

Inspection Games James Porter Supervisor: Vassili Kolokoltsov

THE UNIVERSITY OF WARWICK

Complexity Science Doctoral Training Centre

Overview

- 1. Motivation/Aims
- 2. Introduction
- 3. (Two) Models
- 4. Bounded Rationality
 via Computational
 Complexity
- 5. Evolutionary Approach
- 6. Conclusions & Prospects

Motivation

- In UK one estimate puts tax evasion at £80 Billion per year ^[1]
- Tax evasion estimated to cost \$160 Billion
 USD per year in Developing World ^[2]
- Nuclear arms inspections have obvious political importance

[1] www.**tax**research.org.uk

[2] http://latestnews.virginmedia.com/news/money/2008/05/12/tax_evasion_ causing_child_deaths Obviously these are incredibly difficult to accurately assess

Assess Empirical Utility of Inspection Game Theoretic Models/Techniques:

- Distinctive Qualitative Features (What are the applications?)
- Inputs and Knowledge Required
- Verification/Testing/Predictive Use

Basic Concepts in Game Theory

- Games
- Rationality
- Common Knowledge
- Pure Strategies
- Mixed Strategies
- Nash Equilibrium
- Extensive Form Games

Basic Concepts in Game Theory

- Games
- Rationality
- Common Knowledge
- Pure Strategies
- Mixed Strategies
- Nash Equilibrium
- Extensive Form Games

What is an inspection game?

Simplest form of Inspection Game:

Repeated Inspection Games

Game now
 over several
 stages
 Corresponding
 increase in
 complexity.

Basic Concepts in Game Theory (II)

Strategic Form Game

Payoff Bimatrices

		Cheat	Comply
		-100	5
Inspect	100		-5
Don't		20	5
Inspect	-20		0

Basic Concepts in Game Theory (II)

- Strategic Form Game
 Payoff Bimatrices
- $\begin{bmatrix} 100, -100 & -5,5 \\ -20,20 & 0,5 \end{bmatrix}$

		Cheat	Comp	oly
		-100		5
Inspect	100		-5	
Don't		20		5
Inspect	-20		0	

Model 1: Features

- Model for tax evasion inspections
 - (Tax) Inspector/Auditor, who chooses to either
 - Inspect, fixed cost c, probability of success p
 - Not inspect
 - Tax Payer/Inspectee, who chooses to either
 - Pay tax and earn a legal income r
 - Evade tax: earn legal income r, surplus l
- All of the above can easily be adapted to other scenarios

Model 1: Single Round Version

Basic form, a single round with bimatrix:

$$\begin{bmatrix} r+\bar{p}l-pf, -c+pf-\bar{p}l & r+l, -l \\ r, -c & r, 0 \end{bmatrix}$$

- Can be easily solved for equilibrium behaviour
- Under reasonable assumptions there is a single mixed NE
- Can obtain **value** (u_1, v_1)

Extension of Model 1: Multi Round Version

• Define game recursively:

$$\Gamma_{n} = \begin{bmatrix} r + \bar{p}(l + u_{n-1}) - pf, -c + pf + \bar{p}(-l + v_{n-1}) & r + l + u_{n-1}, -l + v_{n-1} \\ r + u_{n-1}, -c + v_{n-1} & r + u_{n-1}, v_{n-1} \end{bmatrix}$$

Then NE values will be:

 $\begin{array}{l} (\mathbf{u}_{n},\mathbf{v}_{n}) \\ = \ \mathrm{val} \begin{bmatrix} r + \bar{p}(l + \mathbf{u}_{n-1}) - pf, -c + pf + \bar{p}(-l + \mathbf{v}_{n-1}) & r + l + \mathbf{u}_{n-1}, -l + \mathbf{v}_{n-1} \\ r + \mathbf{u}_{n-1}, -c + \mathbf{v}_{n-1} & r + \mathbf{u}_{n-1}, \mathbf{v}_{n-1} \end{bmatrix}$

There isn't time or space here to do this in full – see written report for a fuller account.

