx(EL*I = pbg(L*l)) = Véil(ELfl = pbg(l‘*l)’nx < nmax)

Results Approximations Rate function Current matching Scaling limit
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Rate function

10g 7N, (Pbg) =(L — 1) (108 Zpye, () — pig log &) +
+ log W(nmax) + log Vé;%lmx (EL—I = Pbg (L_ 1 )) -

—logZ(L,N) + logL.

Holds for all ¢ € [0, c0). Choose ¢ so that,

TImax

Ry (9) : Z kw (k)" = pog

andx

Results Approximations Rate function Current matching Scaling limit
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Rate function

log 7TN7L (pbg) :< - 1) (log Z77max ((I)nmn (pb$)) - pbg log (pnmux (pbg)) +
+ log W(T/max) + log (I)r/nnx (Pbg) s TImax (ELil - pbg(Lil))i
—logZ(L,N) + logL.

Holds for all ¢ € [0, 00). Choose ¢ so that,

Tlmax

Ry (0) Z kw(k

ZT]max

_R_

Tmax Tmax "

Define: ©

Results Approximations Rate function Current matching Scaling limit
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Rate function

log 7TN7L (pbg) :(L - ]) (log Z77mao( (q)nmax (pbg)> - pbg log q)'ﬂmax (pbg)) +
+ 1og w(nmax) + log vy ! (X1 = Pbg(L_1)>_

(I)Umax (/)bg) sTImax

—logZ(L,N) + log L.

@ Looks like the thermodynamic entropy, except with
truncation at nmax S0 exists for all py,.

Results Approximations Rate function Current matching Scaling limit
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Rate function

log 7TN7L (pbg) :(L - ]) (log Z77mao( (q)nmax (pbg)> - pbg log q)'ﬂmax (pbg)) +
+ 1og w(nmax) + log vy ! (X1 = Pbg(L_1)>_

(I)Umax (/)bg) sTImax

—logZ(L,N) + log L.

@ Looks like the thermodynamic entropy, except with
truncation at nmax S0 exists for all py,.

@ Contribution due to the condensate.

Results Approximations Rate function Current matching Scaling limit



Finite size effects in a stochastic condensation model

Rate function

log 7TN,L (pbg) :(L - ]) (log Z77mao( (q)nmax (pbg)> - pbg log q)'ﬂmax (pbg)) +
+ 1og w(nmax) + log vy (X1 = Pbg(L_1)>_

(I)Umax (/)bg) sTImax

—logZ(L,N) + log L.

@ Looks like the thermodynamic entropy, except with
truncation at nmax S0 exists for all py,.

@ Contribution due to the condensate.
@ Can be approximated by Gaussian density at 0.

Results Approximations Rate function Current matching Sc:
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Rate function

log 7TN,L (pbg) :(L - ]) (log Z77mao( (q)nmax (pbg)> - pbg log q)'ﬂmax (pbg)) +
+ 1og w(nmax) + log vy (X1 = Pbg(L_1)>_

(I)Umax (/)bg) sTImax

—logZ(L,N) + log L.

@ Looks like the thermodynamic entropy, except with
truncation at nmax S0 exists for all py,.

@ Contribution due to the condensate.
@ Can be approximated by Gaussian density at 0.
@ The final terms are constant for fixed N and L.

Results Approximations Rate function Current matching Sc:
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Rate function

Ignoring the final two normalising terms we can approximate
—log .z (poe) Very quickly. Still informative.

L =1000,N =660,y =05p=4
0.02 - . T .

0.015—

. | . | . |
P, 04

05
Background desnity [

@ p below sharp transition point.

Results Approximations Rate function Current matching Sca
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Rate function

Ignoring the final two normalising terms we can approximate
—log .z (poe) Very quickly. Still informative.

L =1000,N =700,y =05pb=4
001 ! T . T .

0.006 —

0.002 |~

. | . | . | . |
'O'OOZpC 0.4 05 0.6 p
Background desnity Prg

@ p near sharp transition point.

Results Approximations Rate function Current matching Sca
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Rate function

Ignoring the final two normalising terms we can approximate
—log .z (poe) Very quickly. Still informative.

L =1000,N =730,y =05p=4
001 ! T . T .

. | . | . |
'O'OOZpC 04 05 ] 06
Background desnity Prg

@ p above sharp transition point.

Results Approximations Rate function Current matching Sca
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Max and min of distribution

Under controllable approximations (to leading order in L):
log 7y L (pbg) —logmy,L (pbg - l/L) =~ 10g g(7max) — log D (pbg)

@ First minimum and maximum are given by current
matching.

@ The final minimum is effectively a boundary minimum.

