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Harbour storms

\ @ Waves of tens of meters pose
risks in oceanic harbours.

@ Waves driven by wind and waves
from the ocean.

@ Energy dissipation occurs at
short wavelengths by wave
breaking and white-capping.
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Harbour storms

\ @ Waves of tens of meters pose
risks in oceanic harbours.

@ Waves driven by wind and waves
from the ocean.

@ Energy dissipation occurs at
short wavelengths by wave
breaking and white-capping.

e : @ Understand energy transfer by
[wiw hydrolance net e nonlinear wave interaction.

@ Excite wave modes that enhance
the energy transfer.
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@ Irrotational flow
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The model

/
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@ Irrotational flow
= u=Ve.

@ Incompressible
V-u=0
= A¢p =0.
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The model

z
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z=-h
@ Irrotational flow
= u=Vo. Definition
@ Incompressible _
v ‘U= 0 ¢(X, t) - ¢(X777(X7 t)v t)
— A¢p =0.
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Boundary conditions

d
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/ nx.y

u=veg

av
E

(V¢) |z=n +9n =0

Together with Laplace
equation fully specify

system.
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Wave solution

Fourier transform

f(k) = 217 / f(x)e k%) ax

f(x) = 217 / f(k)e'k*) ak

@ Wave steepness; a = kn(k) , assumed small.
o n(k,t)= Wo(k)eiw(k)t and (K, t) = wo(k)ei“’(k)t

Gravity waves Hamiltonian system Wave turbulence
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Wave solution

Fourier transform

f(k) = 217 / f(x)e k%) ax

f(x) = 217 / f(k)e'k*) ak

@ Wave steepness; a = kn(k) , assumed small.
o n(k,t)= Wo(k)eiw(k)t and (K, t) = wo(k)ei“’(k)t

Dispersion relation

w(k) = v/gktanh kh

w(k) — \/gk as h — oc.

Theory Gravity waves Hamiltonian system Wave turbulence
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Hamiltonian Equations of motion

@ n(k, t) and ¢ (k, t) are canonical variables satisfying
Hamiltonian equations [Broer 74, Miles 77].

@ Assume random phase and amplitude and take infinite
region then small nonlinearity limit.

= Derive a kinetic equation describing evolution of the
spectrum in terms of wave-action (average amplitude).

6nk k.
/ka’kz Ny, nkz(nk3+nk)fnk3nk(nk1+nk2))

(5(k1 +k2—k3—k)5((d1 —|—OJ2—(,U3—LL)) dkq 23
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Resonant interactions

Resonant manifold
w(ky) + w(ka) — w(ks) —w(ks) =0, ki +kz—ks—ks=0,

kg1 = (3.810,0)
kg = (5.166,0.818)

2Kg1 = ks + k4.
kg1 + Kg2 = k3 + ky.
ka1 + ko = kg2 + Kq.

Gravity waves Hamiltonian system Wave turbulence
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@ Initially at rest then a finite number of modes are driven.
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@ Initially at rest then a finite number of modes are driven.
© Cascade arrest due to k-space discreteness leads to
accumulation of energy near forcing scales.
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@ Initially at rest then a finite number of modes are driven.

© Cascade arrest due to k-space discreteness leads to
accumulation of energy near forcing scales.

© This leads to widening of the nonlinear resonance.
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@ Initially at rest then a finite number of modes are driven.

© Cascade arrest due to k-space discreteness leads to
accumulation of energy near forcing scales.

© This leads to widening of the nonlinear resonance.

© Sulfficient widening triggers a cascade.

Gravity waves Hamiltonian system Wave turbulence
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Turbulance cascade

Wave energy spectrum

E - / &2 1((x, tyn(x, t + £l

@ Zakharov Filonenko (1967) power law solution to wave
kinetic equation.

E; ~ 4.
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Turbulance cascade

Wave energy spectrum

E - / &2 1((x, tyn(x, t + £l

@ Zakharov Filonenko (1967) power law solution to wave
kinetic equation.

E; ~ 4.

Other power law power spectra
@ Phillips (58), Ef ~ ~°
@ Kuznetsov (04), E; ~ f~(3+D)
@ Nazarenko (06), Ef ~ 58

Theory Gravity waves Hamiltonian system Wave turbulence
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Experimental Setup

8 Panel Wave Generator

Fluorescent visualization:

Spatial spectra ‘

Capacitance probes: PP e
Temporal spectra AN

[Total Environment Simulator at “The Deep” Geography
Department, University of Hull]
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Elevatlon channel l(top) channel Z(bottom)
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Initial maximum

Root mean squared surface elevation

Averaged of 10 second windows

A=/{(n—=1)>?).

RMS of amplitude

Elevation, [cm]
N

[ 100 200 300 400 500 600

Results Initial maximum  Spectra  4-Wave
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- Fit Range

Probe 1 slope = 5:06
Probe 2 slope = 5.23
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4-wave resonant interactions
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2Kg1 = k3 + ky.

Kot + ka2 = k3 + Kq.
kg1 + K2 = Kgo + Ka.

Results Initial maximum Spectra 4-Wave
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Presence of quasi-resonance in spectra
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Conclusion and further work

Conclusions:

@ Accumulation of energy at driving frequency before the
onset of nonlinear interactions supports resent theoretical
work.

@ Greater accumulation for single driving frequency (or well
spaced driving frequencies).
Largest interaction coefficient with two close driving
modes.

© Predict energy transfer based on closest quasi-resonance
with eigenmodes of the Harbour.
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Conclusion and further work

Conclusions:

@ Accumulation of energy at driving frequency before the
onset of nonlinear interactions supports resent theoretical
work.

@ Greater accumulation for single driving frequency (or well
spaced driving frequencies).
Largest interaction coefficient with two close driving
modes.

© Predict energy transfer based on closest quasi-resonance
with eigenmodes of the Harbour.

Further work:
@ More experiments for various driving rates and modes.
© Supported by numerical simulations.
© More accurate estimates of interaction coefficient.
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@ n(k,t) and ¢ (k, t) are canonical variables satisfying
Hamiltonian equations [Broer 74, Miles 77].

anx,t)  oH  9p(x, 1) 5H

ot sw(x,t) ot on(x, t)
Where H =K + 11,

K = ;//Z(W))? dz dx

]
N= . 2
29/77 dx

Appendix Extra bits
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@ Assume small nonlinearity (wave steepness)

= Expand the Hamiltonian as an integral power series in
conjugate variables.

@ Canonical transformations reduce the Hamiltonian.

@ Assume random phase and amplitude and take infinite
region then small nonlinearity limit.

= Derive a kinetic equation describing evolution of the
spectrum.

Resonant manifold
w(ky) tw(ks) tw(ks) =0, ki +tkstks;=0,
0

, ki+ka—ks—ks=0,

Appendix Extra bits
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@ Assume small nonlinearity (wave steepness)

= Expand the Hamiltonian as an integral power series in
conjugate variables.

@ Canonical transformations reduce the Hamiltonian.

@ Assume random phase and amplitude and take infinite
region then small nonlinearity limit.

= Derive a kinetic equation describing evolution of the
spectrum.

Resonant manifold

- - ’

Y

(x)(k*]) + w(kZ) - w(k3) - W(k4) = 0, k1 + k2 — k3 = k4 = 0’

Appendix Extra bits
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