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Harbour storms

[www.hydrolance.net]

Motivation
Waves of tens of meters pose
risks in oceanic harbours.
Waves driven by wind and waves
from the ocean.
Energy dissipation occurs at
short wavelengths by wave
breaking and white-capping.

Aims
Understand energy transfer by
nonlinear wave interaction.
Excite wave modes that enhance
the energy transfer.
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The model

Irrotational flow
=⇒ u = ∇φ.
Incompressible
∇ · u = 0
=⇒ ∆φ = 0.

Definition

ψ(x, t) = φ(x, η(x, t), t).
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Boundary conditions

Dynamic

∂ψ

∂t
+

1
2

(∇φ)2|z=η + gη = 0

Together with Laplace
equation fully specify
system.

Kinematic
∂η

∂t
=
∂φ

∂z
on z = η(x, t)

∂φ

∂z
= 0 on z = −h.
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Wave solution

Fourier transform

f (k) =
1

2π

∫
f (x)e−i(k·x) dx

f (x) =
1

2π

∫
f (k)ei(k·x) dk

Wave steepness; α = kη(k) , assumed small.
η(k, t) = η0(k)eiω(k)t and ψ(k, t) = ψ0(k)eiω(k)t

Dispersion relation

ω(k) =
√

gk tanh kh

ω(k)→
√

gk as h→∞.
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Hamiltonian Equations of motion

η(k, t) and ψ(k, t) are canonical variables satisfying
Hamiltonian equations [Broer 74, Miles 77].
Assume random phase and amplitude and take infinite
region then small nonlinearity limit.

⇒ Derive a kinetic equation describing evolution of the
spectrum in terms of wave-action (average amplitude).

∂nk

∂t
=

∫
W k3,k

k1,k2

(
nk1nk2(nk3+nk )−nk3nk (nk1+nk2)

)
δ(k1+k2−k3−k)δ(ω1+ω2−ω3−ω) dk1,2,3
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Resonant interactions

Resonant manifold
ω(k1) + ω(k2)− ω(k3)− ω(k4) = 0, k1 + k2 − k3 − k4 = 0,

kd1 = (3.810,0)
kd2 = (5.166,0.818)

2kd1 = k3 + k4.
kd1 + kd2 = k3 + k4.
kd1 + k2 = kd2 + k4.
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Finite region

1 Initially at rest then a finite number of modes are driven.

2 Cascade arrest due to k-space discreteness leads to
accumulation of energy near forcing scales.

3 This leads to widening of the nonlinear resonance.
4 Sufficient widening triggers a cascade.
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Turbulance cascade

Wave energy spectrum

Ef =

∫
e2πft ′i〈η(x, t)η(x, t + t ′)〉dt ′

Zakharov Filonenko (1967) power law solution to wave
kinetic equation.

Ef ∼ f−4.

Other power law power spectra
Phillips (58), Ef ∼ f−5

Kuznetsov (04), Ef ∼ f−(3+D)

Nazarenko (06), Ef ∼ f−6
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Experimental Setup

8 Panel Wave Generator

Capacitance probes:

Temporal spectra

Fluorescent visualization: 

Spatial spectra

Laser

6 m

[Total Environment Simulator at “The Deep” Geography
Department, University of Hull]
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Data
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Initial maximum

Root mean squared surface elevation
Averaged of 10 second windows

A =
√
〈(η − η̄)2〉.
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Spectra
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Spectra
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Spectra
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4-wave resonant interactions

(a) Resonant manifold (b) Interaction coefficient

2kd1 = k3 + k4.
kd1 + kd2 = k3 + k4.
kd1 + k2 = kd2 + k4.
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Presence of quasi-resonance in spectra
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|2ω(kd1)− ω(2kd1 − k4)− ω(k4)| = 0.0003 black

|ω(kd1) + ω(kd2)− ω(kd1 + kd2 − k4)− ω(k4)| = 0.0052 blue

|ω(kd1)− ω(kd2) + ω(kd2 − kd1 + k4)− ω(k4)| = 0.0051 red.
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Conclusion and further work

Conclusions:
1 Accumulation of energy at driving frequency before the

onset of nonlinear interactions supports resent theoretical
work.

2 Greater accumulation for single driving frequency (or well
spaced driving frequencies).
Largest interaction coefficient with two close driving
modes.

3 Predict energy transfer based on closest quasi-resonance
with eigenmodes of the Harbour.

Further work:
1 More experiments for various driving rates and modes.
2 Supported by numerical simulations.
3 More accurate estimates of interaction coefficient.
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η(k, t) and ψ(k, t) are canonical variables satisfying
Hamiltonian equations [Broer 74, Miles 77].

∂η(x, t)
∂t

=
δH

δψ(x, t)
,

∂ψ(x, t)
∂t

= − δH
δη(x, t)

Where H = K + Π,

K =
1
2

∫ ∫ η

−h
(∇ψ)2 dz dx

Π =
1
2

g
∫
η2 dx

Appendix Extra bits
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Assume small nonlinearity (wave steepness)
⇒ Expand the Hamiltonian as an integral power series in

conjugate variables.

Canonical transformations reduce the Hamiltonian.
Assume random phase and amplitude and take infinite
region then small nonlinearity limit.

⇒ Derive a kinetic equation describing evolution of the
spectrum.

Resonant manifold
ω(k1)± ω(k3)± ω(k3) = 0, k1 ± k2 ± k3 = 0,

ω(k1) + ω(k2)− ω(k3)− ω(k4) = 0, k1 + k2 − k3 − k4 = 0,

Appendix Extra bits
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