Extension of Model 1: Multi Round Version

- Rewriting: $(u_n, v_n) = (u_{n-1}, v_{n-1}) + val(M_n)$ Where: $M_n = \begin{bmatrix} r + \bar{p}(l) p(f + u_{n-1}), -c + p(f v_{n-1}) \bar{p}l & r+l, -l \\ r, -c & r, 0 \end{bmatrix}$
- For 2 round case this we have: $(u_2, v_2) = (u_1, v_1) + val(M_2)$
- If certain conditions are satisfied we can obtain the Mixed NE value in a straightforward (though algebraically awkward) way.

More than 2 Rounds

 We can continue in this fashion to obtain the NE for such a game with an arbitrary number of rounds.

In Avenhaus's "Compliance Quantified" (section 5.4) a general analytical solution is obtained for a similar though simplified zero sum, single-violation-possible model.

Model 1: Numerical Approach

- As you can see analytically messy for even a small number of stages
- When we do obtain results, they are invalidated by slight changes to model
- But recursive definition gives algorithm for obtaining N.E. of games
- For "realistic" examples computationally unproblematic (within certain parameter regimes)

Model 1: Numerical Results (I)

DEFAULT PARAMETER VALUES

VARY THE FINE

- n = 3
- r = 10
- f = 100
- C = 10
- I = 30

Model 1: Numerical Results (II)

VARY ILLEGAL INCOME

VARY PROBABILITY OF DETECTION

Model 1: Numerical Results (III)

Fine

Probability of Violation when varying both Fine and Probability of Success of Inspection

Probability of Detection

Model 2: Features

- Single Inspected Object
- Thorough initial inspection, then interim inspections
- Detection probability 1-β
- False alarm probability α
- k inspections, labelled backwards

Avenhuas & Canty, Playing for Time a Sequential Inspection Game, European Journal of Operational Research 167 (2005), 475-492. There have been several extensions proposed to this model, see bibliography in written report.

Model 2

- Utilities: (Inspector, Inspectee)
 - (o,o) legal action, no false alarm
 - (-le,-lf) legal action, I false alarms
 - $(a \Delta t, d\Delta t b)$ detection of illegal activities after time Δt .

Model 2: Single Inspection Version

Model 2: 2 Inspection Version (Full)

Model 2: 2 Inspection Version (Reduced)

Model 2: Analysis

We can continue with the analysis to derive optimal number of inspections

Other Models

- 1. Ferguson and Melolidakis 1997
- 2. Pradiptyo 2006
- Actually aren't that many recently published models.
- Many classic Nuclear Arms Inspection models.

See written report for further details.

Computational Complexity and Bounded Rationality

- Model strategies of players by finite state automata
- Of certain Complexity
- If Bounded obtain more cooperative behaviour

A. Heyman, Finitely Repeated Games and Finite Automata, Mathematics of Operational Research, 1998. On Bounded Rationality and Computational Complexity, C.H. Papadimitriou and Mihalis Yannakakis

Applied to Finitely Repeated Inspection Game

- Folk Theorem(s)
- Complexity of Automata
- Basic idea "prove your automata is genuine"
- Probably of little practical use

Evolutionary Approach: Fictitious Play

- Re-examine earlier model
- Fictitious Play
- (With Enhancements)
- How equilibria form (if they form)
- How quickly they form

Fictitious Play

- Each player has initial weight function (prior belief about other player's strategies) κⁱ₀
- This is updated to κⁱ_t by count of plays of strategies
- This allows us to obtain a probability distribution γ_t^i on those strategies

Initial Results

Enhancements

Smoothed Best Response

Results

Results

Conclusions

- Variety of flexible models available
- Very direct applications
- However the necessary data can be difficult to obtain
- Computational Complexity not useful as model of bounded rationality
- Evolutionary model(s) very useful as (potentially) allow us to look at short term behaviour and formation of equilibria

Prospects

- "Real world" applications
 - Collaboration with Warwick School of Law and HSE
 - Collaboration with Aston Business School and Home Office
- Modelling Work
 - Many possible extensions to models
 - More general setting
 - 2nd Mini Project

Questions