Results Approximations Rate function Current matching Scaling limit
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Current matching

L =1000,N=700,y=0.5b=4
T T

1
'
|
|
|
|
'
|
|
|
|
'
|
|
|
|
|
|
|
|
'
|
|
|
1
|
|

1
'
|
|
|
|
)
|
|
|
'
|
|
|
|
'
|
|
|
|
'
|
|
|
1
|
|

04 05 06
Background desnity Poq

0,008~

0.006—

0,002~

05 06
Background desnity Pog

esults mations
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Lifetime of fluid and condensed ‘phases’

L =1000,N =700,y=05b=4
T 1 T T

—o by ! |
) w
I / I Fixed Density N/L

@ Ratio of the areas will always
give proportion of time spent in
each ‘phase’

Current

04 05 06
Background desnity p,,,

@ For totally asymmetric process
F 1 random walk argument very well
| ] to predict the life time.

- o1 ] 05 o6 .
3
Background desnity p,

Results Approximations Rate function Current matching Scaling limit



Finite size effects in a stochastic condensation model

Approximations
Current Overshoot
L=1000,y =0.5b=4
16 T T T T T
15+ -
14+ E
= L
B4 ]
3
3
12r — Numerics b
L — Fluid approx.
11 — Current matching
'7 o Simulation

L Il L Il L Il L Il L Il L Il L
P4 o5 o6 07 08 08 1%
Density p

@ Fluid current: From the average current in a cut-off grand
canonical ensemble ®y(p).
@ Condensed current: From current matching, solve

(EN(pbg) = g(nmax)

Results Approximations Rate function Current matching Sca
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Scaling limit

Current overshoot is asymptotically linear:

(R (¢) — pec) ~ 02(d— ) 50, (Pn(ppg) — 1) ~ %(ﬂbg — pe)

c

where o2 = & — p2 and & = Y12 kv, (k)

@ This leads to the asymptotic behaviour of the current
matching curve ®x(pbg) = 9(7max)-

@ From this we can derive the scaling so that the current
matching curves collapse.

Results Approximations Rate function Current matching Scaling limit
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Scaling limit

LY/(r+D) 5¢

8,

‘ ‘ ‘ ‘ | Y/(y+D)
0 8 10 L op

@ Black: Numerics average current, L = 10000 system
@ Blue: Linear fluid overshoot
@ Red: Collapsed current matching curve

Results Approximations Rate function Current matching Scaling limit
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Current matching

T
sl L=10000 |
L=40000
L=80000
r |— L=160000
— — L=320000
s 8
g
£l
=
o
B4 B
24
2F -
o . | . | |

L .
Rescaled Density - p,

@ Blue: Linear scaling limit for fluid current in background.
@ Red: Current out of condensate (Collapsed in scaling limit).

Results Approximations Rate function Current matching Scaling limit
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Current matching

T
sl L=10000 |
L=40000
L=80000
r |— L=160000
— — L=320000
s 8
g
£l
=
o
B4 B
24
2F -
o . | . | |

RescaledDeznsity-p;
@ Blue: Linear scaling limit for fluid current in background.
@ Red: Current out of condensate (Collapsed in scaling limit).

@ These give a unique non-degenerate rate function in the
scaling limit.

Results Approximations Rate function Current matching Scaling limit
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Scaling rate function

|, (00bg)
20f
15}
10f
osf
05 10 15 20 25 30 35 6Apb9

- 1 -
L5,(0ppg) := Him 2108 [t 5p1-0)1] (ﬂbg = pe + OphgL a)

,-),

where a = .
v+ 1

Results Approximations te function Current matching Scaling limi
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Transition point

L7K7+D5¢

8,

‘ ‘ ‘ ‘ | Y/(y+D)
0 8 10 L op

@ Transition point from “fluid’ to ‘condensed’ is given by the
rescaled density for which minimum are equal depth.

@ Find using rescaled entropies from integrating the two
current curves.

@ ‘Fluid’ and ‘condensed’ entropies cross at the transition.

Results Approximations Rate function Current matching Scaling limit
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Data collapses

LY D
8
I L = 10 000
6 L =1000
L = 500
4 .
2 [
0 . I I . . I . . . ] L“//(}“rl)(;p
0 2 4 6 8

@ Also for each vertical slice (fixed rescaled density) we have
the scaling rate function.

Results Approximations e function Current matching Scaling limit
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Conclusions and Summary

@ Large finite size effects observed for some parameter
values.

@ Observed phenomena on a finite system such as
metastable switching are also observed in real world
clustering.

@ May have implications for understanding traffic flow
patterns.

Results:

@ Estimate the fluid current overshoot and condensed
current on large finite systems.

@ Estimate the density at which an observed change in
‘phase’ will occur on a large finite system.

@ Predict asymptotic scaling.

@ Predict switching times in terms of entropy differences (for
certain systems).

Conclusions